

Werk

Label: Article Jahr: 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0028|log49

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 28,2(1987)

MINIMAL CONVEX-VALUED WEAK* USCO CORRESPONDENCES AND THE RADON-NIKODÝM PROPERTY Luděk JOKL

Abstract: We show that the minimal convex-valued weak* usco correspondences form a suitable generalization of maximal monotone operators. Using these correspondences, we develop Fitzpatrick's result about generic continuity of monotone operators and characterize closed convex sets with the Radon-Nikodým property.

Key words: Asplund space, Baire space, Banach space, convex analysis, convex function, maximal monotone operator, minimal convex-valued weak* usco correspondence, strongly weak* exposed point, subdifferential map, support function, sublinear functional, weak* dentable set.

Classification: 46B20, 46B22

0. Introduction

The minimal convex valued weak * usco correspondences have been introduced in [16] to prove that a Banach space is in the Stegall class \mathcal{S} [27] whenever there is a weak * lower semicontinuous rotund function on its dual. In the present paper we use these correspondences to develop the following theorem due to S. Fitzpatrick.

<u>O.1. Theorem</u> [9]. Let X be a real Bemach space and let K be a closed linear subspace of the dual Benach space X^* such that every bounded subset of K is weak* dentable. Let T be a monotone

operator on X and D be an open subset of X. If $Tx \neq \emptyset$ for x in D and $K \cap Tx \neq \emptyset$ for x in a dense subset of D, then T is single-valued and norm to norm upper semicontinuous at each point of a dense $G_{\widehat{\Gamma}}$ subset of D.

Basic properties of minimal convex-valued weak* usco correspondences are given in Section 1. Their connection with convex analysis is described in Section 2. Main results are contained in Section 3. Closed convex sets with the Radon-Ni-kodým property are characterized in Section 4 (Corollary 4.4).

Here a closed convex subset K of a Banach space is said to have the Radon-Nikodým property (abbreviated RNP) if every closed convex bounded subset of K is the closed convex hull of its strongly exposed points [4].

Theorems 2.11, 3.5 and 3.15 form a skeleton of the present paper.

Theorem 2.11 is suggested by the works of P. S. Kenderov $\lceil 20 \rceil$ and J. P. R. Christensen and P. S. Kenderov $\lceil 7 \rceil$.

Theorem 3.5 generalizes Theorem 0.1 on account of Theorem 2.1 and the "three convex sets lemma" [25, Lemma 2.2], [4, Thm. $4.3.1 \text{ (w}^*)$].

Theorem 3.15 is suggested by the works [3], [23], [24], [8], [25] due to E. Bishop, I. Namioka, R. R. Phelps and J. B. Collier. Many results of these works are analysed in Giles' book [12].

Theorem 2.1 and Corollary 4.4 have been preliminarily communicated in [17].

1. Weak * convex-valued usco correspondences

Throughout the paper it will be assumed that D and Y are topological spaces. In applications D will be a Baire space (i. e. every open nonempty subset of D is of the second Baire category) and Y will be of the form (X^*, w^*) , where X^* is a dual Banach space and w^* is its weak * topology.

We define the set m(D, Y) writing $F \in m(D, Y)$ if and only if F is a set-valued correspondence assigning a nonempty subset F(d) of Y to each point $d \in D$. The set m(D, Y) will be considered as a partially ordered set with order \leq , defining, for E, $F \in m(D, Y)$, $E \leq F$ if and only if $E(d) \subset F(d)$ holds whenever $d \in D$. For $F \in m(D, Y)$, $G \subset D$ and $M \subset Y$ we put

$$F(G) := \bigcup \{ F(d) : d \in G_i \},$$

(1)
$$F^{-1}(M) := \{ d \in D : M \cap F(d) \neq \emptyset \}$$
.

According to [7] we denote by USCO(D, Y) the set of all usco correspondences [7] from D into Y, therefore, $F \in USCO(D, Y)$ if and only if $F \in m(D, Y)$ and F is an upper semicontinuous compact-valued correspondence.

We define usco(D, Y) to be the set of all minimal elements (relative to order \leq) of the set USCO(D, Y). Minimal usco correspondences have been used, for instance, in [6],[7], [21], [26], [27] and [16].

1.1. Theorem [7]. Let Y be a Hausdorff space and F be in USCO(D, Y). Then there exists a correspondence $E \in usco(D, Y)$ having the property $E \subseteq F$.

Minimal usco correspondences can be characterized by the following way.

- 1.2. Theorem [16]. Let Y be a Hausdorff space and F be in USCO(D, Y). Then the following conditions are equivalent.
- (i) F∈ usco(D, Y).
- (ii) The implication $G \subset F^{-1}(M) \Longrightarrow F(G) \subset M$ is satisfied whenever G is an open subset of D and M is a closed subset of Y.
- (iii) For every pair [G, V], where G is open in D, V is open in Y and $V \cap F(G) \neq \emptyset$, there exists an open set U with the properties

$\emptyset \neq U \subset G$, $F(U) \subset V$.

In what follows it will be considered a real Banach space $X \neq \{0\}$. We denote by X^* the corresponding dual Banach space and by w^* the weak * topology for the set X^* .

For any set $M \subset X^*$ we write M, M^* and \overline{co}^* M for the normal closure, weak* closure and weak* closed convex hull of the set M, respectively.

1.3. Definition [16]. The weak* convexification of a correspondence $F \in m(D, X^*)$ is the correspondence co $F \in m(D, X^*)$ defined by the formula

$$(co F)(d) := \overline{co}^* F(d)$$
 whenever $d \in D$.

1.4. Proposition [16]. F∈USCO(D,(X*, w*)) \Rightarrow co F∈USCO(D,(X*,w*)). Accordingly to [16] we define

$$USCOC(D,(X^{\#},w^{\#})) := \{ F \in USCO(D,(X^{\#},w^{\#})) : co F = F \} .$$

Thus, $F \in USCOC(D, (X^*, w^*))$ holds if and only if, using the weak * topology, F is a convex-valued usco correspondence from D into X^* .

We denote by $uscoc(D,(X^*,w^*))$ the set of all minimal elements (relative to order \leq) of the set $USCOC(D,(X^*,w^*))$.

<u>1.5. Theorem</u> [16]. Let F be in USCOC(D,(X^* , w^*)). Then there exists a correspondence $E \in uscoc(D,(X^*,w^*))$ with the property $E \leq F$.

There is a characterization of the set $uscoc(D,(X^*,w^*))$ similar to Theorem 1.2.

1.6. Theorem [16]. Let F be in $USCOC(D, (X^*, w^*))$. Then the following conditions are equivalent.

(i) $F \in uscoc(D,(X^*,w^*))$.

- (ii) The implication $G \subset F^{-1}(M) \Longrightarrow F(G) \subset M$ is satisfied whenever G is an open subset of D and M is a weak* closed convex subset of X*.
- (iii) For every pair [G, M], where G is an open subset of D, M is a weak* closed convex subset of X^* and $F(G) \cap (X^* \setminus M) \neq \emptyset$, there exists an open set U with the properties

$$\emptyset \neq U \subset G$$
, $F(U) \subset X^* \setminus M$.

(iv) For every pair [G, H], where G is an open subset of D, H is a weak* open halfspace in X^* and $F(G) \cap H \neq \emptyset$, there exists an open set U with the properties

$$\emptyset \neq U \subset G$$
, $F(U) \subset H$.

1.7. Corollary [16]. $F \in usco(D, (X^*, w^*)) \Rightarrow co \ F \in uscoc(D, (X^*, w^*))$.

1.7'. Corollary [16]. If $E \in usco(D, (X^*, w^*))$, $F \in uscoc(D, (X^*, w^*))$ and $E \subseteq F$, then co E = F.

Theorem 1.1 and Corollaries 1.7 and 1.7' tell us that the weak * convexification maps the set $usco(D,(X^*,w^*))$ onto the set $usco(D,(X^*,w^*))$.

1.8. Corollary [7]. Let D be a Baire space and F be in $usco(D,(X^*,w^*))$. Then the correspondence F is openly locally bounded on D, that is, for every open nonempty subset G of D there is an open nonempty subset U of G such that the set F(U) is bounded.

1.8'. Corollary. Let D be a Baire space and F be in $uscoc(D,(X^*,w^*))$. Then the correspondence F is openly locally bounded on D.

Proof. Following the idea due to J. P. R. Christensen

and P. S. Kenderov [7], we take in consideration an open nonempty set $G \subset D$ and the corresponding dual unit ball B of X^* (being a weak* compact barrel in X^*). As $X^* = \bigcup \{n \ B : n = 1, 2, ...\}$, we have

$$G = G \cap D = G \cap F^{-1}(X^*) = G \cap F^{-1}(\bigcup_{n=1}^{\infty} n B) = \bigcup_{n=1}^{\infty} (G \cap F^{-1}(n B)).$$

The set G endowed with the relativized topology is a Baire space and each set $G \cap F^{-1}(n B)$ is closed in G. Therefore there are an open set U and a natural number n with $\emptyset \neq U \subset G \cap F^{-1}(n B)$. We have $\emptyset \neq U \subset G$ and $U \subset F^{-1}(n B)$. It follows $F(U) \subset n B$ by virtue of Condition (ii) of Theorem 1.6.

We note that Corollary 1.8, too, is a consequence of Corollary 1.8' on account of Corollary 1.7.

1.9. Definition. Let F be in $m(D, X^*)$. Then the set $C(F, D, X^*)$ is defined as follows: $d \in C(F, D, X^*)$ if and only if $d \in D$ and, using the norm topology of X^* , F is upper semicontinuous and single-valued at d.

1.10. Proposition. Suppose $F \in m(D, X^*)$ and $d \in D$. Then $d \in C(F, D, X^*)$ if and only if there exists an $x^* \in X^*$ such that for every norm neighbourhood V of the point $0 \in X^*$ there exists an open set $G \subset D$ with the properties $d \in G$ and $F(G) \subset x^* + V$.

In what follows we fix a countable local basis $\mathscr U$ for the norm topology of X* formed by weak* closed absolutely convex sets. For instance, it can be supposed

$$V = \{ n^{-1} B : n = 1, 2, ... \},$$

where B is the dual unit ball in X*.

The complete proof of the following technical lemma

is given in [16].

1.11. Lemma. Let $F \in m(D, X^*)$ and $G(F, V) := \bigcup \{G \subset D : G \text{ is open and } F(G) - F(G) \subset V \}$ for each $V \in \mathcal{V}$. Then $C(F, D, X^*) = \bigcap \{G(F, V) : V \in \mathcal{V} \}$.

1.12. Remark. As every set G(F, V) is open and $\mathcal V$ is a countable family, the set $C(F, D, X^*)$ always is a $G_{\mathcal K}$ subset of D.

The following corollary can be regarded as a method to prove that $C(F, D, X^*)$ is a dense G_F subset of D_*

<u>1.13. Corollary.</u> Let D be a Baire space and let F be in $m(D, X^*)$. If for every pair [G, V], where G is an open nonempty subset of D and $V \in \mathcal{V}$, there exists an open set U with the properties $\emptyset \neq U \subset G$ and $F(U) - F(U) \subset V$, then $C(F, D, X^*)$ is a dense $G_{\mathcal{E}}$ subset of D.

<u>Proof.</u> If G is an arbitrary open nonempty subset of D and $V \in \mathcal{V}$, then, by hypothesis, the open set G(F, V) meets G and hence G(F, V) is dense in D. Applying Baire Category Theorem and Lemma 1.11., we obtain the required result.

1.14. Proposition [16]. Let F be in usco(D,(X*, w*)) (or in uscoc(D,(X*, w*))), E be in m(D, X*) and $E \leq F$. Then C(E, D, X*) = C(F, D, X*).

<u>Proof.</u> Since the inclusion $C(F, D, X^*) \subset C(E, D, X^*)$ is obvious, it suffices to prove the converse. Let $d \in C(E, D, X^*)$, $V \in \mathcal{V}$ and $x^* \in E(d)$. Then there is an open set $G \subset D$ with $d \in G$ and $E(G) \subset x^* + V$. As $E \subseteq F$, it follows

$$G \subset F^{-1}(E(G)) \subset F^{-1}(x^* + V).$$

Now Condition (ii) of Theorem 1.2 (or Theorem 1.6) tells us that $F(G) \subset x^* + V$. Hence $d \in C(F, D, X^*)$, by Proposition 1.10.

2. Connection with convex analysis

Let $f: X \to \overline{R}$ be a convex function. The subdifferential map $\partial f: X \to X^*$ is defined by setting $\partial f(x) := \emptyset$ if $f(x) \notin R$ and

$$\partial f(x) := \bigcap \left\{ \left\{ x^* \in X^* : \langle h, x^* \rangle \leq f(x+h) - f(x) \right\} : h \in X \right\}$$

if $f(x) \in R$. Here $\langle \cdot, \cdot \rangle$ denotes the pairing between X and X*. If $f(x) \in R$ and $\varepsilon > 0$ then the ε - subdifferential $\partial_{\varepsilon} f(x)$ of f at the point $x \in X$ is defined by

$$\partial_{\varepsilon} f(x) := \bigcap \left\{ \left\{ x^* \in X^* : \langle h, x^* \rangle \leq f(x+h) - f(x) + \varepsilon \right\} : h \in X \right\}.$$

If the function f is finite and continuous on an open set $D \subset X$ then, according to Moreau's result [22], the restriction $\partial f \mid D$ of the subdifferential map ∂f to the set D belongs to $USCOC(D,(X^*,w^*))$. Now, using monotonicity of subdifferential maps and applying Kenderov's result [20] (for it, see the proof of Theorem 1.28 of [25], too), we see that the correspondence $\partial f \mid D$ satisfies Condition (iv) of Theorem 1.6.

Similarly, let us consider a maximal monotone operator $T: X \longrightarrow X^*$ having the property that $Tx \neq \emptyset$ for any x in an open set $D \subset X$. Then, accordingly to Kenderov's results [18], [20], the restriction $T \mid D$ of T to D belongs to $USCOC(D,(X^*,w^*))$ and satisfies Condition (iv) of Theorem 1.6 as well. Therefore it holds the following

2.1. Theorem. Let D be an open subset of X, $f: X \to \overline{\mathbb{R}}$ be a convex function finite and continuous on D and let $T: X \to X^*$ be a maximal monotone operator such that $Tx \neq \emptyset$ whenever $x \in D$. Then both correspondences $\partial f \mid D$ and $T \mid D$ belong to uscoc $(D, (X^*, w^*))$.

Let $\{M_{\chi}: \chi \in (\Gamma, \leq)\}$ be a net of nonempty subsets of the dual Banach space X^* and $x^* \in X^*$. Then we write

if and only if for every $V \in \mathcal{V}$ (see Section 1) there is a γ_0^c in Γ with $\bigcup \{M_{\gamma^c}: \gamma_0^c \le \gamma^c \in \Gamma \} \subset x^* + V$.

- 2.2. Theorem [2], [11]. Let $f: X \longrightarrow \overline{R}$ be a convex function finite and continuous on an open set D \subset X, $x_0 \in X$ and $x_0^* \in X^*$. Then the following conditions are equivalent.
- (i) The Fréchet derivative $f'(x_0)$ of f at x_0 is x_0^* . (ii) $\lim_{\epsilon \to 0} \partial_{\epsilon} f(x_0) = x_0^*$.

- (iii) $x_0 \in C(\partial f \mid D, D, X^*)$ and $x_0^* \in \partial f(x_0)$. (iv) There exists a correspondence $F \in m(D, X^*)$ such that

$$\mathbf{F} \, \stackrel{\leq}{=} \, \, \mathfrak{I} \, | \, \, \mathbf{D}, \quad \, \mathbf{x}_{_{\boldsymbol{O}}} \in \mathbf{C}(\mathbf{F}, \, \, \mathbf{D}, \, \, \mathbf{X}^{\textstyle *}) \, \, \, \text{and} \, \, \, \mathbf{x}_{_{\boldsymbol{O}}}^{\textstyle *} \in \mathbf{F}(\mathbf{x}_{_{\boldsymbol{O}}}) \, .$$

- 2.3. Remark. The equivalences (i) (ii) (iii) are due to E. Asplund and R. T. Rockafellar [2] and the implication
- $(iv) \Longrightarrow (i)$ is due to J. R. Giles [11]. The implication
- (iv) = (iii) follows from Theorem 2.1 and Proposition 1.14.

Let $p : X \longrightarrow R$ be a sublinear functional. It is a well--known fact [14] that, at any point x ∈ X, it holds

(2)
$$\partial p(x) = \{x^* \in \partial p(0) : \langle x, x^* \rangle = p(x) \}$$
.

This relation can be modified as follows.

2.4. Proposition [16]. Let $p : X \longrightarrow R$ be a sublinear functional. Then for every pair $[\epsilon, x]$, where $\epsilon > 0$ and $x \in X$, it holds

$$\partial_{\varepsilon} p(x) = \{ x^* \in \partial p(0) : \langle x, x^* \rangle \stackrel{\geq}{=} p(x) - \varepsilon \}$$
.

If $x \in X$ and $M \subset X^*$, then, following [14], we set

$$s(x \mid M) := \sup \{ \langle x, x^* \rangle : x^* \in M \}.$$

The function p defined on X by the formula

$$p(x) := s(x \mid M)$$
 whenever $x \in X$

is called the support function of the set M.

The next theorem catalogizes some well-known facts about continuous sublinear functionals and support functions [13].

2.5. Theorem. Let p: $X \longrightarrow R$ be a continuous sublinear functional and M be a bounded nonempty subset of X^* . Then

- (i) s(. | M) is a continuous sublinear functional on X,
- (ii) $p = s(. | \partial p(0))$ and
- (iii) $p = s(. \mid M) \Rightarrow \overline{co} * M = \partial p(0).$

2.6. Definition [23]. Let M be a bounded nonempty subset of X^* , $0 \neq x \in X$, $\alpha > 0$ and let $p : X \longrightarrow R$ be the support function of the set M. Then the weak* slice of the set M determined by x and α is the set

$$S(M, x, \alpha) := \{x^* \in M : \langle x, x^* \rangle > p(x) - \alpha \}$$
.

In the proof of the following lemma we shall apply the well-known inclusion

satisfied for any M C Y and any open G C Y.

2.7. Lemma. Let M be a convex bounded nonempty subset of X*, $0 \neq x \in X$, $0 < \epsilon < \infty$ and let p: X \longrightarrow R be the support function of M. Then

$$\partial_{\varepsilon} p(x) \subset \overline{S(M, x, \alpha)}^* \subset \partial_{\alpha} p(x).$$

Proof. Define

$$\begin{split} H_{\alpha} &:= \left\{ x^* \in X^* : \langle x, x^* \rangle > p(x) - \alpha \right\} , \\ H^{\varepsilon} &:= \left\{ x^* \in X^* : \langle x, x^* \rangle \geq p(x) - \varepsilon \right\} . \end{split}$$

According to Proposition 2.4 and Theorem 2.5 we have

$$\partial_{\varepsilon} p(\mathbf{x}) = \partial p(0) \cap \mathbf{H}^{\varepsilon} = \overline{\mathbf{M}}^{*} \cap \mathbf{H}^{\varepsilon} \subset \overline{\mathbf{M}}^{*} \cap \mathbf{H}_{\infty} \subset$$

$$\subset \overline{\mathbf{M} \cap \mathbf{H}_{\infty}}^{*} = \overline{\mathbf{S}(\mathbf{M}, \mathbf{x}, \infty)}^{*} \subset \overline{\mathbf{M}}^{*} \cap \overline{\mathbf{H}_{\infty}}^{*} =$$

$$= \overline{\partial p(0) \cap \mathbf{H}^{\infty}}^{*} = \partial p(0) \cap \mathbf{H}^{\alpha} = \partial_{\varepsilon} p(\mathbf{x}).$$

In [23] I. Namioka and R. R. Phelps gave the definition of strongly weak* exposed points for weak* compact convex subsets of dual Banach spaces. This definition can be slightly extended as follows.

2.8. Definition. Let M be a convex bounded nonempty subset of X^* , $0 \neq x \in X$ and $x^* \in X^*$. Then the element x strongly exposes the set M at x^* if and only if it holds

$$\lim_{\alpha \downarrow 0} S(M, x, \alpha) = x^*.$$

A point $x^* \in X^*$ is said to be a strongly weak* exposed point of the set M provided that there is an element $0 \neq x \in X$ strongly exposing the set M at x^* .

2.9. Proposition. Let M be a convex bounded nonempty subset of X^* , $0 \neq x \in X$, $x^* \in X^*$ and let $p: X \longrightarrow R$ be the support function of the set M. Then the element x strongly exposes the set M at the point x^* if and only if $p'(x) = x^*$. Further, every strongly weak* exposed point of M belongs to \overline{M} .

Proof. Consider the following relations:

(i) $\lim_{x \to 0} S(M, x, \infty) = x^*,$ $\alpha \downarrow 0$

- (ii) $\lim_{\infty \downarrow 0} \overline{S(M, x, \infty)}^* = x^*,$
- (iii) $\lim_{\epsilon \downarrow 0} \partial_{\epsilon} p(x) = x^*$ and
- (iv) p'(x) = x*.

As the family \mathcal{V} consists of weak * closed subsets, (i) is equivalent to (ii). The equivalences (ii) \iff (iii) and (iii) \iff (iv) follow from Lemma 2.7 and Theorem 2.2, respectively. Further it follows from (i) that $x \in M$.

2.10. Lemma. Let M be a convex bounded nonempty subset of X^* , E be the set of all strongly weak* exposed points of M and let p: $X \longrightarrow \mathbb{R}$ be the support function of M. Then

$$\{x \in X : x \neq 0 \text{ and } p'(x) \text{ exists}\} \subset \{x \in X : p(x) = s(x \mid E)\}$$
.

<u>Proof.</u> Suppose that $0 \neq x \in X$ and p'(x) exists. Then $p'(x) \in E$ and $p'(x) \in \partial p(x)$ by Theorem 2.2. As $E \subset X \subset X$ and $g(\cdot \mid X)$ and $g(\cdot \mid X)$ = $g(\cdot \mid X)$ and $g(\cdot \mid$

$$p(x) = \langle x, p'(x) \rangle \stackrel{\leq}{=} s(x \mid E) \stackrel{\leq}{=} s(x \mid \overline{x}^*) = p(x)$$
.

We close this section by the theorem proved firstly in [15] for subdifferential maps of continuous convex functions.

2.11. Theorem. Let F be in usco(D,(X*,w*)) (or in uscoc(D,(X*,w*)), G be an open nonempty subset of D such that the set F(G) is bounded and let p: $X \longrightarrow R$ be the support function of the set F(G). Then for every pair [ϵ , h], where $\epsilon > 0$ and $0 \ne h \in X$, there exists an open set U such that

$$\emptyset \neq U \subset G$$
, $F(U) \subset \partial_{\varepsilon} p(h)$.

<u>Proof.</u> Consider $\varepsilon > 0$, $0 \neq h \in X$ and define

$$H_{\varepsilon}:=\left\{ \begin{array}{l} x^{*}\in X^{*}\colon \langle\, h,\, x^{*}\,\rangle\, >p(h)\, -\, \epsilon\, \end{array} \right\} \ .$$

Since $F(G) \cap H_{f} \neq \emptyset$, there is an open set U satisfying

$$\emptyset \neq U \subset G$$
, $F(U) \subset F(G) \cap H_{\varepsilon}$

on account of Condition (iii) of Theorem 1.2 (or Condition (iv) of Theorem 1.6). It follows from Theorem 2.5 and Proposition 2.4 that

$$F(G) \cap H_{\varepsilon} \subset \ \partial \ p(0) \cap H_{\varepsilon} \ \subset \ \partial_{\varepsilon} \ p(h) \ .$$

3. Main result

In the present section we assume that K is a subset of the dual Banach space X^* .

- 3.1. Remark. According to (1) the following conditions are equivalent for any correspondence $F \in m(D, X^*)$.
- (i) The set $F^{-1}(K)$ is dense in D.
- (ii) $F(U) \cap K \neq \emptyset$ whenever U is an open nonempty subset of D.
- (iii) There is a dense subset A of D satisfying $F(d) \cap K \neq \emptyset$ whenever $d \in A$.

We recall that the family $\mathcal V$ is a local basis for the norm topology of the dual Banach space X^* and it consists of weak* closed absolutely convex sets.

- 3.2. Definition. We say that a continuous sublinear functional $p: X \longrightarrow \mathbb{R}$ has arbitrarily small approximative subdifferentials provided that for each $V \in \mathcal{V}$ there is a pair $[\epsilon, h]$ such that $\epsilon > 0$, $0 \neq h \in X$ and $\partial_{\epsilon} p(h) \partial_{\epsilon} p(h) \subset V$.
- 3.3. Definition. We say that a continuous sublinear functional $p: X \longrightarrow R$ is K lower semicontinuous (K 1. s. c.) on X if there exists a subset M of the set K such that p = s(. | M).

3.4. Lemma. Suppose

- (i) $F \in usco(D, (X^*, w^*))$ or $F \in uscoc(D, (X^*, w^*))$,
- (ii) $F^{-1}(K)$ is dense in D,
- (iii) G is an open nonempty subset of D and
- (iv) the set F(G) is bounded.

Then the support function $p: X \longrightarrow R$ of the set F(G) is K - lower semicontinuous on X.

Proof. Fix 0 ≠ h ∈ X. It suffices to prove

$$p(h) - \varepsilon \leq s(h \mid K \cap F(G))$$
 whenever $\varepsilon > 0$.

Fix $\varepsilon > 0$. According to Theorem 2.11 there is an open set U such that $\emptyset \neq U \subset G$ and

(3)
$$F(U) \subset \partial_{\varepsilon} p(h)$$
.

According to Remark 3.1 there exists an x^* in $K \cap F(U)$. Using (3) and Proposition 2.4, we obtain

$$p(h) - \varepsilon \leq \langle h, x^* \rangle \leq s(h \mid K \cap F(U)) \leq s(h \mid K \cap F(G))$$
.

- 3.5. Theorem. Let D be a Baire space, F be in $usco(D,(X^*,w^*))$ or in $uscoc(D,(X^*,w^*))$ and let us suppose
- (i) the set $F^{-1}(K)$ is dense in D and
- (ii) every continuous sublinear functional $p: X \longrightarrow R$ being K lower semicontinuous on X has arbitrarily small approximative subdifferentials.

Then C(F, D, X*) is a dense G subset of D.

<u>Proof.</u> Let G be an open nonempty subset of D and V ϵ $\mathcal V$. According to Corollary 1.13 it suffices to find an open set U with the properties

(4) $\emptyset \neq U \subset G$, $F(U) - F(U) \subset V$.

According to Corollary 1.8 or 1.8' there is an open set Q such that $\emptyset \neq Q \subset G$ and the set F(Q) is bounded. Now let us set $p := s(. \mid F(Q))$. It follows from (i), Lemma 3.4 and Theorem 2.5 that p is a continuous sublinear functional being K-1. s. c. on X. It follows from (ii) that there is a pair $[\epsilon, h]$ such that $\epsilon > 0$, $0 \neq h \in X$ and

(5)
$$\partial_{\varepsilon} p(h) - \partial_{\varepsilon} p(h) \subset V$$
.

Theorem 2.11 tells us that there is an open set U such that $\emptyset \neq U \subset Q$ and $F(U) \subset \partial_{\varepsilon} p(h)$. It follows from (5) that the set U satisfies (4).

3.6. Lemma. Let $p:X\longrightarrow R$ be a continuous sublinear functional. Then p is K - lower semicontinuous on X if and only if

(6)
$$p = s(. | K \cap \partial p(0))$$
.

<u>Proof.</u> (6) implies that p is K - 1. s. c. on X. Conversely, if $p = s(. \mid M)$ and $M \subset K$, then, according to Theorem 2.5, $M \subset K \cap \partial p(0)$ and

$$p = s(. | M) \le s(. | K \cap \partial p(0)) \le s(. | \partial p(0)) = p$$
.

<u>3.7. Lemma</u>. Let $p : X \rightarrow R$ be a continuous sublinear functional such that the set $(\partial p)^{-1}(K)$ is dense in X. Then p is K - lower semicontinuous on X.

<u>Proof.</u> According to Remark 3.1 there is a dense subset A of X such that for each $x \in A$ there is an $x^* \in K \cap \partial p(x)$. According to (2) we have $x^* \in K \cap \partial p(0)$ and $\langle x, x^* \rangle = p(x)$. This means that the continuous functionals p and $s(\cdot \mid K \cap \partial p(0))$ coincide on the dense set A; therefore they coincide on X everywhere. According to Lemma 3.6 p is K - 1. s. c. on X.

3.8. Lemma. Let $F \in m(D, X^*)$, $d \in C(F, D, X^*)$ and $x^* \in F(d)$.

If the set $F^{-1}(K)$ is dense in D, then $x^* \in K$.

Proof. Every norm neighbourhood of x* contains a point of K.

3.9. Definition [23]. A bounded nonempty subset M of X* is said to be weak* dentable provided that for each V \in V there exists a pair [α , x] such that $\alpha > 0$, $0 \neq x \in X$ and $S(M, x, \alpha) - S(M, x, \alpha) \subset V$.

3.10. Lemma. Let K be a convex subset of X^* . If every bounded nonempty subset of K is weak dentable then every continuous sublinear functional $p: X \longrightarrow R$ being K - lower semicontinuous on X has arbitrarily small approximative subdifferentials.

<u>Proof.</u> Let $V \in \mathcal{V}$. Suppose $p : X \longrightarrow R$ is a continuous sublinear functional having the property

$$p = s(. | K \cap \partial p(0))$$

and take in consideration Lemma 3.6. The set $M := K \cap \partial p(0)$ is a convex bounded nonempty subset of K and p = s(. | M). If every bounded nonempty subset of K is weak* dentable, then there is a pair $[\infty, x]$ such that $\infty > 0$, $0 \neq x \in X$ and

$$S(M, x, \alpha) - S(M, x, \alpha) \subset V$$
.

As V is a weak * closed absolutely convex set, it holds

$$\overline{S(M, x, \infty)}^* - \overline{S(M, x, \infty)}^* \subset V$$
.

Choose an ε such that $0<\varepsilon<\alpha$. Lemma 2.7 tells us that $\partial_{\varepsilon} p(\mathbf{x}) \subset \overline{S(\mathbf{M}, \mathbf{x}, \alpha)}^*$ and hence $\partial_{\varepsilon} p(\mathbf{x}) - \partial_{\varepsilon} p(\mathbf{x}) \subset V$.

To convert Lemma 3.7, we firstly recall one result due to E. Bishop and R. R. Phelps.

3.11. Theorem [3]. Let M be a closed convex bounded nonempty

subset of X. Then there exists a dense subset A of X* such that for each $x^* \in A$ there is an $x \in M$ with the property $\langle x, x^* \rangle = \sup \{\langle z, x^* \rangle : z \in M \}$.

In what follows we shall assume that K is a closed convex subset of X^* . We denote by $w^* \mid K$ the relativized weak* topology for the set K.

The following definition is suggested by Theorem 3.11.

3.12. Definition. We shall say that the set K has the weak* Bishop-Phelps property (w*BPP) if for every w* | K - closed convex bounded nonempty subset of K there exists a dense subset A of X such that for each $x \in A$ there is an $x * \in X$ * with the properties

(7)
$$x^* \in M$$
, $\langle x, x^* \rangle = \sup \{\langle x, z^* \rangle : z^* \in M \}$.

3.13. Remark. Every weak * closed convex subset of X* has the w*BPP. If K is a closed convex subset of a Banach space Z and Z* = X, then the set K regarded as a closed convex subset of X* has the w*BPP by virtue of Theorem 3.11. It follows from Asplund's work [1] that, if X is an Asplund space, every closed convex subset of X* has the w*BPP.

<u>3.14. Lemma</u>. Let K have the w*BPP and let $p: X \longrightarrow R$ be a continuous sublinear functional. If p is K - 1. s. c. on X then the set $(\partial p)^{-1}(K)$ is dense in X.

<u>Proof.</u> Suppose $p: X \longrightarrow R$ is a continuous sublinear functional having the property $p = s(. | K \cap \partial p(0))$. Then the set $M := K \cap \partial p(0)$ is a $w^* | K$ - closed convex bounded nonempty subset of K and p = s(. | M). Using (2) we see that the condition (7) can be expressed by $x^* \in K \cap \partial p(x)$. According to Definition 3.10 the set

 $\{x \in X : K \cap \partial p(x) \neq \emptyset\} = (\partial p)^{-1}(K)$

contains a dense subset of X.

3.15. Theorem. Let a closed convex subset K of the dual Banach space X* have the weak* Bishop-Phelps property. Then the following conditions are equivalent.

- (i) Every bounded nonempty subset of K is weak * dentable.
- (ii) Every continuous sublinear functional p : X→R being K - lower semicontinuous on X has arbitrarily small approximative subdifferentials.
- (iii) The set $C(F, D, X^*)$ is a dense G_{δ} subset of D whenever D is a Baire space, $F \in uscoc(D, (X^*, w^*))$ and $F^{-1}(K)$ is dense in D.
- (iv) The set $\{x \in D : f'(x) \text{ exists } \}$ is a dense G_{δ} subset of D whenever D is an open subset of X, $f : X \longrightarrow \overline{R}$ is a convex function finite and continuous on D and $(\partial f)^{-1}(K)$ is dense in D.
- (v) Every continuous sublinear functional p : X→R being K - lower semicontinuous on X is Fréchet differentiable on a dense subset of X.
- (vi) Every w* | K closed convex bounded nonempty subset of K is the w* | K - closed convex hull of its strongly weak* exposed points.
- (vii) Every w* | K closed convex bounded nonempty subset
 of K has strongly weak* exposed points.

<u>Proof.</u> The implication (i) \Longrightarrow (ii) follows from Lemma 3.10, (ii) \Longrightarrow (iii) follows from Theorem 3.5, (iii) \Longrightarrow (iv) follows from Theorems 2.1 and 2.2, (iv) \Longrightarrow (v) follows from Lemma 3.14 and (vi) \Longrightarrow (vii) is obvious. Thus it remains to prove the implications (v) \Longrightarrow (vi) and (vii) \Longrightarrow (i).

 $(v) \Longrightarrow (vi)$: Let M be a $w^* \mid K$ - closed convex bounded non-empty subset of K, E be the set of all strongly weak* exposed

points of the set M and p : = s(. | M). Clearly

(8)
$$\mathbf{M} = \mathbf{K} \cap \mathbf{M}^* .$$

It follows from (v) that the set $\{x \in X : x \neq 0, p'(x) \text{ exists}\}$ is dense in X and, according to Lemma 2.10, this set is contained in the closed set $\{x \in X : p(x) = s(x \mid E)\}$. Hence $p = s(\cdot \mid E)$ and $\overline{co} *E = \overline{M}*$. Now (8) implies

$$M = K \cap \overline{co} \times E$$
.

As $E \subset \overline{M} = M \subset K$, the set $K \cap \overline{co}^* E$ is the $w^* \mid K$ - closed convex hull of E.

 $\underline{(\text{vii}) \Longrightarrow (\text{i}):}$ Suppose B is a bounded nonempty subset of K and $V \in \mathcal{V}$. Let $M := K \cap \overline{\text{co}}^*B$. Then, according to Theorem 2.5,

(9)
$$s(. | M) = s(. | B)$$

and M is a w* | K - closed convex bounded nonempty subset of K. It follows from (vii) that there exist elements α , x and x*such that $\alpha > 0$, $0 \neq x \in X$, $x* \in X$ and

(10)
$$S(M, x, \infty) \subset x^* + 2^{-1} V$$
.

It follows from Definition 2.6 and from (9) that $S(B, x, \alpha) \subset S(M, x, \alpha)$. According to (10) we have

$$S(B, x, \alpha) - S(B, x, \alpha) \subset V$$

hence the set B is weak * dentable.

4. Some applications

In [7] J. P. R. Christensen and P. S. Kenderov proved that X is an Asplund space if and only if the set

 $C(F, D, X^*)$ is a dense $G_{\tilde{C}}$ subset of D whenever D is a Baire space and $F \in usco(D, (X^*, w^*))$. Setting

in Theorem 3.15 and taking in consideration the equivalence $(iii) \iff (iv)$, we obtain the following

<u>4.1. Corollary</u>. X is an Asplund space if and only if the set $C(F, D, X^*)$ is a dense G_{δ} subset of D whenever D is a Baire space and $F \in uscoc(D, (X^*, w^*))$.

From the corollary the above Christensen-Kenderov result can be derived by applying of Theorem 1.1, Corollary 1.7 and Proposition 1.14. Further, Theorem 3.15 contains some characterizations of Asplund spaces which can be found in [23] and [25].

Now let us suppose that the Banach space X is of the form

$$x = z^*$$
.

where Z is a Banach space. Setting K = Z, regarding K as a closed convex subset of X^* and taking in consideration Remark 3.13 and the equivalences (i) \longleftrightarrow (vi) \longleftrightarrow (vii), we have the following result due to R. R. Phelps:

- 4.2. Theorem [24]. The following conditions for a Banach space Z are equivalent.
- (i) Every bounded nonempty subset of Z is dentable.
- (ii) Every closed convex bounded nonempty subset of Z is the closed convex hull of its strongly exposed points.
- (iii) Every closed convex bounded nonempty subset of ${\bf Z}$ has strongly exposed points.

As the properties of Theorem 4.2 characterize Banach spaces with the Radon-Nikodým property, it follows from the

Brøndsted-Rockafellar theorem [5] that the equivalence (iv) (vi) of Theorem 3.15 gives Collier's characterization for Banach spaces with the RNP:

4.3. Theorem [8]. A Banach space Z has the Radon-Nikodým property if and only if the dual Banach space Z* is a weak* Asplund space.

Finally, taking in consideration the equivalence (iii) \(\subseteq (vi) \) of Theorem 3.15, we obtain the following characterization for closed convex sets with the RNP.

4.4. Corollary. A closed convex subset K of a Banach space Z has the Radon-Nikodým property if and only if, regarding K as a closed subset of the second dual Banach space Z^{**} , the set $C(F, D, Z^{**})$ is a dense G_{δ} subset of D whenever D is a Baire space, $F \in \text{uscoc}(D, (Z^{**}, w^{*}))$ and the set $F^{-1}(K)$ is dense in D.

We know by [4, Theorem 5.8.1 (i)] that the Cartesian product $X := \prod \{X_i : 1 \le i \le n\}$ of Banach spaces X_i with the RNP has the same property. To see how the corollary works, we reprove this result. Thus, let D be a Baire space, $F \in \text{uscoc}(D,(X^{**},w^*))$ and let $F^{-1}(X)$ be dense in D. Identifying X^{**} with $\prod \{X_i^{**} : 1 \le i \le n\}$ and taking in consideration that the natural projection $p_i : X^{**} \longrightarrow X_i^{**}$ is continuous relative to the weak* topologies, we see that the correspondence $F_i := p_i \circ F \in \text{USCOC}(D,(X_i^{**},w^*))$ satisfies Condition (ii) from Theorem 1.6. Hence $F_i \in \text{uscoc}(D,(X_i^{**},w^*))$.

$$F_i^{-1}(X_i) = F^{-1}(p_i^{-1}(X_i)) \supset F^{-1}(X)$$
,

the set $F_i^{-1}(X_i)$ is dense in D. Hence $C(F_i, D, X_i^{**})$ is a dense G_i subset of D and therefore the same holds for the set

$C(P, D, X^{**}) = \bigcap \{C(F_i, D, X_i^{**}) : 1 \le i \le n \}$.

References

- [1] E. Asplund: Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31-47
 [2] E. Asplund, R. T. Rockafellar: Gradients of convex functions, Trans. Amer. Math. Soc. 139 (1969), 443-467
- [3] E. Bishop, R. R. Phelps: A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97-98
- [4] R. D. Bourgin: Geometric Aspects of Convex Sets with the Radon-Nikodým Property, Lecture Notes in Mathematics, Vol. 993, Springer-Verlag
- [5] A. Brøndsted, R. T. Rockafellar: On the subdifferentiability of convex functions, Proc. Amer. Math. Soc., 16 (1965), 605-611
- [6] J. P. R. Christensen: Theorems of Namioka and R. E. Johnson type for upper semicontinuous and compact valued set valued mappings, Proc. Amer. Math. Soc. 86 (1982), 649-655
- [7] J. P. R. Christensen, P. S. Kenderov: Dense strong continuity of mappings and the Radon-Nikodým property, Math. Scand. 54 (1984), 70-78
- [8] J. B. Collier: The dual of a space with the Radon-Nikodým property, Pacific J. Math. 64 (1976), 103-106
- [9] S. Fitzpatrick: Monotone operators and dentability, Bull. Austral. Math. Soc. 18 (1978), 77-82
- [10] S. Fitzpatrick: Separately related sets and the Radon-Nikodým property, Illinois J. Math. 29 (1985), 229-247
- [11] J. R. Giles: On the characterization of Asplund spaces, J. Austral. Math. Soc. (Series A) 32 (1982), 134-144

- [12] J. R. Giles: Convex Analysis with Aplication in Differentiation of Convex Functions, Pitman, London, 1982
- [13] L. Hörmander: Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Arkiv för Math. 3 (1954), 181-186
- [14] A. D. Ioffe, V. M. Tihomirov: Theory of Extremal Problems, North Holland, Amsterdam, 1979
- L. Jokl: Některé aspekty konvexní analýzy a teorie
 Asplundových prostorů (Some aspects of convex analysis
 and the theory of Asplund spaces), CSc thesis,
 Prague 1985
- [16] L. Jokl: Upper semicontinuous compact valued correspondences and Asplund spaces, to appear
- [17] L. Jokl: Convex-velued weak * usco correspondences,
 Comment. Math. Univ. Carolinae, 28, 1 (1987)
- [18] P. S. Kenderov: Semi-continuity of set-valued monotone mappings, Fundamenta Mathematicae, LXXXVIII (1975), 61-69
- [19] P. S. Kenderov: Multivalued monotone mappings are almost everywhere single-valued, Studia Mathematica, T.LVI. (1976), 199-203
- [20] P. S. Kenderov: Monotone operators in Asplund spaces, C. R. Acad. Sci. Bulgare 30 (1977), 963-964
- [21] P. S. Kenderov: Most of the optimization problems have unique solution, International Series of Numerical Mathematics. Vol. 72, 1984, Birkhäuser Verlag Basel, 203-216
- [22] J. J. Moreau: Semi-continuité du sous-gradient d'une fonctionelle, C. R. Paris 260 (1965), 1067-1070
- [23] I. Namioka, R. R. Phelps: Banach spaces which are
 Asplund spaces, Duke Math. J. 42 (1975), 735-750
- [24] R. R. Phelps: Dentability and extreme points in Banach spaces, J. Functional Anal. 17 (1974), 78-90

- [25] R. R. Phelps: Differentiability of Convex Functions on Banach Spaces, Lecture Notes, University London 1978
- [26] C. Stegall: Gâteaux differentiation of functions on a certain class of Banach spaces, Funct. Anal. Surveys and Recent Results, Amsterdam 1984, 35-45
- [27] C. Stegall: More Gâteaux differentiability spaces,
 Banach Spaces, Proceedings, Missouri 1984, Lecture
 Notes in Mathematics, Vol. 1166, Berlin 1985

ČVUT Praha, Thákurova 7, 166 29 Praha 6, Československo

(Oblatum 17. 3. 1987)