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A NOTION OF MEASURE FOR CLASSES IN AST
A. TZOUVARAS

Abstract: The idea of approximating semisets by sets from within and
from without 1s quite natural and analogous to that of the inner and outer
measure of measure theory, where in the place of real numbers we now have
cuts of natural numbers. However, not too a large part of the classical the-
ory is expected to be saved under this analogy, a fact due to the rather cru-
de structure of cuts. Finer results are obtained if we suppose that the cuts
satisfy certain closure properties.

Key words: Cut of natural numbers, inner and outer measure, alternative
set tlﬁ%ry.

Classification: 03E70, 02K10

N, FN are the classes of natural numbers and finite natural numbers res-
pectively. We use a,b,c,... to denote elements of the first class and m,n,k,
... for elements of FN. Lower Greek letters o¢, f3,%,... are reserved for or-
dinals. I,J,... denote cuts. For any set u, |u| is the unique ae N such that
u®a.

Given a class X let

o(X)= {ae N;(Vu)(Xgu — a<|u|)} for X being a semiset,

= N for any proper class X;

i(X)={aeN;(3u)(ucX&a=|u|)}
be the outer measure and inner measure of X respectively.

o(X), i(X) are, evidently, initial segments of N and o(X)=i(X)=aeN iff
X=u and |u|=a. In all other cases o(X), i(X) are cuts of N and, clearly,
i(X)so(X).

To give some obvious examples:

a) For the universe V, o(V)=i(¥)=N.

b) o(FN)=i(FN)=FN.

c) For any cut I, o(I)=i(I)=I.

d) o(2)=N, i(S)=FN, where £ is the class of ordinals.

Definition 1. The class X is said to be measurable if o(X)=i(X) and, in
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such a case, the common cut I=0(X)=i(X) is called the measure of X and is de-
noted by w(X).

Lemma 2. i) If X is not a semiset, then o(X)=N.

ii) Every proper set-definable class is measurable of measure N.

iii) Every I-class, i.e. every class £"I for some 1-1 function f, where
I is a cut, is measurable of measure I.

iv) XeY implies o(X)=o(Y) and i(X) £i(Y).

v) If X= J X is a Z-class, then X is measurable and @(X)= % @lX ).

vi) If X= ) X is a TT-class, then X is measurable and @(X)= £) w(X n-

\ Proof. i) - iv) are trivial. v) Let X= b4 X, with (Xn)n increasing.

If some X, is a proper class then X is not a semiset and o(X)=N by i). On the
other hand, i(X)Ei(Xn)=N. Hence @ (X)=N= Y/ X). Suppose X is a = -semiset,
that is X= 'L”)un with (“n)n increasing and let lun|=an. Since us l,{un iff
(3 n)(u&un) we get i(X):ngan. It suffices to show that o(X)= %an, that is,

a>Ua — (3u)( lﬂqunEu&luléa).

But this is an immediate consequence of the prolongation axiom.
vi) Let X= Mu, with (u,),, decreasing and let lun|=an. Clearly

iX)eo(X) e Q 8

It suffices to show that Ma ci(X).
Let aefa . Since lu,l=a, by the prolongation axiom we can find
v Nu, such that a=|v|. Thus, ae i(X).
Now let X=0) X and each X, is proper. Let V = {x;|x|=a} for every aeN.
V‘i are set-definable and given a,
VN P(Xn)¢ﬂ (where P(X)= $x;x&X})

for every ne FN. Then, van(g P(Xn))#ﬂ, hence Vg”P(Q"n)*“: which means
that aei(Q) X ). Therefore i(/) Xp)=N= @(X¥)= (). O

Lemma 3. If (xn)n is a decreasing sequence of fully revealed classes
which are measurable, then () X, is measurable and M(Q Xn)= th(xn).

Proof. Let @(Xn)ﬂn. Then i(f';\ Xn) =4 Q In. Let ae Q In' Then if Va=
= {x;|x|=al, Vgh P(Xn)*ﬂ for all neFN. Since N\ P(Xn)=P(Q Xn), by full
revealness we have van P(O Xn)#ﬂ. Hence a ei(("} Xn). Therefore Q I.¢
Ei((,:- X € ol Qxh). o

From now on we shall consider semisets only, that is, subclasses of a gi-
ven fixed set w with |w|=d. This is analogous to the practice of studying
measures of subsets of a given interval of the real line, say [0,1].

We sometimes write -X for the class w\X.
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If I is a cut and I<d, let us put
d-I=d \{d-a;ae 1}

(d-I is not to be confused with the set theoretic difference d\I).It is not
hard to see that d-I is a cut.

Theorem 4. 1) d-I=4d-x5x>I% and if I is closed under addition then
I<d-I.

2) 1£J)— d-J&d-J

3) d-(d-1I)=I

4) For Xeq, o(-X)=d-i(X) and i(-X)=d-o(X)

5) X is measurable iff -X is measurable and @(-X)=d-m(X).

Proof. 1) and 2) are straightforward.

3) Let x&d-(d-I). Then x=d-y for some yed-I, that is y< d-z for all
zel or d-y>z for all z4I. Thus d-y=x4I. *

Conversely, let x4I. Then x=d-(d-x) and since d-x é{d-y;ycI?, d-x e
€ d-{d-y;y € I}=d-I. Therefore x=d-(d-x) € §d-z;zed-I%, consequently, x4 d-
-{d-z;zed-1} =d-(d-I).

4) We prove the first equality. The other follows from 1) and 2). Let
x4 d-i(X). Then x=d-a for some aei(X). Take VEX with |v|=a. Then -v2-X and
|-v|=d-a=x. Thus x4 0o(-X). The converse is similar.

5) Immediate from 3). O

Given cuts I, J let us put

I+J={a+b;ac I&be 3}
I.J=4{x%a.bj;aelkbel}

I+J and I+ J are obviously cuts, the sum and product respectively of I, J.
The semisets X, Y are called separable if there are sets Vir Vg such that
Xle, Yev2 and vlﬂv2=ﬂ.

Theorem 5. If X, Y are separable, then i(XUY)=i(X)+i(Y) and o(XUY)=
=0(X)+o(Y). If, moreover X, Y are measurable, then X UY is measurable, of me-
asure @(X)+ Y).

Proof. We show that i(XUY)<ci(X)+i(Y) (the converse is straightfor-
ward). Let ucXUY with X,Y. Then, clearly uNX=u ﬂvl, uNy=y nvz. If
|uﬂv1f=al, Iunv2|=az, then a=a;+a, hence a e i(X)+i(Y).

Let aeo(X), beo(Y). Then a<|v|] VYv2X, and b<|s| Ys2Y. Letr 2
2XUY. By separability there are disjoint sets 5,2 X, r,2Y such that rlu e
cr. Thus a+b< |t1|+|r2|6|rl-:

Therefore, a+b< |r| for all r2XUY. It means that a+beo(XVUY) and one
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inclusion is proved.
Now suppose a>o(X)+o(Y). Then

(Vbeo(X))(Vceol(Y))(b+cca).

By an overspill argument we can show that there are a;> o(X), by> o(Y)
such that a;+b;< a. Choose u;2X, u,2Y with |u1|=al, |u2|=b1. If vy, v, se-
parate X,Y and w1=u1n Vi w2=u2ﬂ vy, then XUYs mIUw2 and len wzlga1m1< a.
Thus a¢o(XUY).

The other claim follows immediately. O

Theorem 6. For any cuts X, Y, i(X»xY)=i(X) « i(Y) and o(X=Y)€ o(X)« o(Y).
If X, Y are measurable, then XxY is measurable and (X =Y)=u(X) -@(X).

Proof. a) i(X).i(Y)<i(XxY) is straightforward. Conversely, suppose
usXxY and |ul=a. If uy=dom(u), u,=rng(u), then u<u;»u, and |u|é|u1| . |u2|.
Since Iullei(x), |u2|e i(Y), it follows |u|e i(X) «i(Y).

b) Let a>o(X) - o(Y). Then

(VYbeo(X))(Vceo(Y))(b-c<a).

By the overspill argument used in Theorem 5, there are b1> o(X), cy> o(Y) such
that by-c < a. Thus, there are u;2X, v;2Y with |u1|=b1, |v1|=c1. Hence
up>v;2X>Y and |U1" vl|=b1-c1< a. This shows that ago(Xx<Y). O

Theorem 7. If (Xn)n is a sequence of measurable classes and the cut
1% (M(Xn) is closed with respect to addition, then o X, is measurable and
(Y Xn)= %)»“'(Xn)'

Proof. Let @(X )=I . Since clearly UI <i(V X )€o(Y) X ) it suffices
to show that o(J Xn) c l,{In.

Without loss of generality we may assume that the sequence (In)n is in-
creasing. Then we can find sequences (un)n, (an)n such that U Sl XpE U
Iun|=an and ) a = L,,{In. Suppose u, a_ are defined such that I <a_e¢ I,
X, € u, and Iun|=an. Then take some u2X ., with |u|=a>Im1 and put u_ ;=
=u_Uu, an+1=|un+1|' Then X Su 1, I ,<8, 8da e I by the closu-
re condition.

Let a #gln. By the prolongation axiom we can find u such that |u|<a,
and \q)"unsu. Then Lﬂ{ X Eu, thus a¢o(gxn). This proves the inclusion. [

Corollary 8. If (Xn)n is a sequence of classes such that (&(Xn)sFN
(that is, X )=FN or (X )=m&FN) then y»(”U.Xn)é FN. O

Classes of measure & FN are the analogues of sets of measure zero. Corol-
lary 8 as well as Theorem 10 below remind us of the well known facts of measure



theory.
The following is an easy consequence of the prolongation axiom.

Lemma 9. Let (un)n be a descending sequence of sets and let Y be coun-
table such that Y €Mu,. Then, for any infinite natural number a such that
a<...lujl< ...<Jujl< |y |, there is a set u such that YEueQu, and
lul=a. O

Theorem 10. Any infinite set includes an uncountable class of measure
FN.

Proof. Let w be a set with |w|=d>FN and let (q‘)‘unbe a decreasing
f.-sequence of natural numbers with a°=d and coinitial to N\ FN. We shall de-
fine by transfinite induction a class X={ x_; o € Q1 and a descending sequen-
ce of sets (u ), ¢ such that Up=h lu l=a,, and for every oc € QL , {x,; B eaf)
Na¥su, . Then, clearly, XEu, for every oc < £ and since (I"’dl).(en is co-
initial to N\FN we have o(X)=FN= w(X).

Construction. Suppose uy, and x5 for B eo N have been defined.
Then, {XB; fecx NNYE u, . By prolongation we can find a set U such that
ixgiPeaNOicuy ,cu, and |ud+1|=%‘+1. Choose some Xxe& L&ﬂ\{xﬁ;{se«iﬂ
N3 and put x =x.

Suppose now that o¢ is a limit ordinal and u{s ) Xp have been defined for
fek N, Then, for each B ¢ ¢ ﬂ.(l,(xr;q»e(s N23cug , ug descend and
l“n‘”’a . Thendx;reax N LicNfug; e NDY. Indeed, it B ,yex N,
take some J” , such that f,y<d'< . Then-ixs;}‘ed'(lﬂ.'ks usEug , hence
Xy& Uy . By Lemma 9 we can find u such that lul=a, , Ixpiyea NQtcuc
f.-{uﬂ; Bex NQY. Put u=u. The proof is complete. O

The following shows that there are no limits in the possible divergence

between inner and outer measures.

Theorem 11. For any cuts I<J there is a class X such that i(X)=I and
o(X)=J.

Proof. We assume for simplicity that I is not a =-class and J is not a
TT-class, so there is an increasing fl-sequence (a").“ q ©f natural numbers,
cofinal in I and a decreasing fL-sequence (b ) .q coinitial in N\J. (Else
consider w -sequences and make minor modifications in the construction).

Let (w ) be an enumeration of all the sets w such that I< |w|<J. We
shall write «« < 3 instead of o« ¢ BN QL.

We define sequences (ua_')“ » (W )e s (B)y s (8.) such that:

u is increasing and v, decreasing in inclusion,
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i) |u4|=ad and Ivﬁc|=l:!oc YVt e O,
ii) BL<)05 uﬂEﬂQ‘,‘v,s Ve € £1,

111) fry; p <o¢3£ﬂy‘uﬂ and r, ¢ Wy

iv) Ssp; B< oc}ﬂ(‘g“' ug)=# and Sg€ Wg-

If this is done and if we put X= U{u,; oc € 13 then I1€i(X), o(X)€ it ;e
€Q¥EX, L dw,,4s,;€NINX=P, s ew, , that is, wdX¢w for every w
with I< |w|<J, hence I=i(X) and o(X)=J.

Construction. Suppose Uss Va» Tg, Sg have already been defined for
B<x.
Thenﬁy‘upe Qavﬂ .
Clearlyp“‘ wé v&} pkj“ up since |vﬂ|>J, I<|w,|< 3 and IU,;|< I.

5.8 W\ g Up”

Therefore we can choose r_ & ( GO L vp)\wd, and
Then take a set uy ;ﬂg‘vﬂ such that r_eu,, |u|=a, and is5;8 doxify =
=@. This is clearly possible since -is(,; B£o«ctis countable. Then, find by pro-
longation a set v E“Q"Vﬂ such that |v_[=b, and pké)d up €, Va - Obvi-
ously u 1 V¢ » Tc s Sy are as required and the construction is complete. [

Next, we show that there is hardly any connection between measurability
and revealness (even in its strongest form).

Let us fix some endomorphism F such that the universe A=F"V has a stan-
dard extension and let us put for every class X, X* =Ex(F"X). Then the fol-
lowing holds:

Theorem 12. For any class X, i(X*)=i(X)* and o(X*)=0(X)* . Thus X* is
measurable iff X is measurable and w(X*)= w(X)* .

Proof .

i(X)=I «> (Ya)(ae I <> (3ucX)(|u|=a)) «> (YaeA)(acF"I «>

> (3ueA)(usF"X &|u|=a)) <> (¥ a)(ae Ex(F"I) 4> (3 u)(usEx(F"X) &

&|u|=a)) «> (Va)(ae I*¥<> (T u)(UE X*&|u|=aeri (X¥)=I* .

Similarly we see that o(X*)=o(X)* . O

We shall close this paper by showing that no non-trivial ultrafilter
(restricted on a set) is measurable.

We shall work again on w with |w|=d.

For any X£P(w) let us put

X= 4w\ x;xe X3.

The following is trivial:
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Lemma 13.

1) XeY—> X<V

2) X=X

3) |ul=[d| for any u&P(w).

4) If 7t is an ultrafilter on w then %L = -%t . O

Theorem 14. Let Wl be non-trivial on w. Then

1) i(m)=i(- M) and o( W )=0(-M).

2) i(m)=2%o(m).

3) i(m)<2% o(m). Thus ¢ is not measurable.

Proof. 1) By the previous lemma u € MSv e>TUc-M eV and |T|=|u],
|V|=|v|, which shows the claim.

2) By Lemma 4, i()=i(- @)=29-0().

3) Suppose u & %1l such that |u|=2d'1. Then |-u|=29-20-1-29-1 gng |
Ue-ME-u. Since |u|=|-u|, it follows that -u=u, hence -u&- M € -u, or
9 =u, a contradiction. Similarly if 9% € u and |u|=2d’1, then -uc - 927 .
But |—u|=2""'1 and i(-271)=i(27L) which contradicts the previous result. [J

Recall that given ultrafilter 7,
v(R)=1{aeN;(Vx e W)(a<|x|)} (see [S-V]). Let
297()= 12,3y > v (W) (ag 293,

It is easy to see that

2d-7(m)6 1(?31. )< 0( o )‘ 2d_2d-9(3?‘l) .

However, the following is open to me:

Problem: Is it true that 29 ¥V_i(®1)? 1f not, find i(W1).
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