

Werk

Label: Article **Jahr:** 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0028 | log55

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 28,3 (1987)

EXISTENCE OF SOLUTIONS OF THE DARBOUX PROBLEM FOR PARTIAL DIFFERENTIAL EQUATIONS IN BANACH SPACES Bogdan RZEPECKI

Abstract: We consider the existence of solutions of the classical Darboux problem for the partial differential equation $u_{x_1 x_2 x_3}^{\text{M}} =$

 $=f(x_1,x_2,x_3,u,u_{x_1}^{'},u_{x_2}^{'},u_{x_3}^{'},u_{x_1}^{''},u_{x_2}^{''},u_{x_1}^{''},u_{x_2}^{''},u_{x_2}^{''},u_{x_2}^{''},u_{x_2}^{''},u_{x_2}^{''}) \ \ via a fixed point theorem of Sadovskii. Here f is a continuous function with values in a Banach space satisfying some regularity condition expressed in terms of the measure of noncompactness <math>\alpha$.

 $\frac{\text{Key words:}}{\text{existence solutions in a Banach space, measure of noncompactness.}}$

Classification: 35AO5, 35L15, 34G2O.

1. <u>Introduction</u>. In the present note we consider the following hyperbolic partial differential equation:

$$(+) \quad u_{x_{1}x_{2}x_{3}}^{""} = f(x_{1}, x_{2}, x_{3}, u, u_{x_{1}}^{'}, u_{x_{2}}^{'}, u_{x_{3}}^{'}, u_{x_{1}x_{2}}^{"}, u_{x_{1}x_{3}}^{"}, u_{x_{2}x_{3}}^{"})$$

with suitable initial boundary conditions of the Darboux type.

Equations of the type (+) (in Euclidean spaces) are considered in papers by Kwapisz, Palczewski and Pawelski [9], Conlan [5], Castellano [3], Palczewski [11], Frasca [8], Chu and Diaz [4], and others. Below, we prove the existence theorem for the case where f is a continuous function with values in a Banach space satisfying some regularity condition expressed in terms of the measure of noncompactness & . The proof is based on the fixed point theorem of Sadovskii ([12], Theorem 3.4.4).

2. Notations and preliminaries. Let a_i (i=1,2,3) be positive real numbers. We put I_i = [0, a_i] and V= I_1 × I_2 × I_3 . Throughout this paper E is a Banach space with norm $\|\cdot\|$, and f is an E-valued continuous function defined on the product Ω =V×E×E³×E³. By C(V,E) we represent the standard Banach space of all E-valued continuous functions on V. Moreover, let C*(V,E) denote the class of E-valued functions $(x_1,x_2,x_3) \mapsto u(x_1,x_2,x_3)$ continuous on V to-

gether with their partial derivatives $u_{x_1}^{'}, u_{x_2}^{'}, u_{x_3}^{'}, u_{x_1}^{''}, u_{x_1}^{''}, u_{x_1}^{''}, u_{x_2}^{''}$ and

The measure of noncompactness $\infty(A)$ of a nonempty bounded subset A of E is defined as the infimum of all $\,arepsilon > 0$ such that there exists a finite covering of A by sets of diameter $eq \varepsilon$. For the properties of eq
eq the reader is referred to [2],[6],[7],[12].

We shall use in the sequel the following immediate adaptation of Lemma 2.2 of [1] (cf. [10]): If P is a compact subset of V, then $\infty(\cup\{W(\xi)\colon \xi\in P\})=$ =sup ${∞(W(\xi)): \xi ∈ P}$ for a bounded equicontinuous subset W of C(V,E) (here $W(\xi)$ stands for the set of all $w(\xi)$ with $w \in W$).

We state the Sadovskii fixed point theorem as follows.

Let ${\mathfrak L}$ be a closed convex subset of ${\mathbb C}({\mathsf V},{\mathsf E}).$ Let ${\mathfrak L}$ be a function which maps each nonempty subset W of ${\mathfrak X}$ to a real nonnegative $\Phi({\mathsf W})$ with (1) $\Phi(\{w\} \cup W) = \Phi(W)$ for $w \in \mathcal{L}$, (2) $\Phi(\overline{\text{conv }}W) = \Phi(W)$ ($\overline{\text{conv }}W$ is the closed convex hull of W), and (3) if $\Phi(W)=0$ then \widehat{W} (the closure of W) is compact in C(V,E). Assume that F is a continuous mapping of $\boldsymbol{\mathscr{X}}$ into itself such that $\Phi(\mathsf{F[W]}) < \Phi(\mathsf{W})$ whenever $\Phi(\mathsf{W}) > 0$. Then F has a fixed point in \mathfrak{X} .

3. Formulation of the problem and result. We write $J_{jk} = I_j \times I_k$ for j,k= =1,2,3 with j<k. Let us determine E-valued functions $arepsilon_1, arphi_2$ and $arphi_3$ continuous respectively on ${
m J}_{23},\ {
m J}_{13}$ and ${
m J}_{12},$ including the second mixed derivatives, and fulfilling the conditions

$$\mathfrak{G}_{1}(0,x_{3}) = \mathfrak{G}_{2}(0,x_{3}), \quad \mathfrak{G}_{1}(x_{2},0) = \mathfrak{G}_{3}(0,x_{2}), \quad \mathfrak{G}_{2}(x_{1},0) = \mathfrak{G}_{3}(x_{1},0)$$
 for $x_{i} \in I_{i}$ (i=1,2,3).

By (PD) we shall denote the problem of finding a function $u\in C^{\bigstar}(V,E)$ satisfying (+) and the initial conditions

$$\begin{array}{ll} & \text{u}(0,x_2,x_3) = \mathscr{G}_1(x_2,x_3), \ \text{u}(x_1,0,x_3) = \mathscr{G}_2(x_1,x_3), \ \text{u}(x_1,x_2,0) = \mathscr{G}_3(x_1,x_2) \\ \text{for all}(x_j, \ x_k) \text{in } J_{jk}. \end{array}$$

for all(x_j, x_k)in J_{jk}. We shall write the right side of (+) shortly as f(ξ , u,R,Q), where ξ = $= (x_1, x_2, x_3) \text{ and } R = (r_1, r_2, r_3), \ Q = (q_{12}, q_{13}, q_{23}) \text{ with } r_i(\xi) = u_{x_i}^{'}(\xi), \ q_{jk}(\xi) = u_{x_i}^{'}(\xi), \ q_{jk}(\xi$ $=u_{X_1X_k}^{"}(\xi)$. Moreover, let $\Theta=(0,0,0)$ (here 0 is the zero of E).

Our result reads as follows.

Theorem. Let f be uniformly continuous on bounded subsets of Ω . Assume that the following conditions hold:

 $\mathbf{1^0} \quad \text{$\|\mathbf{f}(\xi,u,\Theta,\Theta)\| \leq c_1 + c_2 \|u\|$ for $\xi \in V$ and $u \in E$.}$

$$2^{0}\quad \|f(\,\xi\,,u,R,Q)-f(\,\xi\,,u,\overline{R},\overline{Q})\,\| \leq \omega(\,\,\xi\,\,\,\|\,\,r_{\,i}-\overline{r}_{\,i}\,\,\|\,\,+_{\,\,j} \xi_{\,\,k}\,\|\,\,q_{\,jk}-\overline{q}_{\,jk}\|)$$

for $(\mbox{$f$}, \mbox{$u$}, \mbox{$R$}, \mbox{$Q$}) \in \Omega$ and $(\mbox{$f$}, \mbox{$u$}, \mbox{$\overline{R}$}, \mbox{$\overline{Q}$}) \in \Omega$, where $t \mapsto \omega(t)$ is a nonnegative continuous nondecreasing and subadditive function with $\omega(0)$ =0 only for t=0 and

$$\int_0^{\eta} \frac{dt}{\omega(t)} = +\infty$$

for $\eta > 0$.

 3^0 $\alpha(f[\cap{c},A]) \le L \cdot \max{\{\alpha(A_i): 1 \le i \le 7\}}$ for $\cap{c} \in V$ and any set A which is the product of nonempty bounded subsets A_i of E.

Under these assumptions, the problem (PD) admits at least one solution on $\ensuremath{\text{V}}.$

 $\frac{\text{Proof.}}{\text{v}_1 \text{x}_2 \text{x}_3} \text{Put } u_{\text{x}_1 \text{x}_2 \text{x}_3}^{\text{w}} = \text{s. For the convenience we assume that } \mathfrak{G}_i \equiv 0 \text{ for } i = 1, 2, 3. \text{ Then, (PD) is equivalent to solving the functional-integral equation}$

$$\begin{split} (*) \quad & \mathsf{s}(\mathsf{x},\mathsf{y},\mathsf{z}) \! = \! \mathsf{f}(\mathsf{x},\mathsf{y},\mathsf{z}, \ \int_0^{\mathsf{x}} \int_0^{\mathsf{y}} \int_0^{\mathsf{z}} \; \mathsf{s}(\mathsf{t}_1,\mathsf{t}_2,\mathsf{t}_3) \mathsf{d}\mathsf{t}_1 \mathsf{d}\mathsf{t}_2 \mathsf{d}\mathsf{t}_3, \\ & \quad \int_0^{\mathsf{y}} \int_0^{\mathsf{z}} \mathsf{s}(\mathsf{x},\mathsf{t}_2,\mathsf{t}_3) \mathsf{d}\mathsf{t}_2 \mathsf{d}\mathsf{t}_3, \ \int_0^{\mathsf{x}} \int_0^{\mathsf{z}} \; \mathsf{s}(\mathsf{t}_1,\mathsf{y},\mathsf{t}_3) \mathsf{d}\mathsf{t}_1 \mathsf{d}\mathsf{t}_3, \\ & \quad \int_0^{\mathsf{x}} \int_0^{\mathsf{y}} \mathsf{s}(\mathsf{t}_1,\mathsf{t}_2,\mathsf{z}) \mathsf{d}\mathsf{t}_1 \mathsf{d}\mathsf{t}_2, \\ & \quad \int_0^{\mathsf{z}} \mathsf{s}(\mathsf{x},\mathsf{y},\mathsf{t}_3) \mathsf{d}\mathsf{t}_3, \ \int_0^{\mathsf{y}} \mathsf{s}(\mathsf{x},\mathsf{t}_2,\mathsf{z}) \mathsf{d}\mathsf{t} \ _2, \ \int_0^{\mathsf{x}} \mathsf{s}(\mathsf{t}_1,\mathsf{y},\mathsf{z}) \mathsf{d}\mathsf{t}_1) \end{split}$$

in C(V.E).

Let λ =1+c₁+c₂+7 ω (1). Let Γ be the set of all (ξ ,u,R,Q) ε Ω such that $\|u\| \le \lambda^{-2} \exp(3\lambda)$, $\|r_i\| \le \lambda^{-1} \exp(3\lambda)$ and $\|q_{jk}\| \le \exp(3\lambda)$ for i,j,k==1,2,3 with j< k. We set:

$$\widetilde{\omega}(\eta) = \sup \big\{ \| f(\xi,u,R,Q) - f(\overline{\xi},\overline{u},R,Q) \| : (\xi,u,R,Q), \ (\overline{\xi},\overline{u},R,Q) \in \Gamma \ \text{ with } \| u - \overline{u} \| + \sum_{k} |x_k - \overline{x}_k| \leq \eta \, \}$$

and

$$\varphi(\eta) = \widetilde{\omega}((1 + \exp(3\lambda))\eta) + \omega((2 + \lambda) \exp(3\lambda)\eta)$$
 for $\eta \ge 0$.

According to the lemma of [11] the equation

$$\begin{split} h(x,y;\eta) &= \wp(\eta) + \ \omega(\ \int_0^x \int_0^y h(t_1,t_2;\eta) dt_1 dt_2 + \\ &+ \int_0^x h(t_1,y;\eta) dt_1 + \int_0^y h(x,t_2;\eta) dt_2) \end{split}$$

has a continuous solution h such that $h(x,y,0)\equiv 0.$ Denote by 3£ the set of all $w\in C(V,E)$ with

and

Let F be determined by the right side of (*). It is easy to verify that $\mathfrak X$ is a closed con vex equicontinuous and bounded subset of C(V,E), and F is a continuous mapping of $\mathfrak X$ into itself.

Let r > max(1,L). Define

$$\Phi(W)=\sup \{\exp(-r\xi)\alpha(W(\xi)): \xi \in V\}$$

for a nonempty subset W of X . By properties of ∞ and Ascoli theorem, our function Φ satisfies the conditions (1) – (3) listed in Section 2.

Let W be a subset of $\mathfrak X$ with $\Phi(W)>0$. To prove the theorem it remains to be shown that $\Phi(F[W])<\Phi(W)$.

Fix (x,y,z) in V. Consider the continuous function $\psi(\c \xi) = \alpha(W(\c \xi))$. Let $\varepsilon > 0$ be arbitrary and $o' = o'(\varepsilon)$ a positive number such that $\c \xi' = (t_1',t_2',t_3') \in \varepsilon$ and $\c \xi'' = (t_1'',t_2'',t_3'') \in \varepsilon$ with $|t_1'-t_1''| < o' \quad (i=1,2,3)$ implies $|\psi(\c \xi')-\psi(\c \xi'')| < \varepsilon$. We divide the intervals (0,x), [0,y] and [0,z] into m parts

$$\mathbf{x_0}^{=0}<\mathbf{x_1}<\cdots<\mathbf{x_m}=\mathbf{x},\ \mathbf{y_0}=0<\mathbf{y_1}<\cdots<\mathbf{y_m}=\mathbf{y},\ \mathbf{z_0}=0<\mathbf{z_1}<\cdots<\mathbf{z_m}=\mathbf{z_0}$$
 in such a way that

$$\max\{|x_i-x_{i-1}|, |y_i-y_{i-1}|, |z_i-z_{i-1}|: i=1,2,...,m\} < \sigma'.$$

$$P_{ijk}^{=[x_{i-1},x_{i}]\times[y_{j-1},y_{j}]\times[z_{k-1},z_{k}]}, W_{ijk}^{=}\cup\{W(\xi):\xi\in P_{ijk}\}$$

for i,j,k=1,2,...,m. Moreover, let ξ_0 be a point in P_{ijk} such that $\psi(\xi_0) = \sup \{\psi(\xi): \xi \in P_{ijk}\}$.

Denote by $A_0 = \int_0^{x} \int_0^{y} \int_0^{z} W(t_1, t_2, t_3) dt_1 dt_2 dt_3$ the set of all $\int_0^{x} \int_0^{y} \int_0^{z} w(t_1, t_2, t_3) dt_1 dt_2 dt_3$ with $w \in W$. Applying the integral mean value theorem we obtain

$$\alpha (A_0) < r^{-3} \exp(r(x+y+z)) \cdot \Phi(W)$$
.

Further, by A_i (i=1,2,3) and A_{ijk} (j,k=1,2,3) with j<k) we represent

the sets
$$\int_0^{\frac{\pi}{2}} \int_0^{z} \, \mathrm{W}(\mathrm{x},\mathrm{t}_2,\mathrm{t}_3) \mathrm{d}\mathrm{t}_2 \mathrm{d}\mathrm{t}_3, \ \int_0^{x} \int_0^{z} \, \mathrm{W}(\mathrm{t}_1,\mathrm{y},\mathrm{t}_3) \mathrm{d}\mathrm{t}_1 \mathrm{d}\mathrm{t}_3, \ \int_0^{x} \int_0^{\frac{\pi}{2}} \mathrm{W}(\mathrm{t}_1,\mathrm{t}_2,\mathrm{z}) \mathrm{d}\mathrm{t}_1 \mathrm{d}\mathrm{t}_2$$

$$\int_0^{\mathbf{z}} \mathbf{W}(\mathbf{x},\mathbf{y},\mathbf{t}_3) \mathrm{d}\mathbf{t}_3, \ \int_0^{\mathbf{y}} \mathbf{W}(\mathbf{x},\mathbf{t}_2,\mathbf{z}) \mathrm{d}\mathbf{t}_2, \ \int_0^{\mathbf{x}} \mathbf{W}(\mathbf{t}_1,\mathbf{y},\mathbf{z}) \mathrm{d}\mathbf{t}_1,$$

respectively. Arguments analogous to the above imply that

$$\propto (A_4) < r^{-2} \cdot \exp(r(x+y+z)) \cdot \Phi(W)$$

and

$$\alpha(A_{ik}) < r^{-1} \exp(r(x+y+z)) \cdot \Phi(W)$$
.

Consequently,

 $\alpha(F[W](x,y,z)) \leq$

$$\leq$$
L·max $\{\alpha(A_0), \alpha(A_i), \alpha(A_{jk}): i, j, k=1,2,3 \text{ with } j < k\} < < r^{-1}L·exp(r(x+y+z)) · $\Phi(W)$$

for all $(x,y,z) \in V$. This shows that $\phi(F[W]) \neq r^{-1} L \cdot \phi(W)$. Now, applying Sadovskii's theorem, we infer that F has a fixed point in ${\mathfrak X}$ and the proof is complete.

References

- [1] A. AMBROSETTI: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39(1967), 349-360.
- [2] J. BANAŚ and K. GOEBEL: Measure of Noncompactness in Banach Spaces, Lect. Notes Pure Applied Math. 60, Marcel Dekker, New York 1980.
- [3] L. CASTELLANO: Sull'approssimazione, col metodo di Tonelli, delle soluzioni del problema di Darboux per l'equazione u_{xyz}= $f(x,y,z,u,u_x,u_y,u_z)$, Le Matematiche 23(1)(196B), 107-123.
- S.C. CHU and J.B. DIAZ: The Coursat problem for the partial differential equation u_{xyz}=f. A mirage, J. Math. Mech. 16(1967), 709-713.
 J. CONLAN: An existence theorem for the equation u_{xyz}=f, Arch. Rational Mech. Anal. 9(1962), 64-76.
- J. DANES: On densifying and related mappings and their application in nonlinear functional analysis, Theory of Nonlinear Operators, Akademie-Verlag, Berlin 1974, 15-46.
- K. DEIMLING: Ordinary Differential Equations in Banach Spaces, Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977.
- M. FRASCA: Su un problema ai limiti per l'equazione $u_{xyz} = f(x,y,z,u,u_x,u_y,u_z)$, Matematiche (Catania) 21(1966), 396-412.
- M. KWAPISZ, B. PALCZEWSKI et W. PAWELSKI: Sur l'équations et l'unicité des solutions de certaines équations différentielles du type $u_{xyz} = f(x,y,z,u,u_x,u_y,u_z,u_{xy},u_{xz},u_{yz})$, Ann. Polon. Math. 11

- [10] R.D. NUSSBAUM: The fixed point index and fixed point theorems for k-set-contraction, Ph.D. dissertation, University of Chicago, 1969.

[11] B. PALCZEWSKI: Existence and uniqueness of solutions of the Darboux problem for the equation
$$\frac{\partial^3 u}{\partial x_1 \partial x_2 \partial x_3} = f(x_1, x_2, x_3, u, \frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \frac{\partial u}{\partial x_3}, \frac{\partial^2 u}{\partial x_1 \partial x_2}, \frac{\partial^2 u}{\partial x_1 \partial x_3}, \frac{\partial^2 u}{\partial x_2 \partial x_3}),$$

Ann. Polon. Math. 13(1963), 267-277.

[12] B.N. SADOVSKII: Limit compact and condensing operators, Math. Surveys, 27(1972), 86-144.

Institute of Mathematics, Higher College of Engineering, Podgórna 50, 65-246 Zielona Góra, Poland.

(Oblatum 20.3. 1987)