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EXISTENCE OF SOLUTIONS OF THE DARBOUX PROBLEM
FOR PARTIAL DIFFERENTIAL EQUATIONS IN BANACH SPACES

Bogdan RZEPECKI

Abstract: We consider the existence of solutions of the classical Dar-
boux problem for the partial differential equation u:' R
17273
=f(x1’XZ'XB’”’uxl’uxz’”xB'”;le'u;1x3’u;2x3) via a fixed point theorem of Sa-
dovskii. Here f is a continuous function with values in a Banach space satis-
fying some regularity condition expressed in terms of the measure of noncom-
pactness o .
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1. Introduction. In the present note we consider the following hyperbo-
lic partial differential equation:

ull )

(1) - . e " "
(+) u -f(xl,xz,xj,u,uxl,uxz,uxs,uxlxz,UXIXB, X5

X1%o%3
with suitable initial boundary conditions of the Darboux type.

Equations of the type (+) (in Euclidean spaces) are considered in papers
by Kwapisz, Palczewski and Pawelski £9], Conlan [5], Castellano [ 31, Palczew-
ski [111, Frasca [8), Chu and Diaz [4), and others. Below, we prove the exis-
tence theorem for the case where f is a continuous function with values in a
Banach space satisfying some regularity condition expressed in terms of the
measure of noncompactness o . The proof is based on the fixed point theorem
of Sadovskii ([12], Theorem 3.4.4).

2. Notations and preliminaries. Let a (i=1,2,3) be positive real num-
bers. We put Ii= [D,ai] and V=Il>< szIJ. Throughout this paper E is a Banach
space with norm W - i » and f is an E-valued continuous function defined on
the product L =vx E-* E’x E’. By C(V,E) we represent the standard Banach spa-
ce of all E-valued continuous functions on V. Moreover, let C*(V,E) denote
the class of E-valued functions (xl,xz,x3)r—->u(x1,x2,x3) continuous on V to-
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gether with their partial derivatives u’ and

" x1’u"z’u"s’u;1"2’u;1"3’u;2"3
X ¥oXs"

The measure of noncompactness «(A) of a nonempty bounded subset A of E
is defined as the infimum of all e > 0 such that there exists a finite cove-
ring of A by sets of diameter <& . For the properties of o« the reader is
referred to [21,061,07],[12).

We shall use in the sequel the following immediate adaptation of Lemma
2.2 of [1) (cf. [10)): If P is a compact subset of V, then uo(u{w(g); fe P)=
=sup { o0 (W(§)): fe P} for a bounded equicontinuous subset W of C(V,E) (here
W(§) stands for the set of all w(f) with weW).

We state the Sadovskii fixed point theorem as follows.

Let £ be a closed convex subset of C(V,E). Let & be a function which
maps each nonempty subset W of £ to a real nonnegative & (W) with
(1) dUwkuw)= W) for w e & ,» (2) d(coAv W)= (W) (Sonv W is the closed
convex hull of W), and (3) if & (W)=0 then W (the closure of W) is compact
in C(V,E). Assume that F is a continuous mapping of % into itself such that
& (FIW1) < (W) whenever $(W)>0. Then F has a fixed point in & .

3. Formulation of the problem and result. We write ij=Iijk for j,k=
=1,2,3 with j<k. Let us determine E-valued functions 6“1, 6’2 and 63 conti-
nuous respectively on ‘]23’ J13 and le, including the second mixed deriva-
tives, and fulfilling the conditions

5'1(0,x3)= 52(0,x3), 6,(x,,0)= 6’3(0,x2), 6'2(x1,0)= 6'3(x1,0)
for xje I (i=1,2,3).

By (PD) we shall denote the problem of finding a function ue C*(V,E)
satisfying (+) and the initial conditions

u(O,xz,x3)= 6'1(x2,x3), u(xl,o,x})= 6‘2(x1,x3), u(xl,x2,0)= 6'3(x1,x2)
for all(xj, xk\ in ij‘

We shall write the right side of (+) shortly as f(§ ,u,R,0), where f=
=(x1,x2,x3) and R=(r1,r2,r3), Q=(q12,q13,q23) with ri(§)=uxi(§), qjk(§)=
Uy x (§). Moreover, let 6=(0,0,0) (here 0 is the zero of E).

3k
Our result reads as follows.
Theorem. Let f be uniformly continuous on bounded subsets of . Assu-

me that the following conditions hold:
1° N£(g ,u,0,0)iéclmzuuﬁ for §eV and uck.
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2 h( €U RD-£CF U, RN £a( Z eyl +ﬂ.'<2kﬂ LD

for (¢ ,u,R,0) € Q@ and (f,u,R,0) € & | where t > @ (t) is a nonnegative
continuous nondecreasing and subadditive function with @(0)=0 only fort =0
and

'{:!wdt = + 0O

for 7 >0.
30 (£l ¢ ,AD) < L-max {ac(Ai):léiéH for $e V and any set A which is
the product of nonempty bounded subsets Ai of E.
Under these assumptions, the problem (PD) admits at least one solution
on V.
Proof. Put u" =s. For the convenience we assume that 6, =0 for
—_ X1 XX i
i=1,2,3. Then, (PD) is equivalent to solving the functional-integral equation

(x) s(x,y,2)=f(x,y,z, jo fo j’o s(t),ty, t5)dt dt dts,
/,, z X rz
fofo s(x, ty, t5)dt,dts, fOfD s(ty,y, ty)dt dts,
Xy
il s(t),t,,2)dt dt,,

2 3 x
fo s(x,y,t;)dty jo s(x,t,,2)dt 2 ./; s(tl,y,z)dtl)
in C(V.E).

Let 9\=1+cl+02+7 w(1). Let T be the set of all (§,u,R,0) e N such
that fu Ilz-A-zexpO?\), I Ty ll‘-—?\'lexp(Ba) and l\qjkl\éexp(BA) for i,j,k=
=1,2,3 with j< k. We set:

@(m)=sup AN£CE ,u,R,0-£(F ,T,R,M N :(§ ,u,R,Q), (§,5,R,WeT with
. lu-G i+ % Ix; % | £}
e(m)=a((1+exp(3A)) M)+ w((2+ A )exp(3Q) n)
for m 20.
According to the lemma of [117] the equation

= [ .
hOGy; )= @(n)+ wC [ [Fn(t), ty;m )dt dt+
X Y
+ Jp vt e [ nx,ty5m )
has a continuous solution h such that h(x,y,0) = 0. Denote by % the set of
all weC(V,E) with

Hw(EdI£Avexp(A = xi)
v
and
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Iw(g )-w(F e h(%y,%p; |R3-x5] I+h(Ry,x3; Iiz—x2|)+h(x2,x3; %%, D
for § =(x},%5,%3)€ V and ‘§-=()T1,72,'i3)e v.

Let F be determined by the right side of (x). It is easy to verify that
X is a closed con vex equicontinuous and bounded subset of C(V,E), and F is
a continuous mapping of ¥ into itself.

Let r>max(1,L). Define

&(W)=sup {exp(-rf )cc(w(f ):feVi

for a nonempty subset W of % . By properties of o« and Ascoli theorem, our
function ¢ satisfies the conditions (1) - (3) listed in Section 2.

Let W be a subset of X with $(W)>0. To prove the theorem it remains
to be shown that @ (F[W1) < &(W).

Fix (x,y,z) in V. Consider the continuous function y(§)=a(W(E)). Let
€ > 0 be arbitiary and = d(& ) a positive number such that f'=(t1',t2',t5)e
eV and g"=(t;,t'2',t;)e V with |ti‘-t;| < d’ (i=1,2,3) implies [y (§)-w(EM <
<€ . We divide the intervals (0,x], [0,y] and [0,2z] into m parts

X,=0< X)< e K XX, yo=0<y1< e <Y, ZO=0<21< s <Z=7
in such a way that

max-\lxi—xi_ll , Iyi—yi_ll , Izi-zi_ll :i=1,2,...,mi < .

Define

Pijk=[xi_l,xi.lx[yj_l,yj]x[zk_l,zk], “ijk= ULAN(E): fe Pijk“
for i,3,k=1,2,...,m. Moreover, let fo be a point in P
=sup{vf(§ ): fe Pijk} .

= [X[¥[%
Denote by Ay= 5 jo Jo w(tl,tz,tB)dtldtzdtB the set of all

ijk Such that ¥ (¢ )=

b i w(ty, t),t5)dt, dt dt; with weW. Applying the integral mean value
theorem we obtain

w(B)e o, 2 mes(Py SN, )

“ ¥,
v m -
“u fer P OnR Y () fepyyd e B éj,_‘{q ¥ty - y(f )+

X 9 2
+y(t),t),t9))dt dtdts < e xyze j; j; J; ¥ (t),ty, ty)dt dt dt; £

=1

£ exyzs (W) j;“ j; k4 j; * exp(x(ty+tyrtp))at dt ity
therefore ‘
< (A0)< > exp(r(x+y+z)) « H(W).

Further, by Ay (i=1,2,3) and Aijk (3,k=1,2,3) with j<k) we represent
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the sets
Y (2 X r% X (Y
JHLT ety tdtygts, L5 WGy tdtaty, 0 [Yuce), ) 200t at,
and
%
L WOy tdts, [¥Nx,ty,2)dt,, LYWty 2)dt,

respectively. Arguments analogous to the above imply that

oc(A1)< r2, exp(r(x+y+z)) » (W)
and
oc(Ajk)< rl exp(rx+y+z)) + HW).

Consequently,

o« (FIW)(x,y,z)) £

£Lemax o), CAy), Ay )1, 3,ke1,2,3 with J< ki <
<r Il exp(r(xsy+z)) - &W)

.

for all (x,y,z)sV. This shows that $(FIW1)< i «®(W). Now, applying Sa-
dovskii’s theorem, we infer that F has a fixed point in £ and the proof is
complete.
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