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AN ENCLOSURE GENERATING MODIFICATION
OF THE METHOD OF DISCRETIZATION IN TIME

6. KOEPPE, H.-6. ROOS, L. TOBISKA '

Abstract: A modification of the method of discretization in time is pro-
posed to generate upper and lower bounds for the solution of the original 1i-
near parabolic boundary value problem. It is proved that the modified Rothe
function converges to the exact solution of the first order in the maximum
norm if the step size tends to zero.
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1. Introduction. In the numerical solution of boundary value problems
it is not only interesting to obtain a numerical approximation of the solu-
tion within a certain accuracy but it is also of practical importance to con-
struct upper and lower bounds for the solution itself. Such inclusions ge-
nerating discretizations for parabolic boundary value problems have been pro-
posed in [1],[2]),07],(101.

The aim of the present paper consists in deriving a modification of the
Rothe method (or the method of discretization in time) to generate upper and
lower bounds for the solution of the original parabolic boundary ‘value pro-
blem. In contrast to 191 we use maximum principles to prove the enclosing
property in the n-dimensional case. Our technique allows us to consider more
general boundary value problems in comparison to [9] and to omit any rest-
riction with respect to the step size in time.

As in [9], it is possible in a second step to combine the modified Rot-
he method with the monotone discretization techniques proposed [41,[5), at
least for the one-dimensional case.

2. The modified method of discretization in time. Let us consider the
parabolic boundary value problem

S§ +Lu=t 1n AU,
(1) u=0 on S;

u=u, in By
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in frame of the theory of classical solutions. In (1) R denotes a bounded
domain of R" with C2**boundary, 0= % (0,T), S;= 80 [0,T11, By= 2xT¢ and
Bo=.0-x‘10}. Let L be a linear, uniformly elliptic differential operator of
second order

m 32 m
L=“‘ ., °1j(") m +.Z, b; (x) 3-,?; -c(x)
with coefficients in 02«1(5), further we assume y=£(x) in C(fL) and

(2) (i) u, satisfies the compatibility conditions

uy=0, Lu =t on an
(11) c(x)&zc,>0 on fa.

It is well known that the problem (1) admits exactly one classical solu-
ticn in sz(.Q.) (see for instance [3]) and that the eliiptic operator L and
the parabolic operator 5% +L satisfy a classical maximum principle, respecti-
vely.

Mow we choose some N e N and divide the t-interval into N subintervals
[ti_l,til (i=1(1)N) by the definition ty =@ with ¥=T/N. Let us set

(t-t;_)/® for telt; ,,t]
@;(t)= (ti*_l-t')/'t for telt,t; 1
0 otherwise.
The discretization in time is realized by means of the representation

N
3) u, = 1‘.;0 z; @; (1)

for an approximate solution u,t,(x,t) of problem (1). The usual method of dis-
cretization in tiwme consists in determining the functions zl(x) as solutions
of ;
272501 + Lzi=f in 2 (1Z1)
: z;=0 on o
starting with z,=u,. In our modified method we choose a constant p and a func-
tion q of x and determine the functions zi(x) as solutions of

21729
) ) —— LZ°=f+"Cq in o
2,0 on 3Nl

Z:-2
(1) AL 1z =pevp in Q (110N
z;=0 on 3aQ .
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In the sequel we will show that it is possible to choose p, g9 in such
a way that, for instance, u, is an upper solution of our original problem
(1) that means u.(x,t)2 u(x ,t) in T. Finally we will show that the functi-
on u.(x,t) converges to u(x,t) of the first order in the maximum norm if ©
tends to zero. ’

3. Analysis of the modified method of discretization in time. We denote

by Ck’z the set of functions being k-times and £-times continuously differen-
tiable with respect to x and t, respectively. Furthermore, let Q.= "-"("3-1,"3)
and Bj= %4t .}, 3=1(1)N. Our analysis is based on a weak maximum principle

of the following type:

N
Lemma 1: Let the functions v and w be in C(@) N,y cz'l(ujuaj) and
satisfy
(1) 3¥+ Lvede + Lw on QuuBy, 3<1,... N

(ii) véw on S;UB,.
Then, it follows véw on Q.

The validity of Lemma 1 follows from the successive application of the
classical maximum principle.
Now we discuss the solvability of the problems (4),(i),(ii). Subtracting (4)
(1) and (8),(ii) for i=1 we obtain

(5) L(zl—zo)=(p—q)-r in 2
zl-z°=0 on 9f).

Hence, the function 'z"l=(zl-zo)/t is uniquely determined and z, satisfies
(6) Lz =f+ tq—’i’l in O
z,=0 on Af).

Introducing the operator L by L=2L+I (I represents the identity),
the functions z;(x) for iZ1 fulfil
) L,,_,zi=zi_1+t1;+p'52 in o
z;=0 on 8.
Therefore, in the representation (3) all coefficients of our approximate so-
lution are uniquely determined provided that P, q are known.

Now we proceed to choose the parameters P, q in a suitable way to gene-
rate an upper solution. According to Lemma 1 we compute the defect of the
approximate solution u, on qu Bj. One obtains
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au,‘ )
5 +Lu, = m——— & 9’°Lzo+ tflel on Dlu Bl

and

u 2,-22, .42
et HLuy teepr g (1) 2l 32 on quB;  (i=20)N).

Taking into account (4)(i),(ii) one gets

Bu

m-"-’- +u,, =f+¥(p ¢, +q @) on QU B,.
Let us introduce the notation

Z; -22.42
sl P Al v,
T

Applying Lemma 1, our considerations with respect to the defect on eve-

ry subinterval result in

(8) 8y

Lemma 2: Let us suppose

(9) (i) p,q20,
(ii) p+s;Z0,  (i=1(1)N-1)
(1ii) Z U,
Then, u,c(x,t) is an upper solution of our original problem, that means
u,(x,t)& u(x,t) for all (x,t)eq.

In the next step we analyze the validity of condition (9),(ii). From
the identities

zZ,-2 z,-2 Z,-2
%—0- +Lzo=1'+1:q, 1" N +Lzl=f+rp, 2.5 1 +L22=f+ Tp,

it follows immediately
12-221+z°

+(z5-2242,)= ¢(a-p),
thus

(10) (i) Lys;=0-P
Adding the identities

Z:~-Z -
i7%4-1 _ Zi+17%4
% +in-f+1:p , -2 —- 2in+1= -2f-2%p,
25,02 ‘ .
ﬁ%ﬂ + in+2=f+cp,

one obtains similarly
(10) (1) Lysy,q7sy (AZE1).
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Remembering p being a constant we conclude
(11)  Ly(sy+p)=g+z c(x)p, L,c(si+1+p)=si+p+'rc(x)p (iz1).
We want to derive advantage from the inverse-monotonicity of the operator
Ax =(Le,R) where R denotes the restriction of functions on 30 . Because of
(9),31) s;+p (i=1(1)N-1) is nonnegative on 3R such that with (2),(ii) it

follows s;+p 20 successively and condition (9),(ii) is automatically fulfil-
led.

To generate an upper solution u, it is only necessary to guarantee the
conditions p,q20 and Z Zu,. However, the function z, is defined in a not
so simple way - one has to solve (5),(6) - therefore it is essential to find
a practical criterion for the parameters p, q in order to safeguard the inequ-
ality zo§ uy-

Taking into consideration the inverse-monotonicity of the operator A=
=(L,R), the inequality z,&u, is fulfilled provided that Lz Z Lu,. The ine-
quality

~
zlif-Lu0
is sufficient for LzoaLuo and valid on @) because of the compability con-
dition for Uge Consequently, the inequality zo&uo is fulfilled if '
p-qiL(f-Luo)
and we have the following result:

Theorem 1: Let us additionally assume that 1!-Luo belongs to Cz(ﬁ) and
p,q&0 are chosen such that the inequality
(12) qZp—L(f-Luo)

holds. Then, the modified method of discretization in time (3),(4) generates
an upper solution for the original problem for all > 0.

Now we are going to prove the convergence of our modified method or discreti-
zation in time in the maximum norm. For this we choose

(13) p=max(0, :Ti L(f—Luo))

(18) q=p-L(f-Lu,)

such that the assumptions of Theorem 1 are fulfilled.
Because of (5) and f-Lu =0 on 2L we have
'i'1=t-Lu°
that means we start with the solution z, of
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Lz°=Lu°+'|:q in
z,=0 on 3fk.
From the barrier function technique it follows
(15) JTax |25 (x)-ug(x)|& Mz .
For the difference of the exact solution u(x,t) and the approximate solution
we obtain
(ﬁ- +L)(U.t-u)=t(p91+q 9,) on QuB,
& (0= wprgy s 1) on QUB, (1=2(1N).

The terms in brackets on the right hand sides of (16) are uniformly bounded
on L because (10),(i) and (10),(ii) imply

(16)

ngx |51+1(X)|"§X |si(x)lﬁlgx lq(x)-p].

Thus, applying Lemma 1 we summarize

Theorem 2: Let f-Lu, belong to c?(&) and p,q(x) satisty (13),(14).

Then, the modified method of discretization in time (3),(8) generates an up-
per solution u, for the original problem. Moreover, there exists a constant
M=M(p,q) such that the error estimate

nf'x |u(x,t)-ut(x,t)|£ Mt
holds.

Remark: We considered classical solutions of our parabolic boundary
value problem (1). It is possible to axtend Theorem 1 to weak solutions; to
be more precise, to HZ(IIO 1 Hl(n) L (.0.)) - type solutions. Of course, it
is necessary to specify some order relations and to use generalized maximum
principles for parabolic and elliptic problems, for instance, instead Lemma
1. It is possible to choose fot P, q appropriate elements from the dual space
(H (2))* . But in practice one will use simple functions to simplify the re-
auzation of the method - therefore we restricted ourselves to choose p as a
constant parameter in our classical framework.

In general, for weak solutions an error estimation in the maximum norm
does not hold. But, similarly as in [8) one can prove the 0(x ) convergence
in the LZ-norm and the 0(! ) convergence in the H!-norm (compare [9)).
Details on the modified method of discretization in time for weak solutions
are due to G. Koeppe and can be found in (6).
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