

Werk

Label: Article Jahr: 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0028 | log58

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 28.3 (1987)

A REMARK ON THE WEAK TOPOLOGY OF THE HILBERT SPACE Maigorzata WÓJCICKA

Abstract: V.V. Uspenskii [A] asked if every χ_0 -space can be embedded in an χ_0 -space with property k_R . It is shown that the Hilbert space l_2 endowed with the weak topology provides a negative answer to this question.

<u>Key words:</u> Hilbert space, weak topology, χ_0 -space, k_R -space. <u>Classification:</u> 46C05, 54E20, 54D50, 54C25

1. Introduction. Let us recall that a regular space X is an χ_0 -space if X has a countable k-network $\mathcal R$, i.e. a collection of subsets (not necessarily open) such that whenever KcU with K compact and U open in X, then KcPcU for some Pe $\mathcal R$; the class of χ_0 -spaces was introduced by E. Michael [M1], where we refer the reader for the basic properties. A completely regular space X is a k_R -space if arbitrary function $f:X \longrightarrow R$, whose restriction to every compact Kc X is continuous on X, see [M2].

V.V. Uspenskii [A] asked if every χ_{o} -space can be embedded in an χ_{o} -space with property k_{R} . In this note we shall show that the Hilbert space l_{2} endowed with the weak topology (which is an χ_{o} -space, see [M1, Cor. 7.10]) provides a negative answer to this question:

Theorem 1. The infinite-dimensional separable Hilbert space equipped with the weak topology cannot be embedded into any χ_0 -space being a k_R -space.

Let us notice that our reasoning shows also that a well-known space V considered by Varadarajan LV, p.98]: the natural numbers extended by the filter of the complements of density 0 sets, provides another example of this kind. $^{\rm X}$)

This example was considered also by P. Uryson (see P.S. Aleksandrov, P.S. Uryson: Memuar o kompaktnych topologičeskich prostranstvach, 3rd edition, Moscow 1971 (pp. 119-120)). (Referee's remark)

We shall denote by N the natural numbers and by |A| the cardinality of the set A.

2. The Fernique's space F. We shall denote by $\mathbf{1}_2$ the Hilbert space of the square-summable sequences of the real numbers. Let $\mathbf{e}_1, \mathbf{e}_2, \ldots$ be the standard orthonormal basis in $\mathbf{1}_2$. Following Fernique [HJ, p.268] we shall consider the following subspace of $\mathbf{1}_2$:

equipped with the topology induced by the weak topology of l_2 , i.e. the points ne_1 are isolated in F and basic neighbourhoods of the point 0 in F are of the form:

(*)
$$V= ine_i: |n\alpha_i| < 13 \cup \{0\}, \text{ where } \sum_{i=1}^{\infty} \alpha_i^2 < \infty.$$

We shall need the following observation about the space F:

Left W₁ > W₂ > ... be a sequence of open sets in the space F such that $\frac{\infty}{2}$ W₁ = {0}. Then there exists a set Y \subset F satisfying the conditions: $0 \in \widetilde{Y}$, $|Y-W_1| < \infty$, for i=1,2,... and no sequence of points of the set Y converges to 0.

<u>Proof:</u> Choose inductively for each n=1,2,..., pairwise disjoint sets $A_n \in \mathbb{N}$ such that $|A_n| = n^2$ and $Y_n = f_n e_i : i \in A_n ? \in \mathbb{W}_n$. We shall show that $Y = \bigcup Y_n$ has the required property. Each set $Y - \mathbb{W}_n \in Y_1 \cup \ldots \cup Y_{n-1}$ is finite and obviously no sequence from Y converges to 0, so it is enough to show that $0 \in \overline{Y}$. Aiming at a contradiction, assume that there exists a neighbourhood V of the form (*) with $Y \cap V = \emptyset$. Then, for each $i \in A_n$, $|n \propto_i| \ge 1$, but then $\sum_{i \in A_n} \alpha_i^2 \ge |A_n| \frac{1}{n^2} = 1$, which contradicts the fact that the sequence $\alpha_1, \alpha_2, \ldots$ is square summable.

3. Proof of Theorem 1. Let X be any χ_0 -space containing the space F defined in sec. 2. We shall show that X is not a k_R -space.

The point 0 is a Gr-set in X hence there exist sets in X such that

$$W_1 \supset \overline{W}_2 \supset W_2 \supset \dots$$
 and $\{0\} = \bigcap_{i=1}^{\infty} W_i$.

By Lemma 2 we can find a set YcF such that $0 \in \overline{Y}$, $|Y-W_{\overline{I}}| < \infty$ for $i \in N$ and no sequence of points of Y converges to 0.

Let y_1, y_2, \ldots be an enumeration of the elements of Y. We shall choose an open neighbourhood V_i in X of the points y_i satisfying the following conditions:

(i)
$$V_i \cap F = \{y_i\}$$

(iii)
$$\overline{V_i} \cap \overline{\bigcup_{j \neq 1} V_j} = \emptyset$$
.

(iv) no sequence of points of the set $\overset{\circ}{\underset{i}{\downarrow}}\overset{\circ}{\underset{=}{\downarrow}}$ V_{i} converges to 0.

To this end we define inductively open sets U_1, U_2, \ldots in X such that $U_i \cap F = \{y_i\}$, $U \neq \overline{U}_i$ for every $i \in \mathbb{N}$, $\overline{U}_i \cap \overline{U}_j = \emptyset$ for $i \neq j$ and if $y_i \in \mathbb{W}_m$ then $U_i \subset \mathbb{W}_m$. It is easy to check that $\overline{v_i} \cap \overline{U}_i \subset \overline{v_i} \cap \overline{U}_i \cap \overline{U}_i$

Let us consider a k-network in X consisting of closed sets, let S_1, S_2, \ldots be an enumeration of the elements of the k-network containing 0 and let

$$V_i = U_i - \bigcup \{S_i : j \neq i \text{ and } y_i \notin S_i \}.$$

Obviously, the conditions (i)-(iii) are satisfied. We shall check that (iv) holds as well. Assume on the contrary that there exists a compact set $Z \subset \frac{1}{2} \bigvee_{i=1}^{2} V_i$ homeomorphic with a convergent sequence, 0 being the limit point, and let $P = \{y_i \in Y: V_i \cap Z \neq \emptyset\}$; since $0 \notin \overline{V_i}$, the set P is infinite. By the choice of Y, no sequence from Y converges to 0, hence there exists a neighbourhood W of 0 such that P-W is infinite. The set Z-W is finite, so $Z-W \subset \underset{i}{\smile} U_i$

for some \mathbf{i}_0 , and the set ZnW is compact, so ZnWcS \mathbf{j}_0 c W for some \mathbf{j}_0 .

Consider $y_{n_0} \in P-W$ with $n_0 > \max(i_0, j_0)$. Then

Therefore $V_{n_0} \cap Z = \emptyset$, a contradiction with the definition of the set P.

Now, for every $n\in N$ we define a continuous function $f_n:X\longrightarrow R$ equal to 0 on the set X-V_n, and 1 on $f_n:X\longrightarrow R$ equals 1 on Y and f(0)=0 and since $0\in \overline{Y},$ f is not continuous at 0. By conditions (i)-(iii) it follows that 0 is the unique point of discontinuity of f.

We shall show that f is continuous on each compact set KCX, just violating the k_p -property. Let KcX be a compact set containing 0. Since com-

pact sets in any χ_0 -space are metrizable, condition (iv) implies that $0 \not\in \overline{K} \cap_{i \in \mathbb{N}} \overline{V}$. It follows that for some neighbourhood W of 0, the function f vanishes on the set W \(K \). Hence the restriction f_K is continuous at 0 and f being continuous at any other point in X, f_K is continuous.

References

- [A] A.V. ARHANGELSKIĬ: On R-factor mappings of spaces with countable base, Dokl. Akad. Nauk SSSR 287(1986), 14-17.
- [HJ] J. HOFFMANN-JÖRGENSEN: The theory of analytic spaces, Aarhus Various Publ. Series,no. 10, 1970.
- [M1] E. MICHAEL: χ_o -spaces, J. Math. Mech. 15(1966), 983-1002.
- [M2] E. MICHAEL: On k-spaces, k_R-spaces and k(X), Pacific J. Math. 47(1973), 487-498.
- [V] V.S. VARADARAJAN: Measures on topological spaces, Mat. Sbornik 55(97) (1961), 35-100. Amer. Math. Soc. Transl. (2)48(1965), 161-228.

Warszawa 00-149, ul. Karmelicka 3c m. 16, Poland

(Oblatum 17.3. 1987)