

Werk

Label: Remarks

Jahr: 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0028 | log52

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ANNOUNCEMENT OF NEW RESULTS

(of authors having an address in Czechoslovakia)

BOOLEAN FUNCTIONS REPRESENTED BY RANDOM FORMULAS

P. Savický (Katedra kybernetiky a informatiky, MFF UK, Malostran-ské nám. 25, 118 00 Praha 1, Czechoslovakia), received 30.3. 1987

Let n ≥ 1 be a fixed natural number. A Boolean function of n variables is any function $f:\{0,1\}^n \to \{0,1\}$, cf. [1]. We study the representation of Boolean functions by Boolean

formulas of the following type.

Definition 1. Let x_1, x_2, \dots, x_n be variables. Let B be a set of function symbols all of which have the same number of arguments k \succeq 2. For all i \succeq 0 let H $_i$ be the set of Boolean formulas defined in the following way. $\mathbf{H_0^{=\{x_1,x_2,\ldots,x_n,\neg x_1,\neg x_2,\ldots, \neg x_n\}}}$

 $\mathbf{H_{i+1}}$ = f \propto ($\mathbf{\varphi_1}$, $\mathbf{\varphi_2}$,..., $\mathbf{\varphi_k}$); \propto \in B, $\mathbf{\varphi_j}$ \in $\mathbf{H_i}$ for j=1,2,...,k}. Elements of $\mathbf{H_i}$ for i=0,1,2,... are formal expressions of increasing complexity. Given an interpretation of all symbols $lpha \in B$ as functions $\alpha:\{0,1\}^{\mathsf{k}} \longrightarrow \{0,1\}$, any formula of H, for all i $\not \subset 0$ represents a Boolean function in a natural way.

Definition 2. Let F_i be a random variable whose values are formulas from H_i and the distribution of which is the uniform distribution on H_i.

Our aim is to present some results on the distribution of Boolean functions represented by the formula \mathbf{F}_{i} . For an arbitrary set $A \subseteq \{0,1\}^n$ and $i \ge 0$ let $F_i \upharpoonright A$ denote the restriction of the Boolean function represented by ${\sf F}_{\hat{\sf I}}$ to the set A.

Theorem 1. Let $B=\{\&, \lor\}$ (i.e. k=2) and F_i be as in Defini-

tion 2. Then for every
$$A \subseteq \{0,1\}^n$$
 and every $f:A \longrightarrow \{0,1\}$ we have
$$\lim_{i \to \infty} P(F_i \land A = f) = \begin{cases} 0 & \text{if } f \text{ is not a constant function} \\ 1/2 & \text{if } f \equiv 0 \text{ or } f \equiv 1 \end{cases}$$

The following theorem deals with the selection function s(x,y,z) defined as s(0,y,z)=y and s(1,y,z)=z for all $y,z\in\{0,1\}$.

Theorem 2. Let B= {s} (k=3) and F_i be as in Definition 2. Then for every A \subseteq {0,1} \cap and every f:A \longrightarrow {0,1} we have

$$\lim_{\lambda \to \infty} P(F_i \upharpoonright A = f) = (1/2)^{|A|}$$

The convergence in Theorem 1 is of the order of magnitude O(1/i) and in Theorem 2 $O(c^i)$ where c < 1.

Outline of the proofs. Note that $F_{i+1} = \alpha(F_i^1, F_i^2, \dots, F_i^k)$

where F_i^j are independent realizations of the random formula F_i and α is a random element of B independent of F_i^j . Using this we can establish a recurrent relation for $\mathsf{P}(\mathsf{F}_i \upharpoonright \mathsf{A} = \mathsf{f})$. We prove Theorems 1 and 2 for one and two element sets A by a direct computation using this relation. Theorem 1 in the general case is a simple consequence. Theorem 2 for $|\mathsf{A}| \geq 3$ can be proved by induction on $|\mathsf{A}|$.

An analogous type of probability distribution on formulas was used by Valiant ([2]) in a probabilistic construction of monotone formulas of the size $O(n^{5.3})$, for the majority function. References:

- [1] Savage J.E.: The Complexity of Computing, Wiley-Interscience, New York, 1976.
- [2] Valiant L.G.: Short monotone formulae for the majority function, Journal of Algorithms 5(1984), 363-366.