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mensional densities defined for semimetric spaces equipped with a finite mea-
sure.
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In a previous article [4)by the author, there have been introduced, for
the class of all semimetrized spaces equipped with a finite measure,dimension
functionals which generalize the dimensions defined for vector-valued random
variables in [1] and in subsequent papers of A. Rényi. In the present article,
we introduce dimension functionals of another kind; in some respects, they be-
have similarly as dimensions of topological (or uniform, as the case may be)
spaces. We also introduce various kinds of dimensional densities generalizing
a closely related concept examined in [ 4]. Among other things, theorems are
proved analogous to the sum theorem for the topological dimension and to the
theorem on the dimension of the cartesian product of topological spaces.

Section 1 contains preliminaries. In Section 2, functionals of the form
9~udim and some related notions are examined. In Section 3, we investigate
dimension functionals for which there is a theorem analogous to Sum Theorem of
the topological dimension theory. In Section 4, dimensional densities are con-
sidered.

1

1.1. The terminology and notation is that of [3) and 14] with two excep-
tions stated below (1.3 and 1.19). Nevertheless, we will re-state some defi-
nitions and conventions.

1.2. The symbols N, R, R, R+, F; have their usual meaning. We put 0/0=0,
and, for any beR, 0.b=0; log means logz; we put L(0)=0, L(t)= -t log t if
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O<t<oo. For teR, we put sgn(0)=0, sgn(t)=1 if t>0, sgn(t)= -1 if t«0.
If £f:X— R is a function, then sgn f denotes the function x —>sgn(f(x)).

1.3. If Q*0@ is a set and A is a &-algebra of subsets of Q, then, in
accordance with the current terminology, a 6 -additive function “: 49.—->'R'+
satisfying (,L(ﬂ)=0 will be called a measure on Q (in [2), the term "R-measure"
was used), whereas a ¢ such that, in addition, w(Q)<oco will be called a
finite measure (in (23,137 and [4), such @ were called "measures").

1.4, If a set A is given, then, for any Xc A, iX is the indicator of X,
i.e., ix(x)=1 if xeX, ix(x)=0 if xeA\X.

1.5. A) If Q+@ is a set, then F(Q) and M(Q) will denote, respective-
ly, the set of all f:Q — R and that of all measures on Q. - B) The completi-
onof a w e M(Q) is denoted by @ or [xl . If >y e M(Q), we put » £ «
if dom» =dom & and w(X) £ w(X) for all Xedom . If w € M(Q), f,g€F(Q)
and @ix<Q:£0()4+g(x)% =0, we write f=g(mod @ ). - C) Let e, If f e
¢ $°(Q) is @-measurable, we put £ = {9€ 3(Q):g=t(mod w)¥ and call [f)ea
function (mod w). We put Flwl =-i[f_]“ feF(Q, £ is @-measurable}. -

D) If F,GedLwul, then we put F£G (respectively, F< G) iff there are feF
and ge G such that f£(x)<g(x) (respectively, f(x)<g(x)) for all x €Q. - E) If
@weMQ), fe3(Q), then sup [fJ(u_ denotes the least be R such that [fJ(‘e b,
and similarly for inf [f]M .

1.6. If wedQ), feF(Q) is @-measurable and F= [£], Z 0, then the
measure X > fx fd @ , defined on dom w , is denoted by f.u or F.w . - Clear-
ly, f.u4 @ iff [flpél, f.u =g. @ iff f=g (mod w ).

1.7. 1If K#+@ is countable, §=(xk:keK), X € R, Exk<oo , we put H(g )=
=H(xk:k eK)= Z(L(xk):kek)-l.( = (xk:kek)). If Q is countable, ue M(Q) is
finite and dom w =exp Q, we put H(@)=H(wiq}:qeQ).

1.8. If M is a (partially) ordered set and X aeA, x, y are in M, we
often write \/(xa:a cA), /\(xa:aeA), xvy, etc. instead of sup(xa:aeA),
inf(xa:ac A), sup ix,y}, etc. In particular, if x,y<R, then Xv y=max(x,y),
x Ay=min(x,y).

1.9. Recall that P= (Q,@,(u.) is called semimetrized measure space or W-
space (or also a semimetric space endowed with a measure) if ¢ e M(Q) is fi-
nite and @ is a Lex @] -measurable semimetric. The class of all W-spaces is
denoted by 779 L If P=<Q,@ y #> € ) , we put wP=w(Q); if wP=0, P is cdlled
a null space; if Q is finite and dom w =exp Q, we call P an FW-space. The class
of all FW-spaces is denoted by 710,:. - See, e.g., [3], 1.5.

1.10. Let P= (Q,Q YUY EN) | Ifof ¢ ¥(Q) is @-measurable, [f]“z 0
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and f.u is finite, we put f.P=<Q,§ ,f.u”; if Xedom &, we put X.P=iX.P
(see 1.4). If Se 2% , S=(Q,§> ,»> and y 2 « , we write S<P and call S a
subspace of P (a pure subspace if S=X.P, X& dom @). Clearly, S£P iff S=f.P

for some g -measurable f:Q ——>—R+. - Cf. 3], 1.6, 1.7.

1.11. If P &% , we put exp P=45:54«P%. We put U= U(exp Pxexp P:Pe
e M) ).

1.12. If P={Q,p,m> e 91, Pk=<l],go,(uk)eﬁv for keK, where K +#
is countable, and @ = Z(y.k:k €K), we put P= Z(Pk:keK) and call (Pk:kEK)
an w-partition of P (merely "partition" if K is finite). - See [3), 1.6.

1.13. Lemma. If P e %%, P= Z(Pn:neN), S&P, then there are Sné Pn such
that E-(Sn:neN)=S.

Proof. Let S=s.P, Pt P (see 1.10). Put 9,7sf, .79

i n.Pé P”. Cle?rly,
= Sn=5.

1.14. Let ’U-=(Uk:k €K) and ’U’=(Vm:meM) be co-partitions of Pe 72 . If
there are pairwise disjoint M, such that Uk=Z(Vm:m eMk), UMk=M, then V is
said to refine U. - See [3], 1.6.

1.15. If P=<0,p, > e 71, we put d(P)=sup Ll - I (P,Py) c &,
Pi=<0,@, 43>, we put E(P},Py)=d(P)+P,), £(Py,Py)= [@d(ps)x (,)/wP WP, if
wPl.wP2>0, r(Pl,P2)=0 if wPl.wP2=0. - Cf . 13),1.19,

1.16. Let P=<Q, @, w>e 2%, e>0. Then T=(X, :keK), where K+ is
countable, Xke dom & , will be called an @ -covering of P if diam Xk£ € for
all k and F(Q\ka)=0. If, in addition, Xin Xj=ﬂ for i%j, then € will be
called an ¢ -partition of P. - Cf. [ 3], 1.19.

1.17. If P=XQ,¢, w> < %), then we put ex P=<Q,ExQ@ , >, where
(ex@)(x,y)=0 if P(x,y)<€ , (exE)(x,y)=1 if @(x,y)> ¢ . - See [3], 1.17.

1.18. If P;=40Qy, @4 @i>e %, i=1,2, then we put P P2=<0,§o s (U7
where Q=Q,x Q,, @ =@ x @, and @ ((x15%9), (y 5y,))= gvl(xl,yl)vgoz(xz,yz).
1.19. Let g: ?’){)-—»'ﬁ+ satisfy the following conditions: (1) if
Q,p, > e, a,beR,, then cp(ﬂ,aso,b@%abqo(tl,@ ya2; (2) if Py=
=<0, ®;» “>€e M, i=1,2, and ® 2@, then PP 2gP,; (3) if P=4Q,1,we
€ W, then gP=H(@); (4) if Pi=<Q;,@,, ¢;> € 7Y, i=1,2, and there is
an £:0)—> Q) such that (a) @,(fx,fy)= @ (x,y) if x,ye 0, @ ix¥>0, @.I{y}>
>0, (b) (ul(f'l{q"x)= ¢yiq} for all qeQy, then @P =gP,; (5a) it P=
=<0, e,u> € ’anF, Pr=<Q, 0 e Mg and © —> @ , then PP —> @P;
(5b) if P=<Q,@, w>e MY, <Q,@ , > € Wy, wia}>0 for all qeQ and @ —>

—> , then ¢P_—s @ P. Then will be called an extended Shannon semient-
& @ 9
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ropy (in the broad sense), which is the expression introduced in [2] and used
in (3] and £4], or a Shannon functional (in the broad sense), which is the ex-
pression we use in this article.

1.20. Convention. The letter ¢ will always stand for a Shannon functi-
onal (in the broad sense).

1.21. For the definition of normal gauge functionals (NGF) and of C’t’
and C,:_,' , where T is an NGF, we refer to [2) and [3), since we need only (1)
the fact that r and E are NGF 's, (2) the fact that C and CE are Shannon
functionals (b.s.), and (3) some propositions on CE’ see 1.24 - 1.26 below. It
is also useful to note that there are E-projective (see 1.23) @’s distinct
from CE, for instance Cr

1.22. Convention. The functional CE will ne often denoted by E, provid-
ed there is no danger of confusion with the E introduced in 1.15.

1.23. Definition. A functional Y 279——» §+ will be called E-projective
if, for any P € 2%) and any partition (5,T) of P, y(P) £y (S)+ y(T)+
+E(S,T)H(WS,wT). - Cf. [ 2], 3.10.

1.24. Fact. The functional E: ) —> R+ is E-projective. - See [2], The-
orem II.

1.25. Proposition. If S<£Pe 20, then E(S)£E(P). - See [3], 2.3.

1.26. IProposition. 1f P e 92, then, for all sufficiently small &> 0,
E(ex P) is equal to the infimum of all H(@Xn:ne N), where (Xn:neN) is an
¢ -partition of P. - See [3), 2.18, 1.19.

2

2.1. Definition (cf. [4), 2.1). For any @ and any P ¢ %), ¢-uw(P) (res-
pectively, @-£w(P)) will denote the upper (lower) limit of @ (exP)/ |log & |
for & — 0. We put ¢-ud(P)= @g-uw(P)/WP, - £d(P)=<p- Lw(P)/WP, @ -udim(P)=
=sup {@-ud(5):54Pt, @- £dim(P)=sup i@ - £d(S):S£P?. If -uw(P)=cp- Lw(P),
we put @ -Rw(P)=g-uw(P), @-Rd(P)=g-ud(P). We call g-udim(P) the monotone
-dimension of P. For ¢-uw(P), etc., the terminology introduced in £41, 2.1,
will be used. - If ¢=E, we often omit the prefix " @ ". - Remark. In the
present note, the functionals @- £dim will not be considered.

2.2. Fact. For any E-projective @ and any P e 79, (1) if P=S+T, then
@-uw(P) £ g -uw(S)+@-uw(T), @ -ud(P) £ @ -ud(S) v -ud(T), (2) if @ -udim(P)<
<oo and P= Z (P :k&N), then cy—uw(P)sZ(cy-uw(Pk) keN), g-ud(P) <
lv(q-ud(Pk) ke N).
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Proof. Since ¢ is E-projective, we have G (e x S)+cp(ex T)+H(WS,wT) =
z g @xP). This proves the inequalities (1). - If g-udim(P)=b<oco , put S =
= Z(P :k>n). Then, for each neN, @-uw(P)<£ Z(@-uw(P, ):k£n)+y-uw(S ).
Since an——) 0 and go—uw(Sn)é b.wsn, this proves the inequalities (2).

2.3. Proposition. For any E-projective ¢ and any P¢ 2% , (1) if P=5+T
or P=SvT, then g-udim(P)=@-udim(S)v ¥ -udim(R), (2) if @-udim(P)<co and
either P= Z(Pn:n& N) or P= \/(Pn:neN), then @-udim(P)= V(¢ —udim(Pn):nr-.N).

Proof. Let P=S+T. Then, for any V£ P, there are, by 1.13, VléS, V2£T
such that VI*V2=V. By 2.2, we have @-ud(V)£¢g —ud(Vl)vgv -ud(Vz)e @ -udim(S)v
v @ -udim(T). This proves (1), since SvT<S+T. The case P= Z(Pn:neN) is a-
nalogous to that of P=S+T. - Let P= \/(Pn:ne N). Put 10=P0, Tn+1=Tnv Pn+1'
Then P=T0+ Z(Tml—Tn:neN). Since, clearly, Uv V=U+V-UAV for any U£P, V£P,
it is easy to show that qv—udim(Tn)_é_ V(q—udim(Pk):kén). Hence, due to |
@-udim(P) < @ , we get @ -udim(P) £ V' (g -udim(T ):neN) £ v (¢ -udim(P ):
:neN).

2.4. Example. Choose a > 0, bn> 0, neN, such that Z(bn:neN)=l,

Z(L(bh):neN)=oo-, a,—~ 0, |1og an+1|=(ri =(1(by):i< a7 for nz1. Put
P=<N, @ , 4? , where (o(i,j)=ai+aj, wiil =bi' It is easy to see that ud(P)=
= £d(P)=c0 , udim(P)=co . On the other hand, evidently, udim({k%.P)=0 for all
k €N. This shows that, in 2.3, (2), the assumption @-udim(P)<co cannot be
omitted. - For an example connected with the assertion (1) in 2.3, see 2.10,E.

2.5. Lemma. For any E-projective ¢ and any P e 22, ¢ -udim(P)=
=sup {¢-ud(S):S<P, S pure}.

Proof. Assume wP=1. Write ud instead of cp-ud, uw instead of @-uw. Put
b=sup {ud(S):5<P, S pure}. Let T£P, T=f.P, 0<f(x)£1 for all xeQ. Let me
e N, m>1. Define g as follows: g(x)=k/m if (k-1)/m <f(x)£ k/m; g(x)=1/m if
£(x)=0. Clearly, g-1/m£f<g, hence [(g-f)da £ 1/m. Put U=g.P, X = {xeq:
:g(x)=k/m}. Since Xk.P are pure, we have ud(xk.P)‘_—b, hence ud((k/m).Xk.P)éb
and therefore, by 2.2, ud(U)£b. Since £.P£g.P, we get uw(T)<uw(U) £b.

- Jod@ , ud(T)&b( [ gdw/ [ tdw)<beb [ td@/m. Since meN has been arbit-
rary, we get ud(T)<b.

2.6. Lemma. Let J and K be countable non-void sets. Let x 3K where jel,
keK, be non-negative reals, Z(xjk:jsJ,k eK)<a . For jel, keK, put a.=
= Z—(xjk:k €K), b= Z(xjk:j €3). Then Hixy:jed,k eK)£H(ay:) €)+H(by :k €K).
This follows easily from the well-known special case with both J and K
finite and Exjk=1.
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2.7. Fact. If P is a W-space, P=5+T, then uw(S) v uw(T)< uw(P)< uw(S)+
+uw(T).

Proof. The first inequality follows from 1.25; for the latter, see 2.2.

2.8. Proposition. For any non-null W-spaces Pl and P2, ud(Pl)v ud(Pz) £
éud(Plx Pz)é ud(P1)+ud(P2). - See [4], 4.5.

2.9. Theorem. For any non-null W-spaces P1 and P2, udim(Pl)vudim(Pz)é
< udim(Plx Pz)l.— udim(P1)+udim(P2) .

Proof. The first inequality follows at once from [4], 2.8. Let Pi=
=€0Q;, @5, @4g> 5 71,2, P=P)x Py, P=(0Q,@, w> , udim(P;)=b;< oo . Put b=b, +
+b2. We can assume that wP1=wP2=1. By 2.5, it is sufficient to show that
ud(S)£ b for any pure S£P. Clearly, there exist sets Ane dim 1o Bne dim s
such that @,A >0, @,B >0 and S=X.P, where X= L (A =B ). Put X;= VAL, Xop=
= UBn, Si=Xi.Pi. - Let "> 0. We are going to show that, for every suffici-
ently small & >0, (1) there exists an €-covering (Yn:né N) of S1 such that,
with U =Xn (Y, xQ,), we have H(@Un:neN)é(bl.w&- o |log &|, (2) there ex-
ists an ¢ -covering (Zn:ne N) of 52 such that, with Vn=Xn(le Zn), we have
H(@V :neN)< (bz.ws-c-d")llog ¢|. For any xeQ), put £,00=@,( U(B :neN,x e

3 An)). Clearly, f1 is (4 -measurable and Xl= 4x:flx>0§. Put Sl=f1.P. We have

Sl'.‘_ P,» hence ud(SI').l: b, and therefore m(E(e*Si)/llog ADP2 bl.wsl'=b1.w5.
Hence, for every sufficiently small € > 0, there exists, by 1.26, an € -co-
vering (Y :neN) of Sl' such that H(w(Yn.Sl'):neN)< (bl.w5+<f)|log ¢|. Clear-
ly, (Yn:n €N) is an ¢ -covering of 5, as well. Put Un=Xr\(Yn><02). It is ea-
sy to see that (.’ZUn=w(Yn.Si), hence H(F.Un:neN)<(b1.wS+d')|log ¢|: This pro-
ves the assertion (1). The proof of (2) is analogous.

Put Tmn=Umr\Vn. Then (Tmn:meN,neN) is an e-covering of S. By 2.6, we
obtain H(@Tm:meN,n eN)< H(@Um:meN)+H((1Vn:neN)<(b.w5+2d')Ilog ¢ |, hence
E(ex S)< (b.wS+2d)|1og &|. Since this inequality holds for all sufficiently
small &> 0, vz get uw(S)£€b.wS+2d" . This proves ud(S)<b, for d'> 0 has
been arbitrary.

2.10. Example. A) For neN, let Pn=(Qn,gan,(u.n)e‘370, wP =1, diam P_<
<oo . Let a, be positive reals, and let a, diam Pn——~> 0. Then TTd,(Pn:n eN),
where ec:(an:n €N), will denote the W-space (Q,@,M) , where {Q, u> =
=TTKQ,, @2 :neN), @ ((x ),y ))=sup(a, @ (x ,y):neN). If p=(p :neN),
PheN, p Z1, then S(p) will denote the W-space Tl_;(Pn:neN), where oc =

=2 MneN), Pn=<Qs1,» >, card Q,=Pps vn{q§=1/pn for q eq,. - B) It is
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easy to show that E(ex 5(p))= =(log p :k£n) for 2" 2e>2"™"1, and therefo-

re ud(S(p))=1im( = (log pk:kén)/n). £d(5(p))=1im( Z (log p, :k £n)/n). - C)

Let £(0)=2, r(k+l)= Zr(k) for keN; put A= {neN:r(2k) £n<r(2k+1) for some k €
€N . Put u, =2 if neA, ug =4 if neN\A, put vn -B/u for all neN. Put u= (u
:neN), v (v :neN), U= S(u) v=S(v). It is easy to show (cf. L4}, 3.10) that
if X is a non-null subspace of U or of V, then £d(X)=1, ud(X)=2; hence
udim(U)=udim(V)=2. - D) Put T=UxV. It can be easily proved that, for any non-
null subspace Y£T, we have ud(Y)= £d(Y)=3. This shows that, in 1.8 and 2.9,
no £ can be replaced by = . - E) Let M be a "free sum" of U and V and let U’
and V° denote the subspaces of M corresponding to U and V, respectively. Then
M=U'+V’, and it is easy to show that uw(M)=2, hence ud(M)=1 and therefore
uw(M) < uw(U " )+uw(V "), ud(M)< ud(U ) Aud(V"). Thus, £ cannot be replaced by =
in 2.2, (1), and g-udim cannot be replaced by ¢ -ud in 2.3, (1).

3

3.1. Detinition. For any ¢ and any P e 7Y, (1) @-UW(P) (respectively,
@-LW(P)) will denote the infimum of all be_T?_+ for which there is an w-parti-
tion U of P such that, for any (Vk k €K) refining U , Z(q:-uw(vk)-ke K)£b
(respectively, = (- £w(V,): keK)£b). We put ¢-UD(P)= -UW(P)/wP, @-LD(P)=
= @-LW(P)/wP, -UDim(P)=sup @ -UD(S):S£PE, @ -LDim(P)=sup {g -LD(S): :S£P§.
We will call g-UDim(P) and ¢-LDim(P) the regularized upper (lower) monotone
q—dimension of P. For ¢-UN(P), etc., we will use the names introduced in [4)
for the values of the corresponding functionals (i.e., for ¢-uw(P), etc.),
with the additional qualification "regularized"; thus, e.g., @-UW(P) will be
called the regularized Rényi ¢-weight of P. - If @=E, the prefix "o " will
be, as a rule, omitted.

3.2. Theorem. For any ¢ and any P=¢Q,@, m>e ), (1) if P= Z(Pk:ke
eN), then cp-UN(P)= Z(c’-UW(Pk):k eN), @-LW(P)= Z(q-LW(Pk):keN), (2) the
functions X —> @ -UW(X.P), X —> ¢ -LW(X.P), defined on dom &, are measures.

Proof. The assertion (2) is an immediate consequence of (1). We prove

(1) for cp-UW; for ¢-LW, the proof is analogous. If S£P, put w(S)=

= g-uw(S), §(S)=p-UN(S). Let P= =(P:neN). - I. We are going to show that
®(P) £ =%(P). We can assume that all $(p) are finite. Let b eR,, b >

> Q(P ) for all n. For any n &N, there is an w-partition ’LL (Unk keK, ) of
Pa such that = (y(V.): JeJ)éb for any (Vj ejed) refining 'u Put ’L(-
(Unk neNkek ). Let (V meM) be an arbitrary c-partition of P refining U.
Let (Mnk n €N, keK ) be an cw-partition of the set M such that Z(V :m eMnk) U
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for all neN, keKn. Put M= U(Mnk:keKn). Then (vm:meMn) refines 'uh and
therefore =.( 'V(Vm):m eMn)é.bn, hence E(Y(Vm):meM)e =b,. We have shown
that & (P) < Zby. Since b > &(P_) have been arbitrary, we get (P =

< Z@(Pn). - II. Suppose that $(P)< = (P). Choose reals a < Q(Pn)
such that Zan> &(P). Then there is an c-partition 7.L=(Um:me M) of P such
that (1) Z(i((vk):keK)< b3 a_ whenever (Vk:ke K) refines 2 . Let U U -P;
for me N, neN, put Upn=Up-P- Put 'U.':(Um:meM,neN), Then %’ refines U
and, for any neN, (Um:meM) is an w-partition of Pn. For each neN, there
exists, due to a < Q(Pn), an w -partition (Vn.:jeJn) of Pn refining (Umn:
:n.eN) and satisfying (2) Z(\p‘(vnj):j eJn)>an. Clearly, (vn.:neN,j eJn)
refines %' , hence 2 , and therefore, by (1), Z(V(Vn.):neN,j eJn)<Zan,
which contradicts (2). We have shown that & (P)= = Q(Pn).

3.3. Fact. For any @ and any P € ), ?-LD(P)éq-UD(P)écf—U[lim(P)é
£ -udim(P).

Proof. If g-udim(P)=b<oo and P= Z(Pn:n €N), then Z(c;-uw(Pn):neN)_‘_
& Z(b.uPn:ncN)=b.uP. This proves the last inequality; the remaining ones
are evident.

3.4. Proposition. For any @ and any Pe 99 , if P= E(Pn:neN), then
q-LD(P)éV(q~LD(Pn):ncN), ¢ -UD(P) £V (e -UD(p,):neN).
This follows at once from 3.2.

3.5. Theorem. For any @ and any Pe 9% , if P= Z(Pn:neN) or P= V(Pn:
:neN), then ¢ -LDim(P)= V(q:-LDim(Pn):nsN), @ -UDim(P)= \/(?-UDim(Pn):ne
eN).

Proof. Let P= EPn. Put bn=q-wim(Pn), b=@-UDim(P). Clearly, b> b, for
all neN. Let S£P, Then, by 1.13, there are SnéPn such that S=ZSn. We ha-
ve q-UD(Sn)é bn and hence, by 3.4, cy-UD(S)év(bn:n €N). This proves b;—v(bn:
:neN). - If P=VPn:neN), then the proof is similar to the corresponding part
of the proof of 2.3.

Remark. The theorem shows that, in some respects, the behavior of
¢-Udim and ¢-LDim is similar to that of various kinds of dimension of topo-
logical spaces (for instance, for normal spaces, dim P=\/ (dim Pn:ne N) when-
ever P= UPn’ Pn are closed). On the other hand, the behavior of @ -udim
(where @ is E-projective) is different from that of the topological dimensi-
on and rather resembles the behavior of the dimension o'd of uniform spaces
(the equality o'd(SuT)= dd(S) v J'd(T) does hold whereas Jd( v (P :neN))=
= \V( d‘d(Pn):neN) does not, in general).
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3.6. Leama. Let X c 7% and assume that X contains all null spaces.
Then, for any P e 9%) , there is an S<£P such that (1) S has an w-partition
consisting of spaces in &L , (2) if T4£P-S, Te L , then wi=0.

Proof. It is easy to show by transfinite induction that there is a coun-
table ordinaletz 0 and an indexed collection (Xp : 3 <oc) such that (a) for
all f<ew, XgeL , wXg>0, (b) =(Xg:B<cx)eP, (c) if Y&P-=(Xg:

: <), Y X , then wY=0. Put S= E(X,3 : B<ec). Clearly, S satisfies (1)
and (2).

3.7. Lemma. For any @ and any P € 7%, if wP>0, beﬁ+ and @-udim(S)Zz
Z b whenever S£P, wS>0, then ¢-UD(P)Zb.

Proof. Let a<b. Let ’u.=(Un:neN) be an w-partition of P. Put M= {n:
WU > 0%. If neM, then, by 3.6, there are Snké U,» k<N, such thatZ(Snk:ke
3 N)éun, q-uw(Snk)z a.ws and @-ud(T)z a for no T£ V,=P- Z(Snk:keN), »
hence c;-udim(vn)é a. This implies wV =0, U= Z(SHk:keN). Hence (Snk:neM,
keN) is an w-partition of P refining % . Clearly, Z(cy—uw(Snk):ne M,ke N)>
> a.wP. Since U has been arbitrary, this proves ¢-UW(P)2Z a.wP.

3.8. Proposition. For any @ and any P e 7% , @-UDim(P) is equal to
the infimum of all beﬁ+ for which there exist PnéP such that ZPn=P,
cy—udim(Pn)!:b for all neN.

Proof. Put s=q-UDim(P); let t be the infimum in question. If beﬁ*
and there are Pn with properties stated above, then, by 3.3 and 3.4, s4b.
This proves s<t. - Let s'>s. By 3.6, there are S,4P, neN, such that
@ -udim(S )< s, =(s,:neN)£P and @-udim(T)£s” for no non-null T£V=P-
-XS.. By 3.7, w>0 would imply ¢ -UD(V)2 s, hence @-UDim(P)>s . Hence
wv=0, ZSn=P and therefore t<s’.

3.9. Proposition. If ¢ is E-projective, P e 7 and g-udim(P)< oo,
then @ -UDim(P)=cp-udim(P).

Proof. If S&P and S= Z(Sn:neN), then, by 2.3, g-uw(S) £ Z(q:-uu(sn):
:n€N). This implies @-un(T) &£ @-UN(T) for all T4P. Hence, @ -udim(P) <
& -UDim(P). By 3.3, this proves the proposition.

3.10. Theorem. Let P1 and P2 be W-spaces. Then UDim(Plx Pz)é Ll]im(Pl)»
+l.lJim(P2).

Proof. Put bi=l.ll]im(Pi), b=b,+b,. We can assume that b<oo . Let &> 0.
For i=1,2, there exists, by 3.8, an co-partition (Pin:neN) of P1 such that
udim(i’in)< bi+ ¢/2 for all neN. Put Tm=P1m>< P2n' By 2.8, udim(Tm)éb'rE:
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for all m,neN, hence, by 3.5 and 3.3, UDim(Plx‘Pz)é b+€ . Since €> 0 has
been arbitrary, the theorem is proved.

Remark. Let U and V be as in 2.10. Put T=UxV. It is easy to prove
UDim(U)=UDim(V)=2, UDim(T)=3. This shows that < cannot be replaced by = in
3.10.

4

4.1. Proposition and definition. For any ¢ and any P=<Q,p » (LD & ),
there is exactly one function (mod w) f (respectively, g) such that op-UW(X.P)=
= fxfd @ (respectively, @-LW(X.P)= fxgd ) for all Xe dom @ . - We denote

tand g by - vUP) (or vI(P) and ¢- VLR (ar ¥, (P)), respectively;

V‘;J(P) (respectively, VC’L(P)) will be called the upper (lower) @ -dimensional
density of P. If q:=E, we often omit the prefix "o ".

Proof. The proposition follows from 3.2 and the Radon-Nikodym theorem.

4.2. Conventions. To express the subsequent propositions 4.3, 4.4, 4.6
and 4.16 in a concise and exact manner, we introduce some ad hoc conventions.
-A) If we M), £ and g are (& -measurable, F= [£flw , G= [gle , we put
£G=FG= [fg],, » where v=f.« . Observe that, under this convention , FG=GF
does not hold in general. - B) Let “, » € H(Q), let . be finite, letv < w
and let f < 3'(Q) be @-measurable. Then [[f1, du is defined as follows:
let X be a support of » with respect to w (i.e., (1) y £ X. “, (2) ifve
£Y. @, then @(X\Y)=0); we put [[f],, du= Jyfdew. -C) If e M@

is finite and, for neN, “p< M@, U= \/((un:niN), Fpe 3’[&“] and F_z 0,
then we put V(Fn:ncN)= [V(fnix(n):ne N)J‘“ , where, for each ne N,fn£Fn
and X(n) is a support of @, with respect to w . - D) If @ e .M(Qi), Fie
e? r'f“'i]' i=1,2, then we put Fi+Fo= [“M , where W= @) @, and, for some
fisFi, f is the function (x,y)Hfl(x)+f2(y).

4.3. Proposition. For any ® and any P= (Q,Q y(4>e M, if S=s.P4LP,
then g -UN(S)= ['s V)(P)d w, @-LW(S)- [s AGER

Proof. It is easy to see that there are sets X(n)e dom @ and reals a,
such that Z(anix(n):neN)=s (mod ). Then ¢ -UW(S)= = (a, @-UN(X(n).P):ne
eN)=Za, fx(n) V%,U(P)d =/ (Zapiyny) V?U(P)dy. =fs V‘;J(P)d(u. . For
@-LW, the proof is analogous.

4.4. Proposition. For any @ and any P= <D,;o,(u,> e M), if S=s5.P<£P,

then g/(S)=(sgn 5). 7P, VJ‘S’i‘ig; ). V).



Proof. Put »=s.w , t=sgns. Let fe VU(P) If Xedom et . then
Sy tid» = [ tfadu= [y std e, hence, by ‘ 3, Jy tdy = @ -UN(X.s.P)=

= @-UW(X.S). This proves that tf ¢ V; (S), and therefore (see 4.2, A)
V?U(S)ft V,fU(P). The proof for %L is analogous.

4.5. Theorem. For any ? and any P=<Q,@ ,«> € ) , ¢-UDim(P)=
=sup 7, (P), @-LDim(P)=sup o (P).

Proof. Put a=q@ -UDim(P), b=sup V% l"(P) For any S=s.P<£ P, we have
@-UD(S)= Is V; (P)dw /wS, hence ?—UD(S)L b. This proves a£b. - Let cxb;
let f e V?U(P) Then there is an Xe dom @ such that @X>0, f(x)Z c if xe X.
Clearly, go—UD(X.P)=fod¢c/(&Xz c. This proves aZb. - The proof for ¢ -LDim
is analogous.

Remark. There are examples (not quite simple) of W-spaces P sansfylng
v (P)= VU(P) and such that UDim(S), where S£P, assumes all values from a
certain interval.

4.6. Tteora For any ¢ and any P & 27/) , if P= E(P :n€N) or P= V(Pn:
ineN), then GIP)= V(v P inen), Yy (P= VO (P): Tnen.

Proof. We only prove the first equahty. Clearly, it is sufficient to
show that the equality holds if P= \/Pn. Let Pnzfn.P. Put g,=sgn fn' Then, by

4.4, v(’fU(Pn)=gn. Vc}U(P). Since, clearly, w = \/(gn.(u.:n eN), \/gn=1 (mod o),
u _ U
we get \/( Ve (Pn):n eN)= Vt'! (P).

4.7. Definition. For any ¢ , a W-space P will be called ¢p-dimension-
bounded (or merely " ¢ -bounded") if ¢ -udim P < co . It will be called fully
p-exact if @-ud(S)=@- £d(S) for all S£P. If g=E, we often omit the prefix
"@ " in " ¢ -dimension-bounded" and "fully cp-exact".

4.8. Remark. It is easy to prove that, for any 9 and any Pe?y , the-
re is exactly one partition (Pl’ 2:P3:P4 ) such that v (P )= V (P )<oo ,

%P < TP <o , V(P vP= 0 , HP, )< % (P )=c0 . The
spaces Py,...,P, can be characterized as follows: (1) Py has an «-partition
consisting of cf-bounded fully g-exact subspaces, (2) P2 has an < -partiti-
on consisting of ¢ -bounded subspaces and contains no fully ¢-exact subspace,
(3) every non-null subspace S< Py contains subspaces T with @ -£d(T) arbit-
rarily large, (4) if S< P, is non-null, then it is neither ¢-bounded nor
fully g-exact.

4.9. Fact and definition. For any ¢ and any P=(Q,‘o, (4.) e, if
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there exists a function (mod w) F such that (x) fo d e = @-uw(X.P)=

=g- £w(X.P) for all Xedomd , then this F is unique. It will be denoted by
Q- vRe) or Vq,R(P) and called the exact ¢-dimensional density for P. If
there is no F satisfying (*), we will say that Q- VR(P) does not exist. -
If ¢=E, we often omit the prefix "o ". - Remark. If f is an Rw-density
function for P in the sense of L4], 3.12, then VR(P)= EfJ‘q_ ; conversely, if
VR(P) exists, then every f e V.R(P) is an Rw-density function for P.

4.10. Proposition. For any ¢ and any Pe 29 , if @- VR(P) exists,
then P is fully g-exact and (") w7(P)= v Rcp).

Proof. If g- VR(P) exists, then, for any S4P, g-uw(S)=q¢ - £w(S) and
if §= X (S :neN), then g-uw(S)= =( -uw(S)). This implies that P is fully
g -exact and @ -UN(S)=qr-uw(S)= g- £w(S)= p-LW(S) for each S< P. *

4.11. Proposition. For any @ and any Pe 94 , if there are fully ¢-
exact Py such that P Z (P :neN), then Zl(P)= 7L(P).

Proof. If P is fully g-exact, then ¢-uw(T)=q@- Lw(T) for all T« P,
hence @-UW(S)= 9-LW(S) for all S4P and therefore V#(P): v(}(P). If P=
= Z(Pn:neN) and Pn are fully <-exact, apply 4.6.

4.12. Remark. Let P=(R'n,so,f..7\) » where e is any usual metric on Rn,
A is the Lebesgue measure and «=f.A is a finite measure. Then (1) Pis
fully exact, (2) for any non-null S<P, UDIM(S)=LDin(S)=n, (3) ¥ Y(p)-
= VL(P)=n. Lsgn ﬂe‘-; this follows from [41, 2.9. However, if e.g. n=1, f(x)=
= le'lllog x]'3'2, then Rd(P)= co , whereas Rd(X.P)=1 whenever X € dom @ is
bounded and @X>0; thus VR(P) does not exist.

4.13. Fact. For any P e ?Y) and any PnéP satisfying Z(Pn:ncN)=P, (1)
2(2u(Pn)=neN) < 4w(P), (2) if P is dimension-bounded, then uw(P) &
P Z(uw(Pn):n &« N).

Proof. The assertion (1) follows at once from [4], 3.1. For (2), see [4],
3.4,

4.14. Fact. For any Pe 2y , (1) LW(P) < &w(P), (2) if P is dimension-
bounded, then uw(P) < UW(P).

This is an immediate consequence of 4.13.

4.15. Proposition. Let P e ) be dimension-bounded. Then the following

conditions are equivalent: (1) P is fully exact, (2) VR(P) exists, (3)
vt = vl

Proof. I. If (1) holds, then uw(T)= £w(T) for all T<P. Hence, by 4.13,
if S4P, S= Z(Sn:ni N), then z(R\v(Sn):nc N) 4 Rw(S) « Z(Rw(Sn):neN). This
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proves that X > Rw(X.P) is a measure, hence VR(P) does exist. - II. By
4.10, (2) implies (3). - III. It v (P)= vU(P), then, for any S<P, UN(S)-
=LW(S) and hence, by 4.14, uw(S)= £w(S).

4.16. Theorem. For any W-spaces P1 and P2, VU(Plx P2) < VU(P1)+ VU(PZ).

Proof. Let Pi=<Qi’ O &7, P=P1’<P2= {Q,@,«”. Let Aedom @, B e
< dom @ ; put C=AxB. Then, by 3.9, UD(C.P) <UD(A.P) )+UD(B.P,), hence UW(C.P) <
u
£ UN(A.P ). ,B+UN(B.P,). wA. Clearly, UN(C.P)= [ 7 5(P)d UWCA.P)).

o : u _ u
- 8= Jg Sy VO d wy, NP, wp- JoJg V(Pdpyd ;. This pro-

ves that [ o VP < [ v e v )d e tor all Acdom @, B <

€ dom 57.1, and therefore VU(P) <z VU(P1)§ VU(PZ).

Remark. The equality VU(Plx P2)= VU(P1)+ VU(P ) does not hold, in ge-
neral. For instance, for U and V from 2.10, we have Y°(U xV) < VU(U)+ V~U(V).
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