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ALTERNATING CYCLES AND REALIZATIONS
OF A DEGREE SEQUENCE
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Abstract: We find an algorithm for constructing finite sequences of cer-
tain graphs (realizations of a degree sequence on a given set) with given i-
nitial and final graphs such that each subsequent graph is obtained from the
preceding one by a switching.
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0. Introduction. 1In this paper, we deal with finite, undirected graphs
admitting multiple edges and loops and we also consider some special types
of graphs, e.g. graphs without loops, k-graphs, simple graphs.

We are interested in the class Rv(d) of all graphs being realizations
of a degree sequence d on a given set V. The class Rv(d) is closed under
switching operation (see [2]).

One of the most important properties of the class Rv(d) is contained
in the following

Theorem. If G,H € R, (d), then there exists a sequence

(x) BO,GI,...,G'" such that 6°=G, G"=H and for every s e10,1,...,m-1% the
graph G5+1 is obtained from G5 by a switching.

Several proofs of this theorem were presented in the literature. In tho-
se proofs different methods have been used for different types of graphs
(see [11,031,041,0¢1), Our aim is to find a method of the proof which is ef-
fective, uniform and optimal. In this paper an algorithm for constructing
the sequence (%) is given. This algorithm can be applied to all types of
graphs mentioned above. It can generate a shortest sequence (), however,
in general, solutions are not optimal.

Our method is partially based on ideas contained in [5). Namely, we make
use of the fact that the symmetrical difference G+H of two graphs G,He Rv(d)
can be decomposed into alternating cycles of some special forms. Therefore,
we have to prove several properties of alternating cycles.
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1. The set of realizations of a degree sequence and its subsets. Let V

be a finite set. We denote by U2 the family of all non-empty subsets of V
having at most two elements, and by Z* - the set of all positive integers.

A graph is an ordered pair (V,E) satisfying the condition:
1) Vg and E e Dy 7,

If ecE and e=({u,v},n) for some u,veV and neZ*, then the edge e is
incident with u and v and has the label n.

We shall write e=unv instead of e=({u,v},n), and e=vnv instead of e=
=(4vi,n).

Let G=(V,E) and u,ve V. We denote by Eél)(v), EéZ)(v) and EG(u,v) the
set of all loops incident with v, the set of all edges incident with v and
different from loops, and the set of all edges incident both with u and with
v - respectively.

The number degG(v)=2|Eé1)(v)|+|E[(;2)(v)| is called the degree of v in G
and the number mg(u,v)=|E;(u,v)| is called the edge multiplicity of {u,v}
in G.

A graph G=(V,E) is a multigraph if Eél)(v)=ﬂ for every veV and G is a
k-graph (keZ") it mG(u,v)ék for every u,veV. A k-multigraph is a multi-
graph being a k-graph. A 1-multigraph is called a simple graph. A graph
without any restrictions will be called sometimes a pseudograph. The class
of pseudographs will be denoted by 0 , the class of multigraphs - by M ,
k-graphs - by ’Pk, k-multigraphs - by M, and simple graphs - by & . If <
is a class of graphs and G € ¥, then we say that G is of type T .

Let G=(V,E) be a graph where V=iv1,v2,...,vn¥. A sequence d;; of the

form
(2) dG=(degG(v1), degg(v,), ... ,degs(v )
is called the degree sequence of G.

A sequence d=(d1,d2,..'.,dn) of non-negative integers is graphic if there
exists a graph G such that d=dG. Such a graph is called a realization of d.

Let ("1’"2’"3'"4) be a sequence of vertices of a graph G=(V,E) satisfy-
ing the following conditions:

1° wiws and wydw,,

2° there exist Ny 2Np,N3,N,€ 7* such that

8,=W;N W, € E, e3=WsNsW, € E and el* es,
ey WNW1 4 E, 8wy 4 € and eyt e, .
Let us denote:

G(el,ez.ej,eaf(v’r) where E'=(E\Me),e5h)ude) el
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We say that G(e

ey.e5,8 ) is obtained from G by a switching operation
17207374

with respect to the edges e1,e3 and €9,€4.

We shall write G(NI'WZ""}'"A) instead of G(e f the switching

1,82,83,86)1
operation has been done in the following way:
if wy=w, and ws=w,, then n1=mG(w1,w1), n3=mG(w3,w3);
Ny=ms (W) ,W3)+1, ny=mo(ws,w))+2;
if w =w, and wy=ws, then nl=mG(w1,w2), n3=mG(w2,w1)-1,
ny=me Wy, Wp)+1, n4=mG(w1,w1)+1;
in the remaining cases nl=mG(w1,w2), n3=mG(w3,w°),
Ny=me(Wy, W3 )+1, ny=mg(wy Wy )+1.
If G* is obtained from G by some switching operation, then we also write
shortly G =sw(G).

Let d=(d1,d2,...,dn) be a graphic sequence, V= {vl,vz,...,vn§ be an ar-
bitrary n-element set and G=(V,E) be a graph. Let Rv(d) denote the set of
all realizations of d on V, that is GeRV(d) if G is a realization of d and
the following condition holds:

3)

(4) if m;(u,v)=s then EG(u,v)={u1v,u2v,...,usv} for every u,veV.

It is obvious that if G € R,(d) and G’ then G'e Ry(@).

=G(w1’w2'"3""4)’

If the realizations of d are required to be graphs of a fixed type <,
then the set of all realizations of d will be denoted by \'Rv(d; 7).

The above definition of a switching operation is suitable for the class
of pseudographs. If we consider classes of other types, then this definition
must be modified if we want the graph sw(G) to stay in the same class as G.
For example we do not like to get loops in the class of graphs without loops.
Therefore we have the following definitions:

If x=M, then we substitute 1° by 3°:

3° Wy iWo, W, W, are pairwise different.

If w=P,, then we aid 4° to the conditions 1° and 2°:

4° '"G("'Z’“})< k, '"G("A""l)< k.

For = M, (k22) we require conditions 2°, 3° and 4° to be satisfied.

If x=9 , then we require conditions 2°, 3° and 4° for k-1.

2. Operations on chains and cycles. Let G=(V,E) be a graph. By a chain
in G we shall mean a sequence L=(u1nlu2,u2n2u3,...,umnmuml) of pairwise
different edges of G. If Up=UnLgo then we have a cycle. If the edge labels

are immaterial, then we shall write L=u1u2...umum1 for a chain and C=u1u

L
---uuy for a cycle.
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We shall denote by V(L) and by E(L) the set of all vertices of L and the
set of all edges of L respectively. We say that a vertex v is in the k-th po-
sition in the chain L=u1u2...um+1 if Up=v. Positions kl and k2, where kl4=k2,
will be called compatible if the number |k1-k2|

We define the following operations on chains and on cycles:

is positive and even.

For L=u1u2...um_1um we define:

(5) t=umum_1...u2u1.

For C=u1u2...ui_1uiui+1...umu1 we define:
_i—
(6) ¢ UjU e UplpUge - Uy g

Let L1=u1u2...um, L2=w1w2...wk where Up=wy - We define:

@) Lytlo=uguy Uy

For L=u1u2...ui_1uiui+1...um and C=w1w2...ij1, where uj=w;, we define:
(8) L+ C=u1u2"'ui-1"1“2"'wj"1ui+l"'um‘

Let L=u1u2...ui_luiui+1...um. We define:
(€)) L/i=(L1,L2),where L1=ul'"ui-lui’L2=uiui+l"um'

Let L=u1"'ui-luiui+1"'uj—lujuj+1“‘um’ where uj=uy,i<y. We define:

(10) L/i’j=(L1,C), where L1=u1...ui_1uiuj+1...urn and

C=uiui+l"'uj-1uj‘

In what follows, the last operation applied to cycles will play an essen-
tial role.

A pair C/i j=(C1,Cz) will be called a decomposition of C into cycles C;
and C2 at positions i and j. A cycle C=u1...umu1 is decomposable if there ex-
ist i,je{1,2,...,m%, i< and Cy» Cp such that (cl,cz)=c/1,j.

3. Alternatigg cycles and their decomposition. For two graphs 91=(V151)*
Gz=(V,Ez), the graph Gl:-62=(V,E1=-EZ) is the symmetric difference of G, and
62. A cycle C=(u1n1u2,u2n2u3,...,umnmum+1) of 614-62 is called an alternating
cycle or briefly a-cycle if the following condition is satisfied for every

iedl,2,...,m}:

(11) ujniu; e El if i is odd and uinu; 4By if i is even.
Now we shall study decompositions of an a-cycle into a-cycles.
Lemna 1. If G,=(V,E,), 6,=(V,E,), then an a-cycle C of 6,6, is decom-

posable into a-cycles iff there exists a vertex v which occurs in C at two
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compatible positions. (Obviously, the first and the last vertex in a cycle is
counted once.)

Proof. The necessity follows from the definition of an alternating cycle
and from (10).

Sufficience. Let C=u1u2"'ui-lvui+1'"“j-lvuj+1"'“2m”1' Then there ex-
ists a decomposition c/i,j=(cl'02)’ where C1=u1“2"'ui—1V”j+1"'“2mui' Cy=
=vui+1...uj_1v. If i and j are _both odd, then C1 and C2 are a-cycles, if i
and j are both even, then Cl and fz are a-cycles.

Note that if v occurs in C more than twice, then obviously C is decompo-
sable into a-cycles, since C has always two compatible positions.

If an a-cycle C is decomposable into a-cycles, we shall write briefly
C is DAC, otherwise C is NDAC.

Corollary 1. An a-cycle C of a graph G,*-G, is NDAC iff every veV(C)
occurs in C either exactly once or exactly twice and at nun-compatible posi-
tions.

Let C=u,u,...u u; be a cycle in which for some i,j,k,le {1,2,...,m}, whe-
re i<j<k<l, we have u; =y U, uj=u1=v and u#v. Then we say that vertices u
and v occur in C alternately.

Lemma 2. Let C be an a-cycle of a graph Gl-'-ls2 and C be NDAC. If there
exist u,ve V(C) occurring in C alternatély, then there exists an a-cycle C’
such that V(C")=V(C), E(C")=E(C) and C" is DAC.

Proof. Let C=u1'"ui‘"uj"‘"k"‘ul"""Zm“P where U; = U and uj=u1=v.

Let C/; ,k=((21,02): We form an a-cycle C'=Cl+if2. Since C is NDAC, neither the
positions i,k nor j,1 are compatible. Therefore, C1 and 02 are not a-cycles,
however C~ is an a-cycle. Let s be the position of u:.j in C". By the definiti-
on of C°, we have s=i+(k-j), hence s+j=i+k. As s+j is odd, s and j are non-
compatible. Hence, s and 1 are compatible. Thus, by Lemma 1, we can conclude
that C” is DAC.

An a-cycle C is essentially non-decomposable into a-cycles, or briefly

ENDAC, if C is NDAC and there are no two vertices occurring in C alternately.

On the base of proofs of Lemmas 1 and 2 we can formulate an algorithm
for the decomposition of an a-cycle into ENDAC cycles.

Algorithm 1.
INPUT: An a-cycle [:=u1u2..‘u2mu1 of a graph Gl-’- Gz.
OUTPUT: The set € of ENDAC cycles such that E(C)= DUC E(D).
€
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METHOD :
€ := @; x:= 4; k:= 0
F: if there exist i, j such that i< 3-2, ui=uj and jZx
then
begin
k:= k+l;
jk:= the smallest j such that jzx and there exists i such that ug=
=uj and i< j-2;
ik:= the smallest i such that u.1=u;.lk and i< j-2;
X:= jk+1
if Jy-iyis even
then
begin
(Ck,Uk):= C/ik’jk; C :=CUka§; C:=Cy;
go toF
end
else
if there is no y ¢ i1,2,...,k-1% such that iy< i< jy<jk

then go to F
else
begin
s:= the smallest y €£1,2,...,k-1% such that iy< ik<jy< 3
L ;

1:=u1...ui$; L2:=uié"uik; L3:=ui|;..u L4‘=uj‘“"‘

j; s Jk
L5:=uj‘.(..umul; D, := 1__2+L4;C 1= Cu'ka’;; C:= L1I3+LS;

go to F
end

end
else
begin
C :=C v {C};
STOP
end

Let us denote by oc(v,C) the number of occurences of a vertex v in a
cycle C.

Lemma 3. If Gl,Gze.M and C is an ENDAC cycle of Gl—'- GZ’ then the-
re exists xe V(C) such that oc(x,C)=1.
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Proof. Assume that oc(v,C)>1 for every v&V(C). Since C is NDAC, by Co-
rollary 1, we get oc(v,C)=2 for every veV(C). Let i and j (i< j) be the posi-
tions of v in C, and let C'=v...v be the subcycle of C taken from the i-th
position to the j-th position. We shall show that €’ contains a loop. Let
1(C”) denote the length of C’. We proceed by induction on 1(C").

If 1(C")=1, then C'=wv is a loop.

Assume that the statement holds for each subcycle C” of C with 1(C)<s,
s>1.

Let 1(C")=s. Since oc(w,C)=2 for every w eV(C), there exists ueV(C")
such that u#v. Since C is ENDAC, the vertices v ahd u do not occur alternate-
ly in C and consequently 1(C")>2, oc(u,C")=2. Then, by inductive assumption,
there exists a loop in the cycle C"=u...u being a subcycle of C.

Thus we get a contradiction with the assumption that G,,G, & M.

Lemma 4. Let G;,6,< P and C be an ENDAC cycle of G,~G,, 1(C)Z 4 and
oc(v,C)=2 for every ve V(C). Then there exist x,ye V(C) such that Ly=xxyy or
L2=yxxy is a subchain of C.

Proof. Let u, v be consecutive vertices of C and usv. Since C is ENDAC,
so C’=uv...v...u is a subcycle of C. We shall prove, by induction on k=1(C"),
that C” contains a subchain L1=xxyy or L2=xyyx.

If k=3, then C =uvwu.

Assume that the statement is true for every k<s, s>3.

Let 1(C*)=s. It must be: 1° C’=uv...v...u, 2° C'=uw...u.

Case 1°. Letw be the third vertex of C'. Then C must be of the form C’=
=uvw...W...V...u. Hence, by the inductive assumption, there exists in C"=
=VW...W...v a subchain L1 or L2.

Case 2°. If 1(C*)=4, then the proof is completed. Assume that 1(C’)> 4 and

w is the fourth vertex of C’. Then C’'=uvww...w...u. Let z be the fifth vertex
in C’. If z=w, then we have a subchain L=vvww of C’. If z4w, then C =uvwwz...
...Z...W...u, and the cycle C"=wz...z...w is contained in C’. Thus the cycle
C" contains the chain of the form xxyy or xyyx, by the inductive assumption.

Theorem 1. If C=u1u2...u2mu1 is an ENDAC cycle of Gl'—Gz, then there ex-
ists an a-cycle C'=w1w2...u2mw1 such that V(C")=V(C), E(C")=E(C), C" is ENDAC
and C’ is one of the forms I-V:

I wy+w, for every ic {2,3,...,2m3,

IT wy=w, and wy=w, , oc(v,C")=2 for every ve V(C),

IIT W =Wy and Wy=wp ;, oc(v,C")=2 for every ve V(C"),

IV wy=wy and wy=ws, oc(v,C")=2 for every veV(C'),
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Vo wy=w, and wop 1=Wo, oc(v,C")=2 for every ve V(C).
Proof. Assume that there exists a vertex v in C such that oc(v,C)=1 and

i is its position in C. Then ¢’=E*! for odd i or C'=(Ct;1) for even i satisfies
condition I.

Assume that oc(v,C)=2 for every ve V(C). Then, by Lemma 4, there exists
a subchain L=uiuh1ui+2ui+3 of the form yxxy or xxyy. In case 1, if i is e-
ven, then C'=C>1*! satisfies II, if i is odd, then C'=C"*Z satisfies III,
in case 2, if i is even, then C'=C"1*! satisfies IV, if i is odd, then C'=
=f’i+2 satisfies V.

Obviously C” is ENDAC in each of the cases.

Remark 1. Theorem 1 provides an easy one-pass method for transforming
an ENDAC cycle into an a-cycle which is of type I - V.

4. A-cycles and realizations of a degree sequence

Lemma 5. Let d be a graphic sequence, G;,6,€ R (d) and G;=(V,E;), Gy=
=(V,E2). Then every non-trivial component of 6,+6, is an Eulerian graph
with at least 4 edges and each component has an alternating Euler cycle.

Proof. Since for every veV we have

|{ecE\E,: e inc vi|=| -ieeEz\ E,: e inc v},

so every non-trivial component of GI¢G2 has an alternating Euler cycle.
From (4) it follows:

meGZ(u,v)=ImGI(u,v)-mGZ(u,v)l for every u,ve V(@ =G,).
Thus none of the a-cycles of the graph Gl—‘-[;2 is of the form C=uvu or C=vvv.

Lemma 6. Let G;,G,¢ Rv—(d), 6,=(V,E;), G,=(V,E,) and C be an a-cycle of
the graph GILGZ. Then the following conditions hold: .

1. If ej=un;v, e;=wnyz, ;e E\\ Ey, €,e E,NE;, then fu,vi+{w,z].

2. 1If u,v,w are consecutive vertices of C, then u+w.

3. If 6,,6pe R\(d; ), where ve { M, M, ,F} , then every three conse-
cutive vertices of C are different.

4. V(D) z2,

Proof. The first condition follows from the fact that edges are label-
led both in Gl and in 82 starting from 1. Conditions 2 - 4 follow from con-
dition 1.

Let € be a set of a-cycles of the graph G,=G, such that c\‘JmE(C)=
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=E(Gl—'—62). We shall say that € is an a-cyclic partition of GIL 62 if each
edge of E(Gl-‘—Gz) belongs to exactly one of the a-cycles in €.

If {CI,CZ,...,CI,E is an a-cyclic partition of Glé-Gz, then we can form
a sequence (CI'CZ""’Cr)' We say that an a-cycle l:k=u1u2...u2mu1 (k=1,2,...,r)
is closed the most quickly in the sequence (Cl,...,Cr) if for every s €
€ {2,3,...,m-1} and neZ* the following condition holds:

uyghu; € E(6)NE(G)) =>u,.nu; € ie {%...,k-q}ﬁ(ci)

A sequence C=(Cl,02, : “'Cr) is called a proper a-cyclic partition of
6,+G, if for every kefl,2,...,r%, C, is closed the most quickly.

Example. Let
E(G))\ E(G))= {vllvz,v11v3,v23v7,v32vA,v51v6,v52v6,v51v8,v71v8},

E(Gz)\E(Gl)= { V13VgsVq1vg,Volvs,vo2vg, Vlve, v, 1vg, Ve lvg, v v 3. )
Put Cl=v1.v.2x3v4v5v6.vl7v8v1, Cz=v2v7v5v6v1v3v5vav2, Dl=v1v2v3vnv5v6Y1"
27V2"7VsV6"7v8V1V3V5V8" 2" .
Then the partitions C=(CICZ) and C =(CZ’C1) are not proper, because
vgdv, € E(Gz)\ E(Gl) and v v, e E(Cz), and similarly v31v28E(62)\E(Gl) and
v3lv, € E(Cl). The partition C"=(Dl,02) is a proper a-cyclic partition of

Gl—'—GZ.

D

Remark 2. An a-cyclic partition of G,=G, for G;,G,€ Rv(d) can be con-
structed using an arbitrary algorithm for finding an Eulerian a-cycle in an
Eulerian graph, where the edges should be chosen from G1 and 82 in an alter-
nating way. To find a proper a-cyclic partition of Gl—‘—G2 we can use such an
algorithm requiring additionally every cycle to be closed the most quickly.

Let G,H elRV(d;'r.) and G#+H. A sequence G=§°,Gl,...,Gk=H will be called
a sequence of intermediate graphs for (G,H) if Gle TRv(d; ) and Gl=sw(Gi'1)
for iefl,2,...,k}.

Theorem 2. Let G,He IRv(d) and let € =(Cl,l32,...,Cr) be a proper a-cyc-
lic partition of G=H. If Cl=u1u2...u2mu1, then there exists a graph Gm—l &€

e ’Rv(d) and a sequence of intermediate graphs G=l’$c',l'51,...,Gm°1 for (G,Gm'l)
such that C' =(C2""’Cr) is a proper a-cyclic partition of ¢™loy,

Proof. We shall prove the theorem by induction on m.

For m=2 we have Cl=u1u2u3uau1. From Lemma 6, u1-\=u} and u2$u4- Let €=
U N Ug, €9=UoNoUs, E3=UsNU,, €,=U,N,U,, where NsNg,N3,N, satisfy conditi-
ons (3) of Section 1. Then we have:

12) e,,e3€ E(B), ey,e, ¢ E(G)
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1=
Hence, we can take G 6(31,82.93:84)'

We can assume that C1=(e1,e2,e3,e6), hence E(Gl-'—H)=E(¢' ), where €'=
=(C2""’cr)' Therefore C' is a proper a-cyclic partition of Gl-'—H.

Assume that the theorem holds for a cycle C, of the length 1=2(m-1).

Let Cl=u1u2...u2mu1 and €),85,€3,8, satisfy condition (12). From the de-
finition of an a-cycle it follows that el,e3eE(G)\E(H), ey€ ECHINE(G).

Since ny> mG(u‘,ul), S0 e,‘#E(G). Put GI=G(e 3'84)‘ Since C, is closed

,e,,e
the most quickly and 1(01)74, so aaq‘; E(H). ’}huz E(Gl-'—H)=(E(G =H) \{el,ez,e3})u
uie,l.

We have Cl=(C',C2,...,Cr), where C':ulua...uzﬂlu1 and €l is a proper
a-cyclic partition of GIL H. Now we can use the inductive assumption.

Remark 3. On the base of the proof of Theorem 2 one can easily formula-
te an algorithm for the reducing of the first a-cycle in a proper a-cyclic
partition of G+H, where G,He Rv(d;@).

The next theorem concerns the sequences of intermediate graphs in the fa-
mily Rv(d;q:), where @ = 9k for k22 or 7 = Mk for k 21. We assume that
M= Mk for k=0 . Note that the assumption kZ2 is essential, since for
two graphs of type 5’1 there need not exist a seguence of intermediate graphs
of type ?1 (see Fig. 1).

QD Q
d .b Fig. 1

Theorem 3. Let G,H < R,(d; ), where ©= P, for k22 or 7= M, for
kzl, and C =(Cl,Cz,...,Cn) be an a-cyclic partition of the graph G=H such
that every cycle is of the form I - V (see Th. 1) . Assume that Cy=upu,. ..
<+ +Upeuy and (so,sl,...,sp) is a sequence of all positive integers such that:

1=so< s L G < sp=m,

(13) mG(ul,u21)< k fo; ie {sl,sz,...,sp§,
me(uy ,up; )=k for is ({2,3,...,m}\{sl,sz,...,sp'&).
Then there exists a graph G'e Rv(d; 1) and there exists a sequence

s s,-5 S,-S s _-s
0l 1% .l 2°1 1 P p-1_.-

10 66.°67,....6" °, 63,....67 1,65 6

of intermediate graphs for (G,G°) such that €' =(Cy,C5,..,C) is an a-cyclic
partition of the graph G'=H.
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Proof. We shall consider Cl as a sequence (el,ez,...,ez'n) of edges from
E(G+H), where e; is incident with u; and u, , for i=1,2,...,2m-1, and the
edge €om is incident with Yo and up-

Denote:
f1=e1,
(15) m-(u,,u,.)+1 for je{s,,s,,...,s ¥,
£.= _ G 717723 1'72 P
"uln'UZj’ where nj-
JJ k for je(12,3,...,m¥\Ls, ... 5p),
« 5o for r=0,
(16) k(r)={
Sp™Sp1 for r=1,2,...,p.

For re 41,2,...,p% and i€ {1,2,...,k(r)} we define:
an 662 =62
r a(ul'u2q’u2q+l’”2q+2) a(fq'32q'82q+1’fq+1)’
where g=s -i and a=r-1, b=k(r-1) if i=1,
a=r, b=i-1 if i=1.
Fig. 2 shows how to construct initial elements of the sequence (14). By

means of thick continuous lines we draw these edges of C1 which belong to
E(G)\E(H), by a dashed line we draw edges of C, which belong to EN\ ECG).

UI" [ =f1 6:1-1
“ L
2
LTS RN 2054 :
G:/ €201 L ‘z(.o,—i.)+4\'>61

Fig. 2

First let us observe that fl=el, t’m=f5 =€om- We prove that the remaining
edges are pairwise distinct. In fact, ei+ e? for i%j as being edges of Cl;
fi*ej for i¢42,3,...,m1}, jef2,3,...,2m-1} since f; is incident wittru;
and ey is not (Clis of the form I - V); f1+fj for i j since ”21*"2j as be-
ing vertices of an NDAC cycle.

We shall show that the switching operations defined by (17) can be reali-
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zed, that is, the following conditions are satisfied:
1) ul’"Zq'"2q+1'u2q+2 are pairwise different,

2) fq+32q+1' BZq*fqd’

b
3 20:800, 8 EGD), ey, 1o, $EED),
4) me("2q'u2q+1)<k’ me(u2q+2’u1)< K.
a a
Condition 1) follows from Lemma 6 and from the assumption that C1 is of the
form I - V; condition 2) follows from the above considerations.

Let red1,2,...,p}, 1€42,3,... k(r)} and 9=s.-i. From (13) and (15) it
follows that fq’fqole E(G), however, from the definition of an a-cycle of
G=H we have €oqe1€ E(G)\ E(H) and € E()\ E(G). Let us note that the edges
fq’°2q+1’°2q have not taken part in the earlier switching operations, so

i-1 i-1
tq’e2q+1€ E(Gt ) and ezqéE(G ), whereas the edge fq‘._1 has been removed
from the graph G:,'l in the preceding switching operation, hence fq+1¢E(Gli:'l).
Thus condition 3) is satisfied.

Since € E(H)\ E(G) and e2q¢ E(Gi'l), som i—l(u2q’u2q+1)<k' Further,

G
since 2. e E(Gli.‘z)\s(si'l), s0 mGi_l(u2q+2,ul)<l[<.. From that it follows that
condition 4) is satisfied. r

Similarly we prove that conditions 3) and 4) hold if i=1.

From (17) it follows that for r=1,2,...,p-1 we have:
E(G:(r))=(E(G)\{e1,e3,...,eZSr_l'i)uﬁfsr}U‘(-ez,ev..
whereas for r=p

E(G:(p))=(E(G)\-f a

.,e ¥
’ 231,-2 2

83,8 _1Vufese,,...e, e 1
1°73 Zsp 1 274 25p 2 23p
since, by sp=m, we have fsp=e230.
Thus we can conclude that E(G"=H)=E(G=H)\ E(C,), and consequently, the
sequence C'=(Cz,...,cn) is an a-cyclic partition of the graph G =H.

Remark 4. On the base of the proof of Theorem 3 one can formulate an
algorithm for the reducing of the first a-cycle of the form I - V in a-cyc-
lic partition of GH, where G,H e Ry(d; ) for z e 1P M,, 9, k22,

Now we give a procedure of finding a sequence of intermediate graphs for
(G,H), where G,H eR(d; 2).
Algorithm 2.
1. Find a proper a-cyclic partition <l‘.=(c,1,c2,...,cn) of the graph G=H,
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here G,H e R(d;¢). If ©=T, go to 3.

2. Decompose each cycle Ci of C onto ENDAC cycles and transform each of
them to a-cycle of type I - V. Denote also by € the resulting a-cyclic par-
tition of G=H.

3. For every cycle of € use Remark 3 if ve {2 ,M? and use Remark 4
ifee {'S‘k,.Mk, o} for k2.

Finally we look for the shortest sequence of intermediate graphs for
(G,H). Let G=G°,Gl,...,Gk=H be a sequence of intermediate graphs for (G,H).
The number k will be called the length of this sequence. The least number k
for which there exists a sequence of intermediate graphs for (G,H) will be
denoted by k (G,H). Therefore ko(G,H) is the least number of switching opera-
tions which must be done to reach H starting from G. In this process we have
to take only such switching operations which decrease the number of edges of
the graph G=H. Note that a switching operation applied once to an a-cycle C
decreases the number of edges by 2 if |E(C)|>4 and by 4 if |E(C)|=4. Hence

(18) ;éko(G,H).és-l, where s=|E(G=H)]|.

The equality ko(G,H)= ; holds if each of the edges of G=H occurs in a
4-edge a-cycle, and Ko (G,H)=s-1 if all edges of G=H occur in a given one
2s-edge a-cycle.

Thus we obtain a shortest sequence for (G,H) if the a-cyclic partition
of G=H which we apply in Step 2 of the last procedure has the greatest num-
ber of a-cycles. However, Algorithm 1 does not assure that we deal with an
optimal a-cyclic partition of G=H.

Thus, we pose the following

Problem. Give an algorithm for finding a decomposition of an a-cycle
into the greatest number of a-cycles.

Let us notice that (18) can be improved using Lemma 1. Then we get

7k, (G,H) s~ 4 , where A =max § degg, (3, .y gt -
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