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Abstract: Using Priestley duality, we characterize those
Heyting and closure algebras whose subalgebra lattice is 0-dis-
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Introduction. In [2),[3) and [5], we study the subalgebra
lattice of Heyting algebras and closure algebras and characteri-
ze those Heyting algebras and closure algebras whose subalgebra
lattice is distributive. Besides, our results characterize in
the class D of distributive lattices those which are subalgebra
lattices of Heyting algebras or closure algebras.

In this paper, we extend the class D to the wider class of
O-distributive (i.e. lattices which satisfy the following weake-
ning of the distributivity law: xAy=0 and xA z=0 imply
xA(yvz)=0). To obtain these results we use a duality between
closure algebras and closure spaces and the notion of congruen-
ce on quasi-ordered topological spaces. We recall these notions
in the first paragraph.

§ 1 Recalls

1.1. Definitions. (a) A closure algebra B=(B;,\,V,C,_,0,1)
is a Boolean algebra (B; A ,V,C,O,l) with a unary operator (closu-

z]
{v]

re operator) satisfying
(i) 07=0;
(ii) V¥V xeB,x4&x =x" "
(iii) V¥V x, yeB,(xvy) =x"vy .
A closed element a of B is such that a=a . The set of all
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closed elements of B is a dual Heyting algebra under x+y=(y-x)~.
We denote it by C1(8).

(b) A closure space X=(X,v,£) is a Boolean space (X,v) with
a quasi-order satisfying

(1) VxeX,(xJ=4yeX|y<x? (resp.Lx)= {yeX|x£y}) is clo-
sed and

(ii)  for any clopen subset U of X,(UJ= Ui(x]|xe Ut is clo-
pen.

The set of all minimal (resp. maximal) elements of X is den-
oted by MinX(resp. MaxX).

Let B be a closure algebra. The set M(B) of all maximal i-
deals of B, endowed with the topology generated by the set {Ie
e M(B)|a¢I$, aeB, and quasi-ordered by the relation < defin-
ed by I£J&> InCl(B)e JNnCl(B), is a closure space, called du-
al space of B.

Conversely, if X is a closure space, then the Boolean algeb-
ra of all clopen subsets of X, denoted by (O (X), becomes a clo-
sure algebra if one defines U™ by (U).

The Stone duality extends to this more general situation as
follows [3].

1.2. Proposition. There exists a dual equivalence between
the category CA of closure algebras and the category CS of clo-
sure spaces whose morphisms are the continuous maps f:X — X'~
such that £([x))= [f(x)), for all xe X.

1.3. Definition. A congruence on the closure space X=
=(X,v,£) is an equivalence such that

(i) if (x,y) e ® , then there exists a © -saturated (i.e.
union of ©-classes) clopen subset U of X with xe U and y ¢ -U;

(ii) if x ® y £z, then there exists t e X such that x<t ® z.

The set of all congruences of X, ordered by inclusion is a
lattice denoted by Con(X).

1.4. Examples. Let X be a closure space.

(a) The identity <« and the universal equivalence are con-
gruences.

(b) The equivalence §={6(p,q)|péqép'f is a congruence.
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(c) The dual atoms of Con(X) are equivalences & (U) with
two classes U and -U where U is a clopen subset of X satisfying
one of the following conditions:

(i) (Ur\MaxX)E =(—Ur1MaxX)§;
(ii) U and -U are both increasing and decreasing;
(iii) U is increasing and contains MaxX.

(d) Let E be a closed subset of X and let us denote by
Q(E) the equivalence generated by ExE. If

(i) either E is such that xelE) = y<«x, for all yeE, or

(ii) E is increasing,

then @(E) is a congruence of X. In particular, & (MaxX)eCon(X).
If E=ip,q}, we write O(p,q) instead of © ({p,qa}).

1.5. Propesitions. (a) Let XeCS and BeCA, the dual clo-
sure algebra. Then the subalgebra lattice of B is dually isomor-
phic to Con(X).[31.

(b) Let XeCS, B its dual closure algebra and 8 € Con(X).
Then X/@ € CS. In particular, X/? is a pospace (i.e. partially
ordered topological space) whose Priestley dual ([2]) is Cl(B).

(c) Partially ordered closure spaces and dual Heyting
spaces ([2]) coincide. In particular, if B is generated by C1(B),
the subalgebra lattice of B is isomorphic to that of Cl(B).

Consequently, our study of the congruence lattice of clo-
sure spaces leads to the corresponding properties for the subal-
gebra lattice of closure algebras and also of Heyting algebras.

1.6. Definitions. (a) A cligue is a set Y with a quasi-
order £ defined by x,yeY = x<£y.

An n-clique is a clique of cardinal n and is denoted by n? .

(b) Let X, Y be quasi-ordered sets. Then X+Y (resp. X & Y)
denotes the cardinal (resp. ordinal) sum of X and Y.

(c) An order-connected component of a quasi-ordered space
X (abbreviated o.c.c.) is a subset Y of X such that (Y] =Y and
LY)=Y and which is minimal for this property.

We now investigate the Heyting and closure algebras whose
subalgebra lattice is O0-distributive, that is, satisfies the
following property:

xAy=0 and x A z=0 imply x A(yvz)=0.
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Clearly, this is equivalent to study the closure space who-
Se congruence lattice is l-distributive, i.e. such that

Xvy=1l and xv z=1 imply xv (y Az)=1.

We separate here the case when X is partially ordered from
the case when X is not partially ordered.

In what follows, we denote by S(B) the subalgebra lattice
of a Boolean algebra B. These lattices and their order duzls ha-
Ve been characterized by Sachs in La).

§ 2. Heyting algebras

2.1. Theorem. Let X € CS be partially ordered. Then the fol-
lowing assertions are equivalent.

(i) con(X) is l1-distributive;

(ii) there exist bounded chains C and C° and a (possibly
empty) antichain Y such that X is order-isomorphic either to
C ® (C'+Y) or to C+1;

(iii) there exist Boolean algebras B and B such that B is
complete and atomic and Con(X) is isomorphic either to
Bx(S(B")+1) or to B.

Proof. (i) => (ii). Let XecCS be such that X is partially
ordered and Con(X) is l-distributive. The ordered type of X is
deduced from the following observations.

) Necessarily, X-(MinX uUMaxX) is a chain and |MinX-MaxX |z
« 2. If not, let X,y € X-(MinX uMaxX) (resp. x,ye MinX-MaxX) and
t e MinX-MaxX- { x,yt. Denote by V and U increasing clopen subsets
containing MaxX such that ye v, xel, tx,t}n V=@, iy,t}n U=@. We
have ¢(V)v © (Vu W=1, dW) v ®(V L U)=1 and (dWA DW))

vo(VuUu)+1, which contradicts the l-distributivity of Con(X).

In particular, this means that there exist at most two o.c.c.
not reduced to 3 singleton and at most one 0.c.c. which meets
X-(MinX uMaxX). Precisely, X must satisfy the following conditi-
on.

[3) Ihere exists at most one o.c.c. which is not reduced
to a singleton. Let Cys C, be o.c.c. such that ICllz 2, |C2|32
and Xq (i=1,2) the element of MinCi—MaxCi. Let U (resp. V) be an
increasing clopen set which is decreasing (resp. contains MaxX)
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and such that C,eu, ConU=@ (resp. x ¢V 45 V). The congruen-
ces $(U), d(V), ©(VuU) contradict as in ) the l-distributivity
of Con(X).

In fact, there exist at most two o.c.c. since the following
condition ) is necessary for Con(X) to be l-distributive.

¥) Two elements of MaxX which are not in the same o.c.c.

constitute MaxX. Let x, y be maximal elements of different o.c.c.
We may suppose that the o.c.c. of y is reduced toiy}. If z ¢

€ MaxX- 1 x,y}, let U be a clopen subset of X which is increasing,
decreasing and such that {x,zicUc - ty}. We have $(U) v &(x,y)=
=1, @) v B(z,y)=1, ®U) v (O (x,y) A ©(z,y)) +1, a contradicti-
on to the 1-distributivity of Con(X).

d) There exists at most one minimal element which is not
maximal. If not, let x=ye MinX-MaxX. First, we have
Ux)n (X-MaxX)- 1x3 = [y) n(X-MaxX)- 1y}. Indeed, let zecly) n
A (X-MaxX)-(Ix)n (X-MaxX)) and U, V be increasing clopen sets
such that MaxX u{x}cV, MaxXx vizicu, iy,zt< -V and {x,ytc -U
We have &(V)v @(Vul)=1, &) v &(Vul)=1 and BUuV)v (d(V)A
A~ ®dW)) %1, which is impossible.

It follows from this that ot = @(x,y) v O(MaxX) is a congru-
ence. If U" and V' are increasing clopen subsets containing MaxX
and such that x ¢U-V and ye V-U, the congruences ®U), d(v) and
o induce a contradiction to the l-distributivity of Con(X).

If X is not order-connected, then X is the cardinal sum of
a chain and a singleton. We shall now investigate the case when
X is order-connected.

If X-MaxX+ @, n{[x)lxer#B for each finite subset Y of
X-MaxX. By a compactness argument we deduce N{Llx)|xe X-MaxXig
+ f@. Hence there exists X, & MaxX such that (x J-1x § =X-MaxX.

The conclusion follows from the necessary COﬂdlthﬂ € )

£) If X12Xp € MaxX- {x of» then (x "l:g{x ¥ and (x H:{x }
imply (x ]- {x } (x ]--Lx . If not, suppose z max1mal in
(X~ Maxx)n (x 7- (x (1f such z does not exist, we interchange Xq
and x ) Let u be a clopen subset of X which contains Xgr Xy and
not x1 and let V be a clopen subset of X containing X1 and X and
disjoint from U[z). Consider the congruences o = 8([z)), (3=
= Q(UnMaxX) u 8((z]) u B(- -UnMaxX), ¥ =0(VaMaxX)uv 0((z1) u
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v ©(-VnMaxX). It is clear that o v 3 = vy =1. Since 3 n y is
not a congruence (for each t e(len(xoj, z(f3 n ;r')téx2 would
imply the existence of uelz)nUAV such that z£2u(@ n )“)xz),
and that ﬁ’\71Maxxf B O ¥lyaxxs We have necessarily (z,t") ¢
& 307y for some t e (z). It is clear that (z,t’) ¢ o from what
we deduce the contradiction o v( 3 A )#1.

This completes the proof of (i) => (ii) (take C'=(x0]-(x1J
and Y=MaxX- {xo}).

(ii) =»(iii). If X is either a chain or the cardinal sum of
a- chain and a singleton, then Con(X) is a complete and atomic
Boolean algebra ([2]).

Suppose that X is order-isomorphic to C @ (C +Y) where C and
C’ are bounded chains and Y is a non empty antichain.Let B (resp.
B') be isomorphic to Con(C) (resp. Con(C")) ({21). By an argument
similar to that of Theorem 2.1 in [51, it is clear that Con(X) is
isomorphic to Bx B 'x Con(l ® (1+Y)). It is also easy to check
that Con(l & (1+Y)Q is isomorphic to (Con(1+Y)) @ 1; now 1+Y is
a Boolean space whose congruence lattice is of the form S(B"),
whence the proof is complete.

The implication (iii) = (i) is clear.

Denote by % the class of all Heyting algebras which are
Boolean products of chains, all 2-elements chains except perhaps
one. From the duality and the proposition 1.5, we deduce the
following corollary of Theorem 2.1.

2.2. Corollary. Let A be a Heyting algebra. Then the follo-
wing assertions are equivalent.

(i) The subalgebra lattice Sub(A) of A is O-distributive.

(ii) There exist H € #€ and a chain C such that A is isom-
orphic either to H® C or to Cx 2 or to C.

(iii) There exist Boolean algebras B and B  such that B is
complete and atomic and Sub(A) is isomorphic either to B x
=< (0 ®@S(B")) or to B.

2.3. Remark. From 1.5 it follows that the subalgebra latt-
ice of a closure algebra generated by its closed elements is 0-
distributive if and only if the order-dual of C1(B) satisfies
(ii) of 2.2.
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2.4. Corollary. Let L be a O-distributive lattice. Then
the following assertions are equivalent.

(i) There exist a Heyting algebra A such that L is isomor-
phic to the subalgebra lattice of A.

(ii) There exists a closure algebra A generated by its
closed elements such that L is isomorphic to the subalgebra lat-
tice of A.

(iii) There exist Boolean algebras B and B” such that B is
complete and atomic and L is isomorphic either to B or to B x
= (0 ®S(B)).

Proof. We have (i) = (ii) by 1.5 and (i) = (iii) by 2.2.
Conversely, if B is a complete and atomic Boolean algebra, there
exists a chain C which is a Heyting algebra such that B=2Sub{(C).
If B is a Boolean algebra, we have Sub(B @C)=~Bx (0 ® S(B')).
This completes the proof of (iii) => (i).

§ 3. Closure algebras

3.1. Theorem. Let X e CS. Then Con(X) is l-distributive if
and only if X satisfies one of the following conditions.

(i) There exist an upper bounded chain C (possibly empty),
a bounded chain C°, a clique Y and an equivalence Y  (in other
words, Y  is the cardinal sum of cliques) such that X is order-
isomorphic to Y@ C ® (C +Y ).

(ii) There exist an upper bounded chain C, a clique Y and
an equivalence Y such that X is order-isomorphic to Y ® C ® Y’
and (Vn MaxX)§ £ (-vn MaxX)§ , for all clopen subsets V of X.

(iii) There exist an upper bounded chain C and cliques Y
and Y  such that X is order-isomorphic to (Y & C)+Y .

(iv) There exists a clique Y such that X is order-isomorp-
hic to 1+Y.

(v) X is isomorphic to 21 .

Proof. Let Xe CS be such that Con(X) is l-distributive.
Since Con(X/§ ) is isomorphic toige Con(X)Ig = @3 (by the third
isomorphism theorem), it is also l-distributive and by 2.1, the-
re exist bounded chains C and C° and an antichain Y such that
X/§ 2 C ®(C'+Y) or X/§ = C+1. To determine the form of the § -
classes, we proceed in four steps.
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«) The cliques which are not reduced to a singleton are
either minimal or maximal. Let p€2{p,q% be a clique which is re-
ither minimal nor maximal. Its projection into the quotient spa-
ce Y=X/0 (MaxX) is again neither minimal nor maximal. Moreover,
Con(Y)={g e Con(X)| © (MaxX) < % is also 1-distributive.

(a) In the special case when there exists y e Y such that
y§ -< pf (that means y<z<p implies ze ytu pf), consider an in-
creasing clopen subset V of X containing p but not y. We have
the contradiction @{picyf) v P(v)=1, @ ({qiu yf) v é (v)=1,
QMW viIeplvyi)a 8 (fqtuyt)l = d(v).

(b) For the general situation, let x,ye Y be such that
yg—/. xgepgand let V be an increasing clopen subset which separa-
tes x§ from y§ . By (a), we may suppose xf = {x}and x§ + p§
Consider a clopen subset 0 of Y such that yEufpscoce - igin
N -1x}. The equivalence o = 8(0nly,p)) uB(-0nLy,pl) is a
congruence such that o v Q(V)=1.

Since we have @ ({xtuyf) v d(V)=1 and §(V) v I8 (fx} u
Uy ) A )] = ®(Vv), Con(X) cannot be l-distributive.

R) If [Max(X/g¢ )|>2, then (VaMaxx)f % (-VnMaxx)f , for
all clopen subsets V of X. If not, & (V) is a dual atom of Con(X).
Let p§ and gf be distinct elements of Max(X/€ ). We have dv)v
v 8(p8)=1, d(V) v 8(a6)=1, (V) v (8 (p§) A B(qf))= B(V), which
is impossible.

¥) If X/g —Max(X/f )4+ @ admits a unique upper bound xge
e Max(X/E ) (this corresponds to the case when the chain C° of
2.1 is not reduced to a singleton), then x§= 4 xo}. Indeed, we
argue as in o« ), replace p by Xq and choose clopen increasing
subsets V containing MaxX in both cases (a) or (b).

So far, we have examined the closure spaces X such that X=
+MaxX and Con(X) is l-distributive.

It follows from o), 3), ) that if X< MaxX, then X must
satisfy one of the conditions (i),(ii) or (iii). Finally, we ha-
ve

J) if X/¢ 1is an antichain, then X satisfies (iv) or (v).
Since |X/§ |2 (by 2.1), the condition () shows that there ex-
ists at most one clique which is not reduced to a singleton. If
IX/§€ |=1 and |X| =2, let {Ul,Uz,U}} be a partition of X in clop-
en subsets. We have 6(U1u Uz)}\;4@(U2uU3)=1, G(Ulu U2) v




v G(UluU3)=1 and @(Ulu UZ)V(G(UZUUB)A 6(U1uU3))=i=l,which
contradicts the 1-distributivity of Con(X). Hence X=2% . The re-
maining possibility is (v).

This completes the characterization of closure spaces whose
congruence lattice is l-distributive.

Conversely, suppose that X satisfies one of the conditions
(1),(i1),(ii1),(iv) or (v). If X=2% , then Con(X) is isomorphic
to the 2-element chain. In the other cases, there exists no du-
al atom $(V) with (VaMaxx)f =(-vaMaxX)f . Let o, 3, 5 «

e Con (X) be such that v B3 =1, &c v =1 and « vIBAg)+l.
Since Con(X) is dually atomic ([31), there exists (by 1.4) an
increasing subset V of X which is both o -saturated and (f3Ay)-
saturated and such that & (V) is a congruence. We distinguish
two possibilities.

«) If V is decreasing, then X is not order-connected and
V coincides with one of the two o.c.c. of X. By changing V into
-V, we may suppose that V is not reduced to a clique or that |v|=
=1. Let t be the greatest element of V. Since o« v =1 (resp.
=« vy=1), there exists u (resp. v)e MaxX- {t} such that t B u
(resp. t y v) from what we deduce 8 (MaxX) 3Ny and the con-
tradiction @& (MaxX) < $(V).

3) 1If V contains MaxX, let r be a minimal element of V
which is not in the o.c.c. eventually reduced to a clique and s
a maximal element of -V. There exists a least congruence ¥ such
that 6(r,s)c y (if 6(r,s)4¢ Con(X), ¥y =06(r,s)u @ (MaxX)).
From o« vf3 =1 (resp. o« v r=1), we deduce (r,s) e (3 (resp. (r,s)e¢
e y)). It follows that (r,s) e By and B(r,s) e yesfB Ayc
c $(V), which is impossible and concludes the proof.

In [3) and [5], we explain how to dualize the notions of
chain, clique, cardinal sum and ordinal sum of closure spaces.

Since the condition (Vn Maxx)g#(—Vn MaxX)f for all clopen
subsets V of X €CS becomes

YaeBeCA,a~ =1 => (a)"%1

in CA, it is possible to translate Theorem 3.1 in CA and charac-
terize the closure algebras whose the subalgebra lattice is 0-
distributive.
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