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b s LA

0. Introduction

The minimal convex valued weak ¥ usco correspondences have
been introduced in [16] to prove that a Banach space is in the
Stegall class & [ 27 ]whenever there is a weak * lower semi-
continuous rotund function on its dual. In the present paper
we use these correspondences to develop the following theorem
due to S. Fitzpatrick.

O.1. Theorem [9 ] . Let X be a real Bamach space and let K be
& closed linear subspace of the dual Banach space X¥ such that

every bounded subset of K is weak ¥ dentable. Let T be a monotone

- 353 -



operator on X and D be an open subset of X. If Tx # @ for x
in D and KNTx # @ for x in a dense subset of D, then T is
single-valued and norm to norm upper semicontinuous at each
point of a dense 0@ subset of D.

Basic properties of minimal convex-valued weak™® usco
correspondences are given in Section 1. Their connection with
convex analysis is described in Section 2. Main results are
contained in Section 3. Closed convex sets with the Radon-Ni-
kodym property are characterized in Section 4 (Corollary 4.4).

Here a closed convex subset K of a Banach space is said
to have the Radon-Nikodym property (abbreviated RNP) if every
closed convex bounded subset of K is the closed convex hull
of its strongly exposed points [4] .

Theorems 2.11, 3.5 and 3.15 form a skeleton of the present
paper.

Theorem 2.11 is suggested by the works of P. S. Kenderov
[20] and J. P. R. Christensen and P. S. Kenderov [7].

Theorem 3.5 generalizes Theorem 0.l on account of Theorem
2.1 and the "three convex sets lemma" [ 25, Lemma 2.2 ,[ 4, Thm.
4.3.1 (w®) ].

Theorem 3.15 is suggested by the works [31,[23],[24],
{81, [25] due to E. Bishop, I. Namioka, R. R. Phelps and J. B.
Collier. Many results of these workas are analysed in Giles”’
book [ 12] .

Theorem 2.1 and Corollary 4.4 have been preliminarily
communicated in [17].

1. Weak ™ convex-valued usco correspondences

Throughout the paper it will be assumed that D and Y are
topological spaces. In applications D will be a Baire space
(i. e. every open nonempty subset of D is of the second Baire
category) and Y will be of the form (x*, w*), where x*is
a dual Banach space and w¥ is its weak * topology.
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We define the set m(D, Y) writing Fem(D, Y) if and only
if F is a set-valued correspondence assigning a nonempty subset
F(d) of Y to each point d€D. The set m(D, Y) will be considered
as a partially ordergd set with order £ , defining, for

E, Fem(D, Y), ES F if and only if E(d) C F(d) holds whenever
d&€D. For Fem(D, Y), GCD and M C Y we put

F@) : = J{F@ : aeqag},
(1 Flan :={dep: unF@ #p }.

According to [7 ] we denote by USCO(D, Y) the set of all usco
correspondences [ 7] from D into Y, therefore, F e USCO(D, Y)
if and only if Fem(D, Y) and F is an upper semicontinuous
compact-valued correspondence.

We define usco(D, Y) to be the set of all minimal elements
(relative to order £ ) of the set USCO(D, Y). Minimal usco
correspondences have been used, for instance, in{6],[ 7],
{22} ,[26],[27]ana(16].

l.1. Theorem [7] . Let Y be a Hausdorff space and F be in
USCO(D, Y). Then there exists a correspondence EE€usco(D, Y)
having the property E< F.

Minimal usco correspondences can be characterized by the
following way.

1.2. Theorem [16] . Let Y be a Hausdorff space and F be in

USCO(D, Y). Then the following conditions are equivalent.

(1) Fe usco(D, Y).

(11) The implication G C F~1(M) => F(G) C M is satisfied
whenever G is an open subset of D and M is a closed sub-
set of Y.

(iii) For every pair[ G, V ], where G is open in D, V is open
in Y and VNF(G) # P, there exists an open set U with
the properties
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prUCG, FUCV.

In what follows it will be considered a real Banach space
X # {0} « We denote by x* the corresponding dual Banach space
and by w¥ the weak® topology for the set x"‘ .

For any -set M C X* we write B, ¥™ and ¥ M for the norm
closure, weak * closure and weak™ closed convex hull of the set
M, respectively.

1.3. Definition [16 ]. The weak ¥ convexification of a correspon-
dence Fe m(D, x*) is the correspondence co Fe m(D, X¥) defined
by the formula

(co F)(d) : = o ¥ F(d) whenever d€D .

1.4. Proposition [16 ]. FeUSCO(D, (X¥* w¥)) => co Fe USCO(D, (X*,w¥)).
Accordingly to [16 Jwe define

uscoc(D, (x¥,w¥)) : ={Feuscow,(x"‘,w")) i coF = F} .

Thus, Fe€ USCOC(D, (X*,w¥)) holds if and only if, using the weak *
topology, F is a convex-valued usco correspondence from D into
x*,

We denote by uscoc(D, (x*,w¥)) the set of all minimsl
elements (relative to order ¥ ) of the set USCOC(D, (X¥,w*)).

1.5. Theorem [16 ]. Let F be in USCOC(D, (X*,w*)). Then there
exists a correspondence Ee€ uacoc(D,(X*,w‘)) with the property
ESF.

There is a characterization of the set uscoc(D,(x*,w*))
similar to Theorem 1.2.

1.6. Theorem [16 ]. Let F be in USCOC(D, (X*,w*)). Then the
following conditions are equivalent.
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(i) Feuscoc(D, (X*w*)).

(ii) The implication GC F-1(M) => F(G) C M is satisfied
whenever G is an open subset of D and M is a weak ¥ closed
convex subset of X¥,

(iii) For every pair [G, M ], where G is an open subset of D,

M is a weak® closed convex subset of X* and
F(G)N (X* M) # @, there exists an open set U with
the properties

P#£UCG, FU)cx*M.

(iv) For every pair[ G, H], where G is an open subset of D,
H is a weak® open halfspace in x* and F(G)NH # P, there
exists an open set U with the properties

p#£UCG FU CH. .
1.7. Corollary [16 ]. Feusco(D, (x* w*)) = co Feuscoc (D, (x*w*)).

1.7°. Corollary [16] . If Ee€usco(D,(X*w¥)), Feuscoc(D, (x¥,w*))
and E € F, then co E = F.

Theorem 1.1 and Corollaries 1.7 and 1.7  tell us that the
weak ¥ convexification maps the set usco(D,(X*,w*)) onto the
set uscoc (D, (X¥,w¥)).

1.8. Corollary[7]. Let D be a Baire space and F be in
usco(D,(X*,v*)). Then the correspondence F is openly locally
bounded on D, that is, for every open nonempty subset G of D
there is an open nonempty subset U of G such that the set
F(U) is bounded.

1.8°. Corollary. Let D be a Baire space and F be in
uscoc(D,(x*,w')). Then the correspondence F is openly locally
bounded on D.

Proof. Following the idea due to J. P. R. Christensen
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and P. S. Kenderov [ 7 ], we take in consideration an open
nonempty set G C D and the corresponding dual unit ball B of
X* (being a weak ¥ compact barrel in X* ). As

x¥ = U{nB t:n=1, 2, ...} , we have

1 1,
G=6ND=6NFIx*=6cNF (\J nB) =
) -1 n=l
=J (@N F*(n B)).
n=1

The set G endowed with the relativized topology is a Baire space
and each set G | F1(n B) is closed in G. Therefore there are
an open set U and a natural number n with @ # Uc G (\F’l(n B).
We have @ # UC G and U C F 1(n B). It follows F(U)c n B by
virtue of Condition (ii) of Theorem 1.6.

We note that Corollary 1.8, too, is a consequence of
Corollary 1.8° on account of Corollary 1.7.

1.9. Definition. Let F be in m(D, X*). Then the set C(F, D, x*
is defined as follows : d€ C(F, D, X* if and only if de€D
and, using the norm topology of x". F is upper semicontinuous
and single-valued at 4.

1.10. Proposition. Suppose Fe m(D, X*) and d€ D. Then )
deC(F, D, X*) if and only if there exists an x* e X* such
that for every norm neighbourhood V of the point Oe€ X* there
exists an open set G € D with the properties d € G and
F(@)c x* + v,

In what follows we fix a countable local basis 7 for
the norm topology of %x* formed by weak* closed absolutely
convex sets. For instance, it can be supposed

'”‘:{n-lB:n=l, 2, ...},

where B is the dual unit ball in x*.
The complete.proof of the following technical lemma
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is given in [16].

1.11. Lemma. Let Fem(D, X*) and 6(F, v) : = U{ccD: G is
open and F(G) - F(G)C V } for each Ve 7*. Then
C(F, D, x* = N{aF, V) : ve V}.

1.12. Remark. As every set G(F, V) is open and 7% is a countable
family, the set C(F, D, x% always is a Gd’ subset of D.

The following corollary can be regarded as a method to
prove that C(F, D, x* is a dense GJ. subset of D.

1.13. Corollary. Let D be a Baire space and let F be in

n(D, X®. If for every pair[G, V ], where G is an open ;
nonempty subset of D and V € 77, there exists an open set U
with the properties p # UcC G and F(U) - F(U)< V, then

C(F, D, x* is a dense Gd' subset of D.

Proof. If G is an arbitrary open nonempty subset of D and
Ve 77, then, by hypothesis, the open set G(F, V) meets G
and hence G(F, V) is dense in D. Applying Baire Category
Theorem and Lemma 1.11., we obtain the required result.

l.14. Proposition [16]. Let F be in usco(D,(x*, w¥)) (or in
uscoc (D, (x*, w*))), E be in m(D, x*) and E £ F. Then
C(E, D, Xx® = c(F, D, X¥%.

Proof. Since the inclusion C(¥, D, x% C C(E, D, x*) is
obvious, it suffices to prove the converse. Let

deC(E, D, x*, ve 7 and x¥ € E(d). Then there is an open
set G CD with d€G and E(G)C x* + V. As E = F, it follows

cc FlE@) cFlx* + v).

Now Condition (ii) of Theorem 1.2 (or Theorem 1.6) tells us
that F(G) € x* + V. Hence d € C(F, D, X*), by Proposition 1.10.
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2. Connection with convex analysis

Let £ : X— TR be a convex function. The subdifferential
map 2°f : X—X* is defined by setting JIf(x) : = @ if
f(x)¢ R and

df(x) : = ﬂ{ {x*e x*: {n, x"‘)g f(x + h) - f(x)}: hex}

if f(x)€ R. Here (.,. ) denotes the pairing between X and X*.

If f(x)ER and € > 0 then the g - subdifferential ’&e f(x)
of f at the point x€ X is defined by

Qéf(x) : = ﬂ{{x*ex*: {h, x"‘)g f(x + h) - f(x) +€}: hex}.

If the function f is finite and continuous on an open set D C X
then, according to Moreau’s result [22 ], the restriction
?f | D of the subdifferential map 2f to the set D belongs to
Uscoc(D, (x*,w¥)). Now, using monotonicity of subdifferential
maps and applying Kenderov’s result [ 20 ] (for it, see the proof
of Theorem 1.28 of [25], too), we see that the correspondence
@f | D satisfies Condition (iv) of Theorem 1.6.

Similarly, let us consider a maximal monotone operator
T : X—>X™* having the property that Tx # @ for any x in an
open set D C X. Then, accordingly to Kenderov’s results [18 ],
[20], the restriction T ID of T to D belongs to
Uscoc(D, (x*,w*)) and satisfies Condition (iv) of Theorem 1.6
as well. Therefore it holds the following

2.1. Theorem. Let D be an open subset of X, f : X—R be
a convex function finite and continuous on D and let

T : X—»X*be a maximal monotone operator such that Tx # @
whenever x € D. Then both correspondences @f |D and T |D
belong to uscoc (D, (X*,w*)).

Let {lf: 2e€(T, T)} be anet of nonempty subsets
of the dual Banach space X™® and x* € X* . Then we write
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1lim M = x¥

per &

if and only if for every V € U¥ (see Section 1) there is a 'y"o
in [C with {"f-: f‘ogx"é M}lcx*+v.

2.2. Theorem [2 ], [11] . Let £ : X—R be a convex function

finite and continuous on an open set D C X, x,€X and xge x* .

Then the following conditions are equivalent.

(1) The Fréchet derivative f'(xo) of £ at x is x: .

g 4 = x¥

(ii) 1lim 98 f(xy) = x5 «

[ 240]

(1ii) x € €(d£| D, D, Xx*) and x¥*€ If(x,).

(iv) There exists a correspondence Fe m(D, x*) such that
FSQOflDm x,€C(F, D, X) and x¥ € F(x,).

2.3. Remark. The equivalences (i) <= (ii) <= (iii) are due
to E. Asplund and R. T. Rockafellar [2 Jand the implication
(iv) —=> (i) is due to J. R. Giles [11] . The implication

(iv) — (iii) follows from Theorem 2.1 and Proposition 1.14.

Let p : X—R be a sublinear functional. It is a well-
-known fact [14] that, at any point x€ X, it holds

(2) ?p(x) ={x"€ dp(0) : { x, x*> = p(x) } .
This relation can be modified as follows.
2.4. Proposition[16 ]. Let p : X—sR be a sublinear functional.

Then for every pair [g, x], where € >0 and Xx€X, it
holds

asp(x)) =ix"€3p(0) : {x, x*) Z p(x) - € } »

If x€X and MC X*, then, following [14], we set
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s(x| M) : = sup {(x, x*> :x*e Il} .
The function p defined on X by the formula
p(x) : = 8(x| M) whenever xe X

is called the support function of the set M.
The next theorem catalogizes some well-known facts about
continuous sublinear functionals and support functions [131].

2.5. Theorem. Let p : X—sR be a continuous sublinear
functional and M be a bounded nonempty subset of X* . Then
(1) s(. IM) is a continuous sublinear functional on Xa
(1i) p = s(. | @p(0)) and

(iii) p=8(. | M) =T * M = §p(0).

2.6. Definition [23] . Let M be a bounded nonempty subset of
x* y 0# x€X, @ > 0and let p : X—>R be the support function
of the set M. Then the weak™ slice of the set M determined by
x and & is the set

S(M, x,a) : ={x"eu %, x*Y>px) - } .

In the proof of the following lemma we shall apply the
well-known inclusion

ENcc¥nd

satisfied for any M C Y and any open G C Y.
2.7. Lemma. Let M be a convex bounded nonempty subset of X¥ ’

O0#x€X, 0<E&E<K & and let p : X—R be the support
function of M. Then

aep(x)c T, X, =% Q“p(x).

Proof. Define
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H e ={x*€ x¥: (x, x*> >px) - } ,
HE :={x*e x*: {x, x*> >px) -€ } .
According to Proposition 2.4 and Theorem 2.5 we have
9. p(x) = ?p(0)N HE = ¥ vE c W¥N n, C
c WA =S %, a7 c 1% n B -
=9p(0)n =¥ = 9p(0) N H*=  §p(x).

In [23] I. Namioka and R. R. Phelps gave the definition
of strongly weak ¥ exposed points for weak® compact convex subsets
of dual Banach spaces. This definition can be slightly extended
ag follows. '

2.8. Definition. Let M be a convex bounded nonempty subset
of X¥, 0# xeX and x* € X*. Then the element x strongly
exposes the set M at x* if and only if it holds

lim S(M, x, o) = x*.
alo

A point x¥¢ x¥ is said to be a strongly weak* exposed point
of the set M provided that there is an element O # x € X
strongly exposing the set M at x * .,

2.9. Proposition. Let M be a convex bounded nonempty subset
of X¥, 0 # xeX, x* € X*and let p : X—»R be the support
function of the set M. Then the element x strongly exposes
the set M at the point x* if and only if p’(x) = x* .
Further, every strongly weak ¥ exposed point of M belongs to
M.

Proof. Consider the following relations:
(1)  1lim S(M, x, v ) = x*,
a}o
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(ii) 1lim 50, X, @7 = x¥,

0
(iii) lm 3 p(x) = x*¥ and

€40
(iv) p(x) = x¥*.
As the family 7 consists of weak ™ closed subsets, (i) is
equivalent to (ii). The equivalences (ii)¢&—) (iii) and
(iii) &= (iv) follow from Lemma 2.7 and Theorem 2.2,
respectively. Further it follows from (i) that x*e H,

2.10. Lemma. Let M be a convex bounded nonempty subset of x"* ’
E be the set of all strongly weak ¥ exposed points of M
and let p : X—R be the support function of M. Then

{xeX : x# 0and p(x) exists} C§{xeXx:px)=s8(x|E} .

Proof. Suppose that O # xe X and p (x) exists. Then p (x)€ E
and p°(x) € P p(x) by Theorem 2.2. As E c M c B”* and
s(. |WY = p, it follows from (2) that

px) =< x, p'(xX)) Ta(x|B T a(x| W) = px) .
We close this section by the theorem proved firstly in
[15] for subdifferential maps of continuous convex functions.

2.11. Theorem. Let F be in usco(D, (X*,w¥)) (or in
uscoc (D, (X*,w*)), G be an open nonempty subset of D such that
the set F(G) is bounded and let p : X—R be the support
function of the set F(G). Then for every pair [ &, h],
where €£>0 and O # he€ X, there exists an open set U such
that

g AUCG, F(U) C er(h) v
Proof. Consider ¢ >0, O # he X and define

He:={ x*ex®: (n, x") >pm) - €} .
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Since F(G) N H# @, there is an open set U satisfying
g #UcCG, F(U)CF’(G)ﬁH8

on account of Condition (iii) of Theorem 1.2 (or Condition
(iv) of Theorem 1.6). It follows from Theorem 2.5 and Propo-
sition 2.4 that

F(a) N Ha C 2p(0)NH, C @&p(h) ~

&

3. Main result

In the present section we assume that K is a subset of
the dual Banach space X* .

3.1. Remark. According to (1) the following conditions are
equivalent for any correspondence Fe m(D, x*).
(i) The set F'l(K) is dense in D.
(ii) F(U) N K # P whenever U is an open nonempty subset of
D.
(iii) There is a dense subset A of D satisfying
F(d) N K # © whenever de€ A.

We recall that the family % is a local basis for the
norm topology of the dual Banach space x* and it consists
of weak® closed absolutely convex sets.

J.2. Definition. We say that a continuous sublinear functional
P ¢ X—R has arbitrarily small approximative subdifferentials
provided that for each V € 7% there is a pair [ €, h] such
that £>0, O # he X and @ep(h)- @ep(h)CV.

3.3. Definition. We say that a continuous sublinear functional

P : X—R is K - lower semicontinuous (K - 1. s. e¢.) on X if
there exists a subset M of the set K such that p = s(. | M).
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J.4. Lemma. Suppose

(i) Feusco(D,(X*w¥)) or Fe uscoc(D, (X*,w*)),

(ii) F'l(K) is dense in D,

(iii) G is an open nonempty subset of D and

(iv) the set F(G) is bounded.

Then the support function p : X—R of the set F(G) is
K - lower semicontinuous on X.

Proof. Fix O # h€ X. It suffices to prove
p(h) - € £ s(h| XN F(G)) whenever £ > 0.

Fix £ >0. According to Theorem 2.1l there is an open set U
such that 9 # U C G and

(3) F(U) C 62P(h) .

According to Remark 3.1 there exists an x* in K N F(U). Using
(3) and Proposition 2.4, we obtain

< <

ph) = €= ¢(h, x*> SathlknFW) £ s(h| K NF@G) .

3.5. Theorem. Let D be a Baire space, F be in usco(D,(X*}w*))
or in uscoc(D, (X*,w*)) and let us suppose
(i) the set F"1(K) is dense in D and
(ii) every continuous sublinear functional p : X —R being
K - lower semicontinuous on X has arbitrarily small
approximative subdifferentials.
Then C(F, D, X¥) is a dense G, subset of D.

Proof. Let G be an open nonempty subset of D and Ve *.
According to Corollary 1.13 it suffices to find an open set

U with the properties

(4) p#UcCaG, FU -FUCV,
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According to Corollary 1.8 or 1.8° there is an open set Q
such that @ # QC G and the set F(Q) is bounded. Now let us
set p : = 8(. | F(Q)). It follows from (i), Lemma 3.4 and
Theorem 2.5 that p is a continuous sublinear functional being
K- 1. s. c. on X. It follows from (ii) that there is a pair
[€, h)such that € >0, 0 # heX and

(5) asp(h) - @Ep(h)c V.
Theorem 2.11 -tells us that there is an open set U such that
# #UCQand F(U) C d.p(h). It follows from (5) that the

set U satisfies (4).

3.6, Lemma. Let p : X—»R be a continuous sublinear functionsal.
Then p is K - lower semicontinuous on X if and only if

(6) p=s(.|KN@p0)) .

Proof. (6) implies that p is K - 1. s. c. on X. Conversely,
if p = s(.| M) and M CK, then, according to Theorem 2.5,
MCK N @p(0) and

<

P=s(.!M Za(.1KN03p0)) = 8(.] ?p(0)) = p .

3.7. Lemma. Let p : X—R be a continuous sublinear functional
such that the set (ap)'l(K) is dense in X. Then p is K - lower
semicontinuous on X.

Proof. According to Remark 3.1 there is a dense subset A of X
such that for each x€A there is an x*€ K N @ p(x). According
to (2) we have x*€ K N 9 p(0) and { x, x* ) = p(x). This
means that the continuous functionals p and s(. | K N @ p(0))
coincide on the dense set A; therefore they coincide on X
everywhere. According to Lemma 3.6 p is K - 1. s. c. on X.

3:.8. Lemma. Let Fem(D, x*, aec(F, D, x*) and x* € F(d).
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If the set F~1(K) is dense in D, then x*e R.
Proof. Every norm neighbourhood of x™ contains a point of K.

}.9. Definition [231. A bounded nonempty subset M of x*is
said to be weak ™ dentable provided that for each V € 7 there
exists a pair [ @, x] such that o« >0, 0 # xeX and

S(M, x, @) - S(4, x,x)C V.

3.10. Lemma. Let K be a convex subset of x* . If every bounded
nonempty subset of K is weak ¥ dentable then every continuous
sublinear functional p : X—=R being K - lower semicontinuous
on X has arbitrarily small approximative subdifferentials.

Proof. Let V€ 7~ . Suppose p : X—»R is a continuous sublinear
functional having the property

p=s(. KN @p0))

and take in consideration Lemma 3.6. The set M : = K N 2p(0)
is a convex bounded nonempty subset of Kand p = s8(.| M). If
every bounded nonempty subset of K is weak® dentable, then there
is & peir [ oo, x]such that o« >0, 0 # x€X and

s(M, x, ot ) - S(M, x, a)CVv.
As V is a weak ¥ closed absolutely convex set, it holds
S(H, x, ov 5*- SH, x, wi*c‘_ V.

Choose an & such that 0 <& < @ . Lemma 2.7 tells us that
96 p(x) C SN, x, o) ¥ and hence er(x) - as p(x) c V.

To convert Lemma 3.7, we firstly recall one result due
to E. Bishop and R. R. Phelps.

3.11. Theorem [3 ]. Let M be a closed convex bounded nonempty
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subset of X. Then there exists a dense subset A of X*auch
that for each x* € A there is an x€& M with the property
{(x, x*> =sup §<z, x*> :zeM}.

In what follows we shall assume that K is a closed
convex subset of x*. We denote by w”® | K the relativized
weak ¥ topology for the set K.

The following definition is suggested by Theorem 3.1l.

3.12. Definition. We shall say that the set K has the
weak* Bishop-Phelps property (w*BPP) if for every

w* | K - closed convex bounded nonempty subset of K there
exists a dense subset A of X such that for each x€ A there
is an x* € X* with the properties

(7) x*e M, <x, x*>=sup{(x, z*):z*el}.

J.13. Remark. Every weak ¥ closed convex subset of X* has
the w*BPP. If K is a closed convex subset of a Banach
space Z and 7% = X, then the set K regarded as a closed
convex subset of X* has the w* BPP by virtue of Theorem
3.11. It follows from Asplund’s work [ 1] that, if X is
an Asplund space, every closed convex subset of x* has
the w* BPP.

J.14. Lemma. Let K have the w* BPP and let p : X—R
be a continuous sublinear functional. If p is K - 1. 8. C.
on X then the set (ap)'l(K) is dense in X.

Proof. Suppose p : X—R is a continuous sublinear functional
having the property p = s(. | KN@p(0)). Then the set

M :=KN3p(0) is a w¥ | K - closed convex bounded nonempty
subset of K and p = s(. | M). Using (2) we see that the
condition (7) can be expressed by x*® € KN @p(x). According
to Definition 3.10 the set
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{ xeX: kndpx) #9} = (9p) L)

contains a dense subset of X.

Ju15. Theorem. Let a closed convex subset K of the dual
Banach space x* have the weak * Bishop-Phelps property. Then
the following conditions are equivalent.

(1) Every bounded nonempty subset of K is weak * dentable.

(ii) Every continuous sublinear functional P : X— R being
K - lower semicontinuous on X has arbitrarily small
approximative subdifferentials.

(iii) The set C(F, D, X*) is a dense G4 subset of D whenever
D is a Baire space, F€ uscoc(D, (X*,w*)) and I-"l(l() is
dense in D.

(iv) The set { x€D : £'(x) exists } is a dense Gg subset
of D whenever D is an open subset of X, £ : X—»R
is a convex function finite and continuous on D and
(@£)"1(K) is dense in D.

(v) Every continuous sublinear functional p : X—»R being
K - lower semicontinuous on X is Fréchet differentiable
on a dense subset of X.

(vi) Every w* | K - closed convex bounded nonempty subset
of K is the w* | X - closed convex hull of its strongly
weak ® exposed points.

(vii) Every w* | K - closed convex bounded nonempty subset
of K has strongly weak ¥ exposed points.

Proof. The implication (i) =—> (ii) follows from Lemma 3.10,
(ii) = (iii) follows from Theorem 3.5, (iii) —>(iv) follows

from Theorems 2.1 and 2.2,(iv)=—>(v) follows from Lemma 3.14 and
(vi) =>(vii) is obvious. Thus it remains to prove the impli-
cations (v) —>(vi) and (vii) = (i).

(v) =—p>(vi): Let M be a w* | K - closed convex bounded non-
empty subset of K, E be the set of all strongly weak™ exposed
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points of the set M and p : = s(. | M). Clearly
(8) N=XKNE* .,

It follows from (v) that the set {xeX : x # 0, p(x) exists }
is dense in X and, according to Lemma 2.10, this set is con-
tained in the closed set { X€X : p(x) = s(x | E)}. Hence

p = 8(. | E) and To *E = W¥* . Now (8) implies

M=KNTo¥E .

As ECNM = MCK, the set KN Co*E is the w* | K - closed
convex hull of E.

(vii) == (i): Suppose B is a bounded nonempty subset of K
and Ve 7" ."Let M : = K N\ co *B. Then, according to Theorem
2.5,

(9) 8(.| M) = s(.[B)

and M is a w¥ | K - closed convex bounded nonempty subset
of K. It follows from (vii) that there exist elements cv ;
x and x ¥ such that & >0, 0 # xeX, x*€ X and

(10) s, x,x)c x*+ 271y,

It follows from Definition 2.6 and from (9) that
S(B, x, &) C S(M, x, o). According to (10) we have

S(B, x, @) - S(B, x, w)CV ,

hence the set B is weak * dentable.

4. Some applications

In [7] J. P. R. Christensen and P. S. Kenderov proved
that X is an Asplund space if and only if the set
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Cc(Ff, D, x*) is a dense Gy subset of D whenever D is a Baire
space and Fe usco(D, (X*,w*)). Setting

in Theorem 3.15 and taking in consideration the equivalence
(iii) <> (iv), we obtain the following

4.1, Corollary. X is an Asplund space if and only if the
set C(F, D, X*) is a dense G subset of D whenever D is
a Baire space and Fe uscoc(D,(x‘,w*)).

From the corollary the above Christensen-Kenderov result
can be derived by applying of Theorem 1.1, Corollary 1.7
and Proposition 1.14. Further, Theorem 3.15 contains some
characterizations of Asplund spaces which can be found in
[23]and[25] .

Now let us suppose that the Banach space X is of the
form

where Z is a Banach space. Setting K = Z, regarding K as
a closed convex subset of x* and taking in consideration
Remark 3.13 and the equivalences (i) &= (vi) &= (vii),
we have the following result due to R. R. Phelps:

4.2. Theorem [ 24 . The following conditions for a Banach

space Z are equivalent.

(1) Every bounded nonempty subset of Z is dentable.

(ii) Every closed convex bounded nonempty subset of Z is
the closed convex hull of its strongly exposed points.

(iii) Every closed convex bounded nonempty subset of Z has
strongly exposed points.

As the properties of Theorem 4.2 characterize Banach spaces
with the Radon-Nikodym property, it follows from the
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Brgndsted-Rockafellar theorem [5 ] that the equivalence
" (iv) &>(vi) of Theorem 3.15 gives Collier’s characterization
for Banach spaces with the RNP:

4.3. Theorem [ 8 ]. A Banach space Z has the Radon-Nikodym
property if and only if the dual Banach space z* is a weak*®
Asplund space.

Finally, teking in consideration the equivalence
(iii) &>(vi) of Theorem 3.15, we obtain the following
characterization for closed convex sets with the RNP.

4.4. Corollary. A closed convex subset K of a Banach space Z
has the Radon-Nikodym property if and only if, regarding K
as a closed subset of the second dual Banach space Z**, the
set C(F, D, Z**) is a dense G subset of D whenever D is

a Baire space, Fe uscoc(D,(Z** ,w*)) and the set F LK) is
dense in D.

We know by [ 4, Theorem 5.8.1 (i) ] that the Cartesian
product X : = [1{x :1%1 S n} of Banach spaces X;
with the RNP has the same property. To see how the corollary
works, we reprove this result. Thus, let D be a Baire space,
Feuscoc(D, (X™*,w")) and let F1(X) be dense in D. Identify-
ing x**with [ {x¥¥: 1 £3i%n} and teking in considera-
tion that the natural projection p; : ) daid :* i
nuous relative to the weak ¥ topologies, we see that the
correspondence F; : = p; o F€ USCOC(D,(X;',W*)) satisfies
Condition (ii) from Theorem 1.6. Hence F;€ uacoc(D,(X;* ,w‘)).
As

8 conti-

Py = Flptog) DF N

the set F'i'l(xi) is dense in D. Hence C(F;, D, xf*) is a dense
Gé‘ subset of D and therefore the same holds for the set
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c(r,

[ 7]

[ e]
C o]
[10]

(1]

nA
[¥5
A
]
—
L]

o, x**) = N {cr, o, x :2
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