

Werk

Label: Article Jahr: 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0028 | log53

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 28,3 (1987)

ON DIMENSIONS OF SEMIMETRIZED MEASURE SPACES Miroslav KATĚTOV

Abstract: We introduce and examine various kinds of dimensions and dimensional densities defined for semimetric spaces equipped with a finite measure

Key words: Extended Shannon semientropy, Shannon functional, regularized upper (lower) Rényi dimension, monotone dimension.

Classification: 94A17

In a previous article [4]by the author, there have been introduced, for the class of all semimetrized spaces equipped with a finite measure, dimension functionals which generalize the dimensions defined for vector-valued random variables in [1] and in subsequent papers of A. Rényi. In the present article, we introduce dimension functionals of another kind; in some respects, they behave similarly as dimensions of topological (or uniform, as the case may be) spaces. We also introduce various kinds of dimensional densities generalizing a closely related concept examined in [4]. Among other things, theorems are proved analogous to the sum theorem for the topological dimension and to the theorem on the dimension of the cartesian product of topological spaces.

Section 1 contains preliminaries. In Section 2, functionals of the form φ -udim and some related notions are examined. In Section 3, we investigate dimension functionals for which there is a theorem analogous to Sum Theorem of the topological dimension theory. In Section 4, dimensional densities are considered.

1

- 1.1. The terminology and notation is that of [3] and [4] with two exceptions stated below (1.3 and 1.19). Nevertheless, we will re-state some definitions and conventions.
- 1.2. The symbols N, R, \overline{R} , R₊, \overline{R} , have their usual meaning. We put 0/0=0, and, for any $b \in \overline{R}$, 0.b=0; log means log_2 ; we put L(0)=0, L(t)=-t log t if

- $0 < t < \infty$. For $t \in \overline{R}$, we put sgn(0)=0, sgn(t)=1 if t > 0, sgn(t)=-1 if t < 0. If $f: X \longrightarrow \overline{R}$ is a function, then sgn f denotes the function $x \longmapsto sgn(f(x))$.
- 1.3. If Q $\neq \emptyset$ is a set and $\mathcal A$ is a $\mathcal E$ -algebra of subsets of Q, then, in accordance with the current terminology, a $\mathcal E$ -additive function $\mu:\mathcal A\to\overline{\mathbb R}_+$ satisfying $\mu(\emptyset)=0$ will be called a measure on Q (in [2], the term " $\overline{\mathbb R}$ -measure" was used), whereas a μ such that, in addition, $\mu(\mathbb Q)<\infty$ will be called a finite measure (in [2],[3]) and [4], such μ were called "measures").
- 1.4. If a set A is given, then, for any XcA, i_χ is the indicator of X, i.e., $i_\chi(x)=1$ if $x\in X$, $i_\chi(x)=0$ if $x\in A\setminus X$.
- 1.5. A) If $Q \neq \emptyset$ is a set, then $\mathscr{F}(Q)$ and $\mathscr{M}(Q)$ will denote, respectively, the set of all $f:Q \to \overline{R}$ and that of all measures on Q. B) The completion of a $\mu \in \mathscr{M}(Q)$ is denoted by $\overline{\mu}$ or $[\mu]$. If $\mu, \nu \in \mathscr{M}(Q)$, we put $\nu \neq \mu$ if $\text{dom } \nu = \text{dom } \mu$ and $\nu(X) \neq \mu(X)$ for all $X \in \text{dom } \mu$. If $\mu \in \mathscr{M}(Q)$, $f, g \in \mathscr{F}(Q)$ and $\overline{\mu}\{x \in Q: f(x) \neq g(x)\} = 0$, we write $f = g(\text{mod } \mu) \cdot C$. Let $\mu \in \mathscr{M}(Q)$. If $f \in \mathscr{F}(Q)$ is $\overline{\mu}$ -measurable, we put $f = g(\pi) \cdot f(\pi) \cdot g(\pi) \cdot g(\pi)$ and call $f = g(\pi) \cdot f(\pi) \cdot g(\pi) \cdot g(\pi) \cdot g(\pi)$. O) If $f = g(\pi) \cdot f(\pi) \cdot g(\pi) \cdot g(\pi) \cdot g(\pi) \cdot g(\pi)$, then we put $f = g(\pi) \cdot g(\pi) \cdot g(\pi) \cdot g(\pi) \cdot g(\pi) \cdot g(\pi) \cdot g(\pi)$ if there are $f \in F$ and $g \in G$ such that $f(x) \neq g(x)$ (respectively, f(x) < g(x)) for all $f \in G(G)$. If $f \in G(G)$, then sup $f \in G(G)$ denotes the least $f \in G(G)$ and similarly for inf $f \in G(G)$.
- 1.6. If $\mu \in \mathcal{M}(Q)$, $f \in \mathcal{F}(Q)$ is $\overline{\mu}$ -measurable and $F = [f]_{\mathcal{U}} \geq 0$, then the measure $X \longmapsto \int_X fd \, \mu$, defined on dom μ , is denoted by $f.\mu$ or $F.\mu$. Clearly, $f.\mu \leq \mu$ iff $[f]_{\mu} \leq 1$, $f.\mu = g.\mu$ iff $f = g \pmod{\mu}$.
- 1.7. If K \neq Ø is countable, $\xi=(x_k:k\in K),\ x_k\in R_+,\ \sum x_k<\infty$, we put H(ξ)= =H(x_k:k\in K)= $\Sigma(L(x_k):k\in K)$ -L($\sum (x_k:k\in K)$). If Q is countable, $\mu\in\mathcal{M}(Q)$ is finite and dom μ =exp Q, we put H(μ)=H(μ 1q}:q \in Q).
- 1.8. If M is a (partially) ordered set and x_a , $a \in A$, x, y are in M, we often write $\bigvee (x_a : a \in A)$, $\bigwedge (x_a : a \in A)$, $x \vee y$, etc. instead of $\sup (x_a : a \in A)$, $\inf (x_a : a \in A)$, $\sup \{x,y\}$, etc. In particular, if $x,y \in \overline{R}$, then $x \vee y = \max(x,y)$, $x \wedge y = \min(x,y)$.
- 1.9. Recall that $P = \langle \mathbb{Q}, \mathbb{Q}, \mathcal{M} \rangle$ is called semimetrized measure space or W-space (or also a semimetric space endowed with a measure) if $\mu \in \mathcal{M}(\mathbb{Q})$ is finite and \mathbb{Q} is a $[\mu \times \mu]$ -measurable semimetric. The class of all W-spaces is denoted by \mathcal{M} . If $P = \langle \mathbb{Q}, \mathbb{Q}, \mathcal{M} \rangle \in \mathcal{M}$, we put $\mathsf{WP} = \mu(\mathbb{Q})$; if $\mathsf{WP} = \mathbb{Q}$, P is called a null space; if \mathbb{Q} is finite and dom $\mu = \exp \mathbb{Q}$, we call P an FW-space. The class of all FW-spaces is denoted by \mathcal{M}_{F} . See, e.g., [3], 1.5.
 - 1.10. Let P= $\langle \mathbb{Q}, \mathbb{Q}, \mu \rangle \in \mathcal{M}$. If $f \in \mathcal{F}(\mathbb{Q})$ is $\overline{\mu}$ -measurable, $[f]_{\mu} \geq 0$

- and f. μ is finite, we put f.P= $\langle Q, g, f, \mu \rangle$; if Xedom $\overline{\mu}$, we put X.P= i_{χ} .P (see 1.4). If S \in 200, S= $\langle Q, g, \nu \rangle$ and $\nu \neq \mu$, we write S \neq P and call S a subspace of P (a pure subspace if S=X.P, Xedom $\overline{\mu}$). Clearly, S \neq P iff S=f.P for some $\overline{\mu}$ -measurable f:Q $\rightarrow \overline{R}_{+}$. Cf. [3], 1.6, 1.7.
- 1.11. If $P \in \mathcal{P}Q$, we put $\exp P = A S : S \triangleq P_s^2$. We put $Ot = \bigcup (\exp P \times \exp P : P \in \mathcal{P}Q)$).
- 1.12. If $P = \langle Q, \varphi, \mu \rangle \in \mathcal{W}$, $P_k = \langle Q, \varphi, \mu_k \rangle \in \mathcal{W}$ for k \(\mathbb{K} \), where K \(\neq \mathbb{M} \) is countable, and $\mu = \sum (\mu_k : k \in K)$, we put $P = \sum (P_k : k \in K)$ and call $(P_k : k \in K)$ an ω -partition of P (merely "partition" if K is finite). See [3], 1.6.
- 1.13. Lemma. If P \in \mathcal{W} , P= Σ (P_n:n \in N), S $\not\in$ P, then there are S_n $\not\in$ P_n such that Σ (S_n:n \in N)=S.
- Proof. Let S=s.P, $P_n = f_n$.P (see 1.10). Put $g_n = sf_n$, $S_n = g_n$.P \(P_n \). Clearly, \(\Sigma_n = S_n = S_n \).
- 1.14. Let $\mathcal{U}_=(\mathsf{U}_k:\mathsf{k}\in\mathsf{K})$ and $\mathcal{V}_=(\mathsf{V}_m:\mathsf{m}\in\mathsf{M})$ be ω -partitions of P \in \mathcal{W} . If there are pairwise disjoint M_k such that $\mathsf{U}_k=\sum(\mathsf{V}_m:\mathsf{m}\in\mathsf{M}_k)$, $\cup\mathsf{M}_k=\mathsf{M}$, then \mathcal{V} is said to refine \mathcal{U} . See [3], 1.6.
- 1.15. If $P=\langle Q, g, \mu \rangle \in \mathcal{M}$, we put $d(P)=\sup [g]_{\mu \times \mu}$. If $(P_1, P_2) \in \mathcal{O}$, $P_1=\langle Q, g, \mu_1 \rangle$, we put $E(P_1, P_2)=d(P_1+P_2)$, $r(P_1, P_2)=\int g d(\mu_1 \times \mu_2)/w P_1.w P_2$ if $w P_1.w P_2 > 0$, $r(P_1, P_2)=0$ if $w P_1.w P_2=0$. Cf. [3],1.19,
- 1.16. Let P= <Q, \wp , ω > ε \mathfrak{A}), ε >0. Then \mathfrak{X} =(X_k :k ε K), where K \neq \emptyset is countable, $X_k \varepsilon$ dom $\overline{\omega}$, will be called an \mathfrak{E} -covering of P if diam $X_k \varepsilon$ ε for all k and $\overline{\omega}(Q \setminus \bigcup X_k)$ =0. If, in addition, $X_i \cap X_j = \emptyset$ for $i \neq j$, then \mathfrak{X} will be called an ε -partition of P. Cf. [3], 1.19.
- 1.17. If $P=\langle \mathbb{Q}, \emptyset, \mu \rangle \in \mathcal{M}$, then we put $\varepsilon \star P=\langle \mathbb{Q}, \varepsilon \star \emptyset, \mu \rangle$, where $(\varepsilon \star \emptyset)(x,y)=0$ if $\emptyset(x,y) \leq \varepsilon$, $(\varepsilon \star \emptyset)(x,y)=1$ if $\emptyset(x,y)>\varepsilon$. See [3], 1.17.
- 1.18. If $\mathsf{P_i} = \langle \mathsf{Q_i}, \mathsf{\varphi_i}, \mathsf{\mu_i} \rangle \in \mathcal{B}_{\mathcal{I}}$, i=1,2, then we put $\mathsf{P_1} \times \mathsf{P_2} = \langle \mathsf{Q}, \mathsf{\varphi}, \mathsf{\mu} \rangle$, where $\mathsf{Q} = \mathsf{Q_1} \times \mathsf{Q_2}$, $\mathsf{\mu} = \mathsf{\mu_1} \times \mathsf{\mu_2}$ and $\mathsf{\varphi}((\mathsf{x_1}, \mathsf{x_2}), (\mathsf{y_1}, \mathsf{y_2})) = \mathsf{\varphi_1}(\mathsf{x_1}, \mathsf{y_1}) \vee \mathsf{\varphi_2}(\mathsf{x_2}, \mathsf{y_2})$.
- 1.19. Let $\varphi: \mathcal{M} \to \overline{\mathbb{R}}_+$ satisfy the following conditions: (1) if $\langle \mathbb{Q}, \mathbb{Q}, \mathbb{A} \rangle \in \mathcal{M} \rangle$, a,b $\in \mathbb{R}_+$, then $\varphi \langle \mathbb{Q}, \mathbb{Q}, \mathbb{Q}, \mathbb{A} \rangle \in \mathbb{Q} \rangle$, $\langle \mathbb{Q}, \mathbb{Q}, \mathbb{A} \rangle \in \mathbb{Q} \rangle$, if $\mathbb{P}_i = \langle \mathbb{Q}, \mathbb{Q}_i, \mathbb{Q}_i, \mathbb{A} \rangle \in \mathcal{M} \rangle$, i=1,2, and $\mathbb{Q}_1 \geq \mathbb{Q}_2$, then $\mathbb{Q}_1 \geq \mathbb{Q}_2 \in \mathbb{Q}_2$, if $\mathbb{P} = \langle \mathbb{Q}, \mathbb{Q}, \mathbb{Q} \rangle \in \mathbb{Q}_2 \in \mathbb{Q}_2$, then $\mathbb{Q}_1 \geq \mathbb{Q}_2 \in \mathbb{Q$

ropy (in the broad sense), which is the expression introduced in [2] and used in [3] and [4], or a Shannon functional (in the broad sense), which is the expression we use in this article.

- 1.20. Convention. The letter ϕ will always stand for a Shannon functional (in the broad sense).
- 1.21. For the definition of normal gauge functionals (NGF) and of $\mathbb{C}_{\mathfrak{C}'}$ and $\mathbb{C}_{\mathfrak{C}}^*$, where τ is an NGF, we refer to [2] and [3], since we need only (1) the fact that r and E are NGF's, (2) the fact that \mathbb{C}_r and \mathbb{C}_E are Shannon functionals (b.s.), and (3) some propositions on \mathbb{C}_E , see 1.24 1.26 below. It is also useful to note that there are E-projective (see 1.23) ϕ 's distinct from \mathbb{C}_E , for instance \mathbb{C}_r .
- 1.22. Convention. The functional $C_{\rm E}$ will ne often denoted by E, provided there is no danger of confusion with the E introduced in 1.15.
- 1.23. **Definition.** A functional $\psi: \mathcal{M} \to \overline{R}_+$ will be called E-projective if, for any P $\in \mathcal{M}$ and any partition (S,T) of P, $\psi(P) \neq \psi(S) + \psi(T) + +E(S,T)H(wS,wT)$. Cf. [2], 3.10.
- 1.24. Fact. The functional E: $\mathcal{M} \longrightarrow \mathsf{R}_+$ is E-projective. See [2], Theorem II.
 - 1.25. **Proposition.** If $S \neq P \in \mathcal{W}$, then $E(S) \neq E(P)$. See [3], 2.3.
- 1.26. |Proposition. If $P \in \mathcal{P}(I)$, then, for all sufficiently small $\epsilon > 0$, $E(\epsilon * P)$ is equal to the infimum of all $H(\overline{\alpha}X_n:n \in N)$, where $(X_n:n \in N)$ is an ϵ -partition of P. See [3], 2.18, 1.19.

2

- 2.1. **Definition** (cf. [4], 2.1). For any φ and any $P \in \mathcal{W}$, φ -uw(P) (respectively, φ - ℓ w(P)) will denote the upper (lower) limit of φ (ε *P)/ $|\log \varepsilon|$ for $\varepsilon \to 0$. We put φ -ud(P)= φ -uw(P)/wP, φ - ℓ d(P)= φ - ℓ w(P)/wP, φ -udim(P)= $\sup \{\varphi$ -ud(S):S \leq P $\}$. If φ -uw(P)= φ - ℓ w(P), we put φ -Rw(P)= φ -uw(P), φ -Rd(P)= φ -ud(P). We call φ -udim(P) the monotone φ -dimension of P. For φ -uw(P), etc., the terminology introduced in [4], 2.1, will be used. If φ =E, we often omit the prefix " φ ". Remark. In the present note, the functionals φ - ℓ dim will not be considered.
- 2.2. Fact. For any E-projective φ and any $P \in \mathcal{W}$, (1) if P=S+T, then φ -uw(P) $\leq \varphi$ -uw(S)+ φ -uw(T), φ -ud(P) $\leq \varphi$ -ud(S) $\vee \varphi$ -ud(T), (2) if φ -udim(P) $< \infty$ and $P = \sum (P_k: k \in N)$, then φ -uw(P) $\leq \sum (\varphi$ -uw(P_k): $k \in N$), φ -ud(P) $\leq \leq \vee (\varphi$ -ud(P_k): $k \in N$).

- Proof. Since φ is E-projective, we have $\varphi(\epsilon*S)+\varphi(\epsilon*T)+H(wS,wT) \geq \geq \varphi(\epsilon*P)$. This proves the inequalities (1). If φ -udim(P)=b< ∞ , put S_n = = $\Sigma(P_k:k>n)$. Then, for each $n\in N$, φ -uw(P) $\leq \Sigma(\varphi$ -uw(P_k): $k \leq n$)+ φ -uw(S_n). Since $wS_n \to 0$ and φ -uw(S_n) $\leq b.wS_n$, this proves the inequalities (2).
- 2.3. **Proposition.** For any E-projective φ and any $P \in \mathcal{P}\!\!\mathcal{Q}$, (1) if P=S+T or P=S \vee T, then φ -udim(P)= φ -udim(S) $\vee \varphi$ -udim(R), (2) if φ -udim(P) $\swarrow \varpi$ and either $P = \sum (P_n : n \in \mathbb{N})$ or $P = \bigvee (P_n : n \in \mathbb{N})$, then φ -udim(P)= $\bigvee (\varphi$ -udim(P_n): $n \in \mathbb{N}$).

Proof. Let P=S+T. Then, for any Vé P, there are, by 1.13, $V_1 \le S$, $V_2 \le T$ such that $V_1 + V_2 = V$. By 2.2, we have φ -ud($V) \ne \varphi$ -ud(V_1) $\vee \varphi$ -ud(V_2) $\not \models \varphi$ -udim(S) $\vee \varphi$ -udim(T). This proves (1), since $S \vee T \le S + T$. The case $P = \sum (P_n : n \in N)$ is analogous to that of P = S + T. - Let $P = \bigvee (P_n : n \in N)$. Put $I_0 = P_0$, $I_{n+1} = I_n \vee P_{n+1}$. Then $P = I_0 + \sum (I_{n+1} - I_n : n \in N)$. Since, clearly, $U \vee V = U + V - U \wedge V$ for any $U \ne P$, $V \ne P$, it is easy to show that φ -udim(I_n) $\not = \bigvee (\varphi$ -udim(I_n): $h \in N$. Hence, due to $f \in V$ -udim($f \in V$) $f \in V$ -udim($f \in V$): $f \in V$ -udim($f \in$

- 2.4. Example. Choose $a_n>0$, $b_n>0$, $n\in N$, such that $\sum (b_n:n\in N)=1$, $\sum (L(b_n):n\in N)=\infty$; $a_n\to 0$, $|\log a_{n+1}|=(n\sum (L(b_i):i\le n))^{-1}$ for $n\ge 1$. Put $P=\langle N, \wp, \mu \rangle$, where $\wp(i,j)=a_i+a_j$, $\iota(i)=b_i$. It is easy to see that $\iota(P)=\ell(P)=\infty$, $\iota(P)=\infty$. On the other hand, evidently, $\iota(R, P)=0$ for all $\iota(R, P)=0$. This shows that, in 2.3, (2), the assumption $\iota(R, P)=0$ cannot be omitted. For an example connected with the assertion (1) in 2.3, see 2.10, $\iota(R, P)=0$.
- 2.5. Lemma. For any E-projective φ and any $P \in \mathcal{P}$, φ -udim(P)= =sup $\{\varphi$ -ud(S):S \leq P, S pure $\{$.

Proof. Assume wP=1. Write ud instead of φ -ud, uw instead of φ -uw. Put b=sup {ud(S):S \(\) P, S pure \(\) Let T \(\) P, T=f.P, $0 \leq f(x) \leq 1$ for all $x \in \mathbb{Q}$. Let m \in \in N, m > 1. Define g as follows: g(x)=k/m if $(k-1)/m < f(x) \leq k/m$; g(x)=1/m if f(x)=0. Clearly, $g-1/m \leq f \leq g$, hence $\int (g-f)d \, \mu \leq 1/m$. Put U=g.P, $X_k = \{x \in \mathbb{Q}: g(x)=k/m\}$. Since X_k .P are pure, we have $ud(X_k.P) \leq b$, hence $ud((k/m).X_k.P) \leq b$ and therefore, by 2.2, $ud(U) \leq b$. Since $f.P \leq g.P$, we get $uw(T) \leq uw(U) \leq b$. $\int gd \, \mu$, $ud(T) \leq b$ ($\int gd \, \mu/\int fd \, \mu$) $\leq b+b \int fd \, \mu/m$. Since m \in N has been arbitrary, we get $ud(T) \leq b$.

2.6. Lemma. Let J and K be countable non-void sets. Let x_{jk} , where j \in J, k \in K, be non-negative reals, $\sum (x_{jk}: j \in J, k \in K) < \infty$. For j \in J, k \in K, put $a_j = \sum (x_{jk}: k \in K)$, $b_k = \sum (x_{jk}: j \in J)$. Then $H(x_{jk}: j \in J, k \in K) \neq H(a_j: j \in J) + H(b_k: k \in K)$.

This follows easily from the well-known special case with both J and K finite and $\Sigma x_{ik}\text{=}1.$

2.7. Fact. If P is a W-space, P=S+T, then $uw(S) \checkmark uw(T) \le uw(P) \le uw(S) + +uw(T)$.

Proof. The first inequality follows from 1.25; for the latter, see 2.2.

- 2.8. **Proposition.** For any non-null W-spaces P_1 and P_2 , $ud(P_1) \lor ud(P_2) \le ud(P_1 \times P_2) \le ud(P_1) + ud(P_2)$. See [4], 4.5.
- 2.9. **Theorem.** For any non-null W-spaces P_1 and P_2 , $udim(P_1) \lor udim(P_2) \le udim(P_1 \lor P_2) \le udim(P_1) + udim(P_2)$.

Proof. The first inequality follows at once from [4], 2.8. Let P_i = $= \langle \, \mathbb{Q}_{_{1}}, \, \mathbb{Q}_{_{1}}, \, \mu_{_{1}} \, \rangle \ , \ i=1,2, \ \mathsf{P=P}_{1} \times \, \mathsf{P}_{2}, \ \mathsf{P=} \, \langle \, \mathbb{Q}, \, \mathbb{Q} \, , \, \mu \, \rangle \ , \ \mathsf{udim}(\mathsf{P}_{_{1}}) = \mathsf{b}_{_{1}} < \varpi \ . \ \bar{\mathsf{Put}} \ \mathsf{b} = \mathsf{b}_{1} + \mathsf{b}_{1} + \mathsf{b}_{2} + \mathsf{b}_{2} + \mathsf{b}_{3} + \mathsf{b}_{3}$ $+b_2$. We can assume that $wP_1=wP_2=1$. By 2.5, it is sufficient to show that $\operatorname{ud}(S) \leq \operatorname{b}$ for any pure $S \leq P$. Clearly, there exist sets $\operatorname{A}_{\operatorname{n}} \in \operatorname{dim} \ \mu_1$, $\operatorname{B}_{\operatorname{n}} \in \operatorname{dim} \ \mu_2$ such that $\mu_1 A_n > 0$, $\mu_2 B_n > 0$ and S=X.P, where X= \cup $(A_n \times B_n)$. Put $X_1 = \cup A_n$, $X_2 = 0$ = $\cup B_n$, $S_i = X_i \cdot P_i$. - Let o' > 0. We are going to show that, for every sufficiently small $\epsilon > 0$, (1) there exists an ϵ -covering (Yn:n ϵ N) of S1 such that, with Un=X∩(Yn×Q2), we have H(مَثَالي:n∈N) ≼(b1.wS+oٌ)|log و|, (2) there exists an e-covering (Z_n:neN) of S₂ such that, with $V_n=X\cap (Q_1\times Z_n)$, we have $H(\overline{\mu} \vee_{\Pi}: n \in \mathbb{N}) < (b_2 \cdot wS + \sigma') | \log \varepsilon|$. For any $x \in \mathbb{Q}_1$, put $f_1(x) = \mu_2(\cup (B_n: n \in \mathbb{N}, x \in \mathbb{N}))$ \in A_n)). Clearly, f₁ is $(\mu_1$ -measurable and $X_1 = \{x: f_1 \times > 0\}$. Put $S_1 = f_1 \cdot P$. We have $S_1^{'} \!\! \leq P_1, \text{ hence } \mathrm{ud}(S_1^{'}) \!\! \leq b_1 \text{ and therefore } \overline{\lim}(\mathbb{E}(\varepsilon * S_1^{'})/|\log \varepsilon|) \!\! \leq b_1. \mathsf{w} S_1^{'} \!\! = \!\! b_1. \mathsf{w} S.$ Hence, for every sufficiently small $\epsilon > 0$, there exists, by 1.26, an ϵ -covering $(Y_n: n \in \mathbb{N})$ of S_1' such that $H(w(Y_n, S_1'): n \in \mathbb{N}) < (b_1, wS + \sigma') | \log \varepsilon|$. Clearly, $(Y_n: n \in N)$ is an ε -covering of S_1 as well. Put $U_n = X_n (Y_n \times Q_2)$. It is easy to see that $\overline{\mu}U_n = w(Y_n.S_1')$, hence $H(\overline{\mu}U_n: n \in N) < (b_1.wS+o')|\log \varepsilon|$: This proves the assertion (1). The proof of (2) is analogous.

Put $T_{mn}=U_m \cap V_n$. Then $(T_{mn}:m \in N, n \in N)$ is an ε -covering of S. By 2.6, we obtain $H(\overline{\omega} T_{mn}:m \in N, n \in N) \neq H(\overline{\omega} U_m:m \in N) + H(\overline{\omega} V_n:n \in N) < (b.wS+2\sigma)|\log \varepsilon|$, hence $E(\varepsilon * S) < (b.wS+2\sigma)|\log \varepsilon|$. Since this inequality holds for all sufficiently small $\varepsilon > 0$, we get $uw(S) \neq b.wS+2\sigma'$. This proves $ud(S) \neq b$, for $\sigma' > 0$ has been arbitrary.

 $\begin{array}{c} 2.10. \ \, \text{Example.} \quad A) \quad \text{For } n \in \mathbb{N}, \ \text{let } P_n = \langle \, \mathbb{Q}_n, \, \varphi_n, \, \mu_n \, \rangle \in \mathcal{M} \big), \ \text{wP}_n = 1, \ \text{diam } P_n < \langle \, \infty \, \rangle \, . \ \text{Let } a_n \ \text{be positive reals, and let } a_n \ \text{diam } P_n \longrightarrow 0. \ \text{Then } \ \mathsf{TL}(P_n : n \in \mathbb{N}), \ \text{where} \ \langle \, \mathbb{Q}_n, \, \mu_n \, \rangle \, . \ \text{Then } \ \mathsf{TL}(P_n : n \in \mathbb{N}), \ \text{where} \ \langle \, \mathbb{Q}_n, \, \mu_n \, \rangle \, . \ \text{where} \ \langle \, \mathbb{Q}_n, \, \mu_n \, \rangle \, . \ \text{where} \ \langle \, \mathbb{Q}_n, \, \mu_n \, \rangle \, . \ \text{where} \ \langle \, \mathbb{Q}_n, \, \mu_n \, \rangle \, . \ \text{where} \ \langle \, \mathbb{Q}_n, \, \mu_n \, \rangle \, . \ \text{where} \ \langle \, \mathbb{Q}_n, \, \mu_n \, \rangle \, . \ \text{where} \ \langle \, \mathbb{Q}_n, \, \mu_n \, \rangle \, . \ \text{where} \ \langle \, \mathbb{Q}_n, \, \mu_n \, \rangle \, . \ \text{Then } \ \mathsf{TL}(P_n : n \in \mathbb{N}), \ \mathsf{Where} \ \langle \, \mathbb{Q}_n, \, \mu_n \, \rangle \, . \ \text{Then } \ \mathsf{TL}(P_n : n \in \mathbb{N}), \ \mathsf{Where} \ \langle \, \mathbb{Q}_n, \, \mu_n \, \rangle \, . \ \text{Then } \ \mathsf{TL}(P_n : n \in \mathbb{N}), \ \mathsf{Where} \ \langle \, \mathbb{Q}_n, \, \mu_n \, \rangle \, . \ \text{Then } \ \mathsf{TL}(P_n : n \in \mathbb{N}), \ \mathsf{Where} \ \langle \, \mathbb{Q}_n, \, \mu_n \, \rangle \, . \ \text{Then } \ \mathsf{TL}(P_n : n \in \mathbb{N}), \ \mathsf{Where} \ \langle \, \mathbb{Q}_n, \, \mu_n \, \rangle \, . \ \text{Then } \ \mathsf{TL}(P_n : n \in \mathbb{N}), \ \mathsf{Where} \ \langle \, \mathbb{Q}_n, \, \mu_n \, \rangle \, . \ \text{Then } \ \mathsf{TL}(P_n : n \in \mathbb{N}), \ \mathsf{Where} \ \langle \, \mathbb{Q}_n, \, \mu_n \, \rangle \, . \ \text{Then } \ \mathsf{TL}(P_n : n \in \mathbb{N}), \ \mathsf{TL}($

easy to show that $E(\varepsilon * S(p)) = \sum (\log p_k : k \le n)$ for $2^{-n} \ge \varepsilon > 2^{-n-1}$, and therefore $ud(S(p)) = \overline{\lim} (\sum (\log p_k : k \le n)/n)$, $\ell d(S(p)) = \overline{\lim} (\sum (\log p_k : k \le n)/n)$. - C) Let r(0) = 2, $r(k+1) = 2^{r(k)}$ for $k \in N$; put $A = \{n \in N : r(2k) \le n < r(2k+1)\}$ for some $k \in N$. Put $u_n = 2$ if $n \in A$, $u_n = 4$ if $n \in N \setminus A$, put $v_n = 8/u_n$ for all $n \in N$. Put $u = (u_n : n \in N)$, $v = (v_n : n \in N)$, U = S(u), V = S(v). It is easy to show (cf. [4], 3.10) that if X is a non-null subspace of U or of V, then $\ell d(X) = 1$, ud(X) = 2; hence udim(U) = udim(V) = 2. - D) Put $I = U \times V$. It can be easily proved that, for any non-null subspace $Y \le T$, we have $ud(Y) = \ell d(Y) = 3$. This shows that, in 1.8 and 2.9, no $\le C$ can be replaced by $= C \cdot C$. Let M be a "free sum" of U and V and let U and V denote the subspaces of M corresponding to U and V, respectively. Then $M = U \cdot V$, and it is easy to show that uw(M) = 2, hence ud(M) = 1 and therefore $uw(M) < uw(U \cdot V) + uw(V \cdot V)$, $ud(M) < ud(U \cdot V) + uw(V \cdot V)$. Thus, $\le C$ cannot be replaced by $= U \cdot V = U \cdot$

3

3.1. **Definition.** For any φ and any $P \in \mathcal{M}$, (1) φ -UW(P) (respectively, φ -LW(P)) will denote the infimum of all $b \in \overline{R}_+$ for which there is an ω -partition \mathcal{U} of P such that, for any $(V_k: k \in K)$ refining \mathcal{U} , $\sum (\varphi - uw(V_k): k \in K) \neq b$ (respectively, $\sum (\varphi - lw(V_k): k \in K) \neq b$). We put φ -UD(P)= φ -UW(P)/wP, φ -LD(P)= φ -LW(P)/wP, φ -UDim(P)=sup $\{\varphi$ -UD(S): $S \neq P\}$, φ -LDim(P)=sup $\{\varphi$ -LD(S): $S \neq P\}$. We will call φ -UDim(P) and φ -LDim(P) the regularized upper (lower) monotone φ -dimension of P. For φ -UW(P), etc., we will use the names introduced in [4] for the values of the corresponding functionals (i.e., for φ -uw(P), etc.), with the additional qualification "regularized"; thus, e.g., φ -UW(P) will be called the regularized Rényi φ -weight of P. - If φ =E, the prefix " φ " will be, as a rule, omitted.

3.2. **Theorem.** For any φ and any $P=\langle \mathbb{Q}, \varphi, \mu \rangle \in \mathcal{W}$, (1) if $P=\sum (P_k: k \in \mathbb{N})$, then φ -UW(P)= $\sum (\varphi$ -UW(P_k): $k \in \mathbb{N}$), φ -LW(P)= $\sum (\varphi$ -LW(P_k): $k \in \mathbb{N}$), (2) the functions $X \longmapsto \varphi$ -UW(X.P), $X \longmapsto \varphi$ -LW(X.P), defined on dom $\overline{\mu}$, are measures.

Proof. The assertion (2) is an immediate consequence of (1). We prove (1) for φ -LW; for φ -LW, the proof is analogous. If $S \not = P$, put $\psi(S) = \varphi$ -uW(S), $\Phi(S) = \varphi$ -UW(S). Let $P = \Sigma(P_n : n \in N)$. - I. We are going to show that $\Phi(P) \not = \Sigma \Phi(P_n)$. We can assume that all $\Phi(P_n)$ are finite. Let $b_n \in R_+$, $b_n > P_n$ for all n. For any n eN, there is an ω -partition $\mathcal{U}_n = (U_{nk} : k \in K_n)$ of P_n such that $\Sigma(\psi(V_j) : j \in J) \not = b_n$ for any $(V_j \in J \in J)$ refining \mathcal{U}_n . Put $\mathcal{U} = (U_{nk} : n \in N, k \in K_n)$. Let $(V_m : n \in M)$ be an arbitrary ω -partition of P refining \mathcal{U} . Let $(M_{nk} : n \in N, k \in K_n)$ be an ω -partition of the set M such that $\Sigma(V_m : m \in M_{nk}) = U_{nk}$

3.3. Fact. For any φ and any $P \in \mathcal{H}$, φ -LD(P) $\leq \varphi$ -UD(P) $\leq \varphi$ -UDim(P) $\leq \varphi$ -udim(P).

Proof. If φ -udim(P)=b< ∞ and P= $\sum (P_n:n\in N)$, then $\sum (\varphi$ -uw(P_n):n $\in N$) \leq $\leq \sum (b.wP_n:n\in N)$ =b.wP. This proves the last inequality; the remaining ones are evident.

- 3.4. **Proposition.** For any φ and any $P \in \mathcal{M}\mathcal{D}$, if $P = \sum (P_n : n \in \mathbb{N})$, then $\varphi LD(P) \leq \bigvee (\varphi LD(P_n) : n \in \mathbb{N})$, $\varphi UD(P) \leq \bigvee (\varphi UD(P_n) : n \in \mathbb{N})$. This follows at once from 3.2.
- 3.5. **Theorem.** For any φ and any $P \in \mathcal{W}$, if $P = \sum (P_n : n \in \mathbb{N})$ or $P = \bigvee (P_n : n \in \mathbb{N})$, then φ -LDim $(P) = \bigvee (\varphi$ -LDim $(P_n) : n \in \mathbb{N})$, φ -UDim $(P) = \bigvee (\varphi$ -UDim $(P_n) : n \in \mathbb{N})$.

Proof. Let $P = \sum P_n$. Put $b_n = \varphi - UDim(P_n)$, $b = \varphi - UDim(P)$. Clearly, $b \ge b_n$ for all $n \in \mathbb{N}$. Let $S \le P$. Then, by 1.13, there are $S_n \le P_n$ such that $S = \sum S_n$. We have $\varphi - UD(S_n) \ne b_n$ and hence, by 3.4, $\varphi - UD(S) \ne \bigvee (b_n : n \in \mathbb{N})$. This proves $b \ne \bigvee (b_n : n \in \mathbb{N})$. - If $P = \bigvee P_n : n \in \mathbb{N}$, then the proof is similar to the corresponding part of the proof of 2.3.

Remark. The theorem shows that, in some respects, the behavior of φ -Udim and φ -LDim is similar to that of various kinds of dimension of topological spaces (for instance, for normal spaces, dim $P=\bigvee(\dim P_n:n\in N)$ whenever $P=\bigcup P_n$, P_n are closed). On the other hand, the behavior of φ -udim (where φ is E-projective) is different from that of the topological dimension and rather resembles the behavior of the dimension of d of uniform spaces (the equality $\sigma'd(S\cup T)=\sigma'd(S)\vee\sigma'd(T)$ does hold whereas $\sigma'd(\bigcup (P_n:n\in N))=\bigvee(\sigma'd(P_n):n\in N)$ does not, in general).

- 3.6. Lemma. Let $\mathfrak{X}\subset \mathfrak{W}$ and assume that \mathfrak{X} contains all null spaces. Then, for any P $\in \mathfrak{W}$, there is an S \leq P such that (1) S has an ω -partition consisting of spaces in \mathfrak{X} , (2) if T \leq P-S, T $\in \mathfrak{X}$, then wT=0.
- Proof. It is easy to show by transfinite induction that there is a countable ordinal $\alpha \geq 0$ and an indexed collection $(X_{\beta}: \beta < \infty)$ such that (a) for all $\beta < \infty$, $X_{\beta} \in \mathcal{X}$, $wX_{\beta} > 0$, (b) $\sum (X_{\beta}: \beta < \infty) \leq P$, (c) if $Y \not \in P \sum (X_{\beta}: \beta < \infty)$, $Y \in \mathcal{X}$, then wY = 0. Put $S = \sum (X_{\beta}: \beta < \infty)$. Clearly, S satisfies (1) and (2).
- 3.7. Lemma. For any φ and any $P \in \mathcal{M}_{J}$, if wP > 0, $b \in \overline{\mathbb{R}}_{+}$ and φ -udim(S) \geq \geq b whenever $S \neq P$, wS > 0, then φ -UD(P) \geq b.
- Proof. Let a

 b. Let $\mathcal{U}=(\mathsf{U}_n:\mathsf{n}\in\mathsf{N})$ be an ω -partition of P. Put M= {n:
 $:\mathsf{wU}_n>0$ }. If n \in M, then, by 3.6, there are $\mathsf{S}_{nk} \not= \mathsf{U}_n$, k \(\mathbf{N}, \text{ such that } \mathbf{Z}(\mathsf{S}_{nk}:\mathsf{k}\in\mathsf{N}), being Q -uw(\$\mathbf{S}_{nk}\$) \(\mathbf{Z} \) a.w\$\$\$\$_{mk}\$ and \$\mathbf{g}\$-ud(T)\$\(\mathbf{Z}\$ a for no \$T \neq V_n=P-\$\mathbf{Z}(\$S_{nk}:\mathsf{k}\in\mathsf{N})\$, hence \$\mathbf{Q}\$-udim(\$V_n\$)\$\'\eq a\$. This implies w\$V_n=0\$, \$U_n=\$\mathbf{Z}(\$S_{nk}:\mathsf{k}\in\mathsf{N})\$. Hence \$(\$S_{nk}:\mathsf{n}\in\mathsf{M}, \mathsf{k}\in\mathsf{N})\$ is an \$\omega\$-partition of P refining \$\mathbf{U}\$. Clearly, \$\mathbf{Z}(\mathbf{G}^*-uw(S_{nk}):\mathsf{n}\in\mathsf{M},\mathsf{k}\in\mathsf{N})\$ > a.w\$P. Since \$\mathbf{U}\$ has been arbitrary, this proves \$\mathbf{Q}\$-UW(P)\$\geq \mathbf{a}.w\$P.
- 3.8. Proposition. For any φ and any $P \in \mathcal{M}$, φ -UDim(P) is equal to the infimum of all $b \in \overline{R}_+$ for which there exist $P_n \neq P$ such that $\sum P_n = P$, φ -udim(P_n) \neq b for all $n \in \mathbb{N}$.
- Proof. Put $s=\varphi$ -UDim(P); let t be the infimum in question. If $b\in\overline{\mathbb{R}}_+$ and there are P_n with properties stated above, then, by 3.3 and 3.4, $s \leq b$. This proves $s \leq t$. Let s'>s. By 3.6, there are $S_n \leq P$, $n \in \mathbb{N}$, such that φ -udim(S_n) $\leq s'$, $\sum (S_n: n \in \mathbb{N}) \leq P$ and φ -udim(T) $\leq s'$ for no non-null $T \leq V = P \sum S_n$. By 3.7, wV>0 would imply φ -UD(V) $\geq s'$, hence φ -UDim(P) $\geq s'$. Hence wV=0, $\sum S_n = P$ and therefore $t \leq s'$.
- 3.9. **Proposition.** If φ is E-projective, $P \in \mathcal{M}$ and φ -udim(P) < ∞ , then φ -UDim(P)= φ -udim(P).
- Proof. If $S \neq P$ and $S = \sum (S_n : n \in N)$, then, by 2.3, φ -uw(S) $\neq \sum (\varphi$ -uw(S_n): :n $\in N$). This implies φ -uw(T) $\neq \varphi$ -UW(T) for all $T \neq P$. Hence, φ -udim(P) $\neq \varphi$ -UOim(P). By 3.3, this proves the proposition.
- 3.10. Theorem. Let P_1 and P_2 be W-spaces. Then $UDim(P_1 \times P_2) \leq UDim(P_1) + UDim(P_2)$.
- Proof. Put b_i =UDim(P_i), b= b_1 + b_2 . We can assume that $b < \infty$. Let $\epsilon > 0$. For i=1,2, there exists, by 3.8, an ω -partition (P_{in} : $n \in N$) of P_i such that $udim(\hat{P}_{in}) < b_i + \epsilon/2$ for all $n \in N$. Put T_{mn} = $P_{1m} \times P_{2n}$. By 2.8, $udim(T_{mn}) \neq b + \epsilon$ 407 –

for all m,n \in N, hence, by 3.5 and 3.3, $UDim(P_1 \times P_2) \neq b + \mathcal{E}$. Since $\mathcal{E} > 0$ has been arbitrary, the theorem is proved.

Remark. Let U and V be as in 2.10. Put $T=U\times V$. It is easy to prove UDim(U)=UDim(V)=2, UDim(T)=3. This shows that \leq cannot be replaced by = in 3.10.

Δ

4.1. **Proposition and definition.** For any φ and any $P=\langle \mathbb{Q}, \rho, \mu \rangle \in \mathcal{W}$, there is exactly one function (mod μ) f (respectively, g) such that φ -UW(X.P)= $\int_X f d \mu$ (respectively, φ -LW(X.P)= $\int_X g d \mu$) for all $X \in dom \overline{\mu}$. - We denote f and g by φ - $\nabla^U(P)$ (or $\nabla^U_{\varphi}(P)$) and φ - $\nabla^L(P)$ (or $\nabla^L_{\varphi}(P)$), respectively; $\nabla^U_{\varphi}(P)$ (respectively, $\nabla^L_{\varphi}(P)$) will be called the upper (lower) φ -dimensional density of P. If φ =E, we often omit the prefix " φ ".

Proof. The proposition follows from 3.2 and the Radon-Nikodým theorem.

- 4.2. Conventions. To express the subsequent propositions 4.3, 4.4, 4.6 and 4.16 in a concise and exact manner, we introduce some ad hoc conventions.
 A) If $\mu \in \mathcal{M}(\mathbb{Q})$, $\mu \in \mathbb{Q}$, $\mu \in \mathbb{Q$

Proof. It is easy to see that there are sets $X(n) \in \text{dom } \overline{\mu}$ and reals $a_n = 1$ such that $\sum (a_n i_{X(n)} : n \in \mathbb{N}) = 1$ (mod μ). Then $\varphi = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ in $\mathbb{N} = 1 \cup \mathbb{N}$ ($\mathbb{N} = 1 \cup \mathbb{N}$) in $\mathbb{N} = 1 \cup \mathbb{N}$ in $\mathbb{N} = 1$ in $\mathbb{N} = 1$

4.4. Proposition. For any φ and any $P=\langle \mathbb{Q}, \varphi, \mu \rangle \in \mathbb{W}$, if $S=s.P \neq P$, then $\nabla^U_{\varphi}(S)=(sgn\ s).$ $\nabla^U_{\varphi}(P),$ $\nabla^L_{\varphi}(S)=(sgn\ s).$ $\nabla^L_{\varphi}(P).$ - 408 -

- Proof. Put ν =s. μ , t=sgn s. Let $f \in \nabla^U_{\mathcal{G}}(P)$. If $X \in \text{dom } \overline{\mu}$, then $\int_X tfd\nu = \int_X tfad\mu = \int_X sfd\mu$, hence, by 4.3, $\int_X tfd\nu = \mathcal{G}-UW(X.s.P)=$ = $\mathcal{G}-UW(X.s)$. This proves that $tf \in \nabla^U_{\mathcal{G}}(S)$, and therefore (see 4.2, A) $\nabla^U_{\mathcal{G}}(S) = t \nabla^U_{\mathcal{G}}(P)$. The proof for $\nabla^U_{\mathcal{G}}(S) = t \nabla^U_{\mathcal{G}}(P)$. The proof for $\nabla^U_{\mathcal{G}}(S) = t \nabla^U_{\mathcal{G}}(P)$.
- Proof. Put $a=\varphi$ -UDim(P), b=sup $\nabla_{\varphi}^{U}(P)$. For any S=s.P \leq P, we have φ -UD(S)= $\int s \nabla_{\varphi}^{U}(P)d\mu$ /wS, hence φ -UD(S) \leq b. This proves $a\leq$ b. Let c<\(\sigma b\); let $f \in \nabla_{\varphi}^{U}(P)$. Then there is an $X \in \text{dom } \overline{\mu}$ such that $\overline{\mu} X > 0$, $f(x) \geq c$ if $x \in X$. Clearly, φ -UD(X.P)= $\int_{X} f d\mu$ / $\overline{\mu} X \geq c$. This proves $a \geq b$. The proof for φ -LDim is analogous.

Remark. There are examples (not quite simple) of W-spaces P satisfying $\nabla^L(P) = \nabla^U(P)$ and such that UDim(S), where S $\not=$ P, assumes all values from a certain interval.

- 4.6. Theorem. For any φ and any $P \in \mathcal{M}$, if $P = \sum (P_n : n \in N)$ or $P = \bigvee (P_n : n \in N)$, then $\nabla_{\varphi}^{U}(P) = \bigvee (\nabla_{\varphi}^{U}(P_n) : n \in N)$, $\nabla_{\varphi}^{L}(P) = \bigvee (\nabla_{\varphi}^{L}(P_n) : n \in N)$.
- Proof. We only prove the first equality. Clearly, it is sufficient to show that the equality holds if $P = \bigvee P_n$. Let $P_n = f_n$. P. Put $g_n = \operatorname{sgn} f_n$. Then, by 4.4, $\nabla_{\boldsymbol{\varphi}}^{\mathsf{U}}(P_n) = g_n$. $\nabla_{\boldsymbol{\varphi}}^{\mathsf{U}}(P)$. Since, clearly, $\boldsymbol{\mu} = \bigvee (g_n, \boldsymbol{\mu} : n \in \mathbb{N})$, $\bigvee g_n = 1 \pmod{\boldsymbol{\mu}}$, we get $\bigvee (\nabla_{\boldsymbol{\varphi}}^{\mathsf{U}}(P_n) : n \in \mathbb{N}) = \nabla_{\boldsymbol{\varphi}}^{\mathsf{U}}(P)$.
- 4.7. **Definition.** For any φ , a W-space P will be called φ -dimension-bounded (or merely " φ -bounded") if φ -udim P < ∞ . It will be called fully φ -exact if φ -ud(S)= φ ℓ d(S) for all S \neq P. If φ =E, we often omit the prefix " φ " in " φ -dimension-bounded" and "fully φ -exact".
- 4.8. Remark. It is easy to prove that, for any φ and any $P \in \mathcal{W}$, there is exactly one partition (P_1,P_2,P_3,P_4) such that $\nabla^L_\varphi(P_1) = \nabla^U_\varphi(P_1) < \varpi$, $\nabla^L_\varphi(P_2) < \nabla^U_\varphi(P_2) < \varpi$, $\nabla^L_\varphi(P_3) = \nabla^U_\varphi(P_3) = \varpi$, $\nabla^L_\varphi(P_4) < \nabla^U_\varphi(P_4) = \varpi$. The spaces P_1,\ldots,P_4 can be characterized as follows: (1) P_1 has an ω -partition consisting of φ -bounded fully φ -exact subspaces, (2) P_2 has an ω -partition consisting of φ -bounded subspaces and contains no fully φ -exact subspace, (3) every non-null subspace $S \neq P_3$ contains subspaces T with $\varphi \mathcal{L}d(T)$ arbitrarily large, (4) if $S \neq P_4$ is non-null, then it is neither φ -bounded nor fully φ -exact.
 - 4.9. Fact and definition. For any φ and any $P = \langle Q, \varphi_0, \mu \rangle \in \mathcal{M}_0$, if

there exists a function (mod ω) F such that (*) $\int_X F \ d\omega = \varphi - uw(X.P) = = \varphi - \ell w(X.P)$ for all $X \in \text{dom } \bar{\omega}$, then this F is unique. It will be denoted by $\varphi - \nabla^R(P)$ or $\nabla^R_{\varphi}(P)$ and called the exact φ -dimensional density for P. If there is no F satisfying (*), we will say that $\varphi - \nabla^R(P)$ does not exist. - If $\varphi = E$, we often omit the prefix " φ ". - Remark. If f is an Rw-density function for P in the sense of [4], 3.12, then $\nabla^R(P) = [f]_{\omega}$; conversely, if $\nabla^R(P)$ exists, then every fe $\nabla^R(P)$ is an Rw-density function for P.

4.10. **Proposition.** For any φ and any $P \in \mathcal{M}$, if $\varphi - \nabla^R(P)$ exists, then P is fully φ -exact and $\nabla^U_{\varphi}(P) = \nabla^L_{\varphi}(P) = \nabla^R_{\varphi}(P)$.

Proof. If $\varphi - \nabla^R(P)$ exists, then, for any $S \angle P$, $\varphi - uw(S) = \varphi - \ell w(S)$ and if $S = \sum_n (S_n : n \in N)$, then $\varphi - uw(S) = \sum_n (\varphi - uw(S_n))$. This implies that P is fully $\varphi - exact$ and $\varphi - Uw(S) = \varphi - uw(S) = \varphi - \ell w(S) = \varphi - Lw(S)$ for each $S \angle P$.

4.11. **Proposition.** For any φ and any $P \in \mathcal{W}$, if there are fully φ -exact P_n such that $P = \sum (P_n : n \in N)$, then $\nabla^U_{\varphi}(P) = \nabla^L_{\varphi}(P)$.

Proof. If P is fully φ -exact, then φ -uw(T)= φ - ℓ w(T) for all $T \not = P$, hence φ -UW(S)= φ -LW(S) for all $S \not = P$ and therefore $\nabla^{IJ}_{\varphi}(P) = \nabla^{IJ}_{\varphi}(P)$. If $P = \sum (P_n : n \in N)$ and P_n are fully φ -exact, apply 4.6.

4.12. Remark. Let $P=\langle R^n, \emptyset, f.\lambda \rangle$, where \emptyset is any usual metric on R^n , λ is the Lebesgue measure and $\alpha=f.\lambda$ is a finite measure. Then (1) P is fully exact, (2) for any non-null $S \neq P$, UDim(S)=LDim(S)=n, (3) $\nabla^U(P)=\nabla^L(P)=n$. Lsgn $\mathfrak{t}]_{\alpha}$; this follows from [41, 2.9. However, if e.g. n=1, $f(x)=|x|^{-1}|\log x|^{-3-2}$, then $Rd(P)=\infty$, whereas Rd(X.P)=1 whenever $X \in dom \not a$ is bounded and $\not a \times >0$; thus $\nabla^R(P)$ does not exist.

4.13. Fact. For any $P \in \mathcal{M}$ and any $P_n \angle P$ satisfying $\sum (P_n : n \in N) = P$, (1) $\sum (\ell_N(P_n) : n \in N) \le \ell_N(P)$, (2) if P is dimension-bounded, then $uw(P) \angle \sum (uw(P_n) : n \in N)$.

Proof. The assertion (1) follows at once from [4], 3.1. For (2), see [4], 3.4.

4.14. Fact. For any P \in ${\cal M}$, (1) LW(P) $\not=$ ${\cal L}$ w(P), (2) if P is dimension-bounded, then uw(P) $\not=$ UW(P).

This is an immediate consequence of 4.13.

4.15. **Proposition.** Let P \in 200 be dimension-bounded. Then the following conditions are equivalent: (1) P is fully exact, (2) $\nabla^R(P)$ exists, (3) $\nabla^L(P) = \nabla^U(P)$.

Proof. I. If (1) holds, then $uw(T) = \ell w(T)$ for all $T \notin P$. Hence, by 4.13, if $S \leq P$, $S = \sum (S_n : n \in N)$, then $\sum (Rw(S_n) : n \in N) \neq Rw(S) \neq \sum (Rw(S_n) : n \in N)$. This

proves that $X \mapsto Rw(X.P)$ is a measure, hence $\nabla^R(P)$ does exist. - II. By 4.10, (2) implies (3). - III. If $\nabla^L(P) = \nabla^U(P)$, then, for any $S \not\in P$, UW(S) = LW(S) and hence, by 4.14, uw(S) = Lw(S).

4.16. Theorem. For any W-spaces P_1 and P_2 , $\nabla^U(P_1 \times P_2) \in \nabla^U(P_1) + \nabla^U(P_2)$.

Proof. Let $P_1=\langle Q_1, P_1, \mu_1 \rangle$, $P=P_1\times P_2=\langle Q, P_2, \mu_2 \rangle$. Let $A\in \text{dom }\overline{\mu}$, $B\in \text{cdom }\overline{\mu}$; put $C=A\times B$. Then, by 3.9, $UD(C.P) \leq UD(A.P_1)+UD(B.P_2)$, hence $UW(C.P) \leq UW(A.P_1)$. $\mathcal{M}_2B+UW(B.P_2)$. \mathcal{M}_1A . Clearly, $UW(C.P)=\int_C \nabla^U(P)d\mathcal{M}$, $UW(A.P_1)$. . $\mathcal{M}_2B=\int_B \int_A \nabla^U(P_1)d\mathcal{M}_1d\mathcal{M}_2$, $UW(B.P_2)$. $\mathcal{M}_1A=\int_A \int_B \nabla^U(P_2)d\mathcal{M}_2d\mathcal{M}_1$. This proves that $\int_{A\times B} \nabla^U(P)d\mathcal{M} \leq \int (\nabla^U(P_1)+\nabla^U(P_2))d\mathcal{M}$ for all $A\in \text{dom }\overline{\mathcal{M}}_1$, $B\in \text{cdom }\overline{\mathcal{M}}_1$, and therefore $\nabla^U(P) \leq \nabla^U(P_1)+\nabla^U(P_2)$.

Remark. The equality $\nabla^U(P_1 \times P_2) = \nabla^U(P_1) + \nabla^U(P_2)$ does not hold, in general. For instance, for U and V from 2.10, we have $\nabla^U(U \times V) < \nabla^U(U) + \nabla^U(V)$.

References

- [1] J. BALATONI, A. RÉNYI: On the notion of entropy (Hungarian), Publ. Math. Inst. Hungarian Acad. Sci. 1(1956), 9-40. English translation: Selected papers of Alfred Rényi, vol. I, pp. 558-584, Akadémiai Kiado, Budapest, 1976.
- [2] M. KATĚTOV: Extended Shannon entropies I, Czechosl. Math. J. 33(108) (1983), 564-601.
- [3] M. KATĚTOV: On extended Shannon entropies and the epsilon entropy, Comment. Math. Univ. Carolinae 27(1986), 519–543.
- [4] M. KATĚTOV: On the Rényi dimension, Comment. Math. Univ. Carolinae 27 (1986), 741–753.

Matematický ústav, Univerzita Karlova, Sokolovská 83, 18600 Praha 8, Czechoslovakia

(Oblatum 6.4. 1987)

