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AFFINE SPACE MOTIONS WITH ONLY PLANE TRAJECTORIES
Adolf KARGER

Abstract: The paper contains the proof of the classifica-
tion theorem for 3-dimensional affine space motions with only
plane trajectories. Such motions are linear submanifolds of di-
mensions 8,5,3 and 2 in the general affine group and they are
explicitly given.
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1. Introduction. The existence of only one nontrivial Eu-
clidean space motion with only plane trajectories was discovered
by G. Darboux in 1881 and proved by methods of differential geo-
metry by W. Blaschke in i5]. A generalization of this result to
the n-dimensional Euclidean space was published in 16]1. 0On the
other hand, the problem of the description of all space motions
with only plane trajectories can be naturally generalized to ot-
her groups of transformations of the 3-dimensional space.

The solution of this problem for the group of all similari-
ty transformations of the 3-dimensional Euclidean space was pub-
lished in [7], the solution for isotropic motions in the affine
space is obtained in [10), the solution for the 3-dimensional
Lobatschewsky space is in [9). A special class of such motions
in the equiaffine space was found in 187.

The present paper solves this problem for the case of the
general affine group GA(3) acting in the 3-dimensional affine
Space A3. The above mentioned papers show that the number of
solutions of this problem for the case of the group GA(3) is
too large for an explicit description. Therefore we use a dif-

ferent method for the solution of this problem. We describe all
337 -



submanifolds of GA(3) with the property that each curve on such
a submanifold is a motion with only plane trajectories. This
method was already used by the author in [1) for projective mo-
tions in the complex projective space. As a result we prove the
following Theorem. Each maximal F-motion in A
one of the following:
a) The 2-dimensional motion g( A , 4)=E+ AA+ uB, where A and B
are arbitrary independent matrices.

3 is equivalent to

b) The 3-dimensional motion given by (8).
c)’ The 5-dimensional motion given by (7).
d) The B8-dimensional motion given by (6).

During the proof of the theorem we shall use some facts
which were proved in [1]; for the sake of convenience we shall
present them here in an abbreviated form.

Let us choose a fixed affine coordinate system S=i0,el,e2,eﬁ
3 Let GA(3) be the Lie group of
all affine transformations of A3, considered as a subgroup of
GL(4) of all matrices of the form g=/1,0\, where t is a 3-column

(t,x)
and ¥ € GL(3). Each point X eA3 is identified with the column of
its coordinates in S,X=(1, %)T, § =(x,y,z)T. An affine space mo-
tion g(M) is, by definition, an embedding g:M —> GA(3) of a ma-
nifold M into GA(3). An affine space motion g(M) is called an F-
motion, if the trajectory of each point lies in a plane. Obviou-

in a given real affine space A

sly, a submanifold of an F-motion is again an F-motion. This me-
ans that if we want to find all affine F-motions, it is enough
to describe the maximal ones. An F-motion is called maximal, if
no open submanifold of it is a submanifold of an F-motion of
higher dimension. All maximal F-motions are solutions of the e-
quation

(1) |X,AX,BX,g(M)X|=0 for all XeAs,
where A and B are matrices from the Lie algebra of GA(3) and ver-
tical bars denote the determinant. This shows that all maximal
F-motions are open subsets of a linear space in GA(3), as the
general solution of (1) is a linear subspace, from which we re-
move all singular matrices. Here we consider GA(3) as an open
subset of a 12-dimensional linear space determined by the coor-
dinate expression of GA(3) in S.
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2. Solution of the equation |X,AX,BX,CX|=0. We shall now
solve the equation

(2) |x,AX,BX,CX|=0,

where A,B,C are fixed matrices from the Lie algebra of GA(3)
We may suppose that matrices A,B,C are linearly independent, be-
cause we always have the obvious solution C= AA+ wB, A , « eR.
Let us denote A=(0 0\, where a is a 3 =< 3 matrix and < 1is a
o« 2,
3-column. For simplicity of denotation let us write a, for the
i-th row of the product af , where x=(1, ¢ )T, §=(x,y,z)T. The
same convention will be used for B and C.
We have to consider the following cases:
1) Let c= Aa+ g#b. Then we may suppose c=0 and (2) takes the
form IaE +o&,bE +(, y|=0, where y + 0. By a change of the base
we obtain q&=1, %o r3=0 and therefore we obtain

laz“”z' by+ Ba| =0-

8g+ oLy, by+ fis

In this case we have two possible solutions

a) | a, by, 1 =0 b) [ a; , by, 1[=0.
32-0'“2, bz, 0 az+ ocz! 0 ] 0
| 0 , 0,0 ag+ oy, 0,0

From (2) it follows that we must also have

) Jag ,b§ ,of |=0

for all columns § . We may suppose from now on that a,b,c are
linearly independent matrices. Let us consider the function r=

= rank( Aa+ b+ vc) on the 3-dimensional vector space of real
coefficients A, w,» without (0,0,0). Then rZzl1.

2) Let max r=1. Let us suppose at first that (3) is of the form
(4) ma;,na;,ppa; [ =0,

Moy +Ma81:P28

My8ysly8) P38y
where 3 is a nonzero linear form in x,y,z; mi,N;,P; are numbers.
If we choose g in such a way that al(g )+ 0, then |m,n,p|=0,

and this yields that a,b,c are linearly dependent. This is a
contradiction and we have no solution in this case.
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Let us now suppose that (3) cannot be written in the form
(4). Then it is ﬂal, &bl, 2c1 =0. By a change of the base
Hal,(»bl,ucl
Val, vbl, ve,y
we may achieve that A=1, w=v =0; al,bl,c1 are linearly indepen-
dent. (2) has the form a+ otl,b1+ ﬁl,c1+ g =0.
%2 2 f2 %
%3 B3 73

The last two rows are necessarily dependent and by change of the
base we may achieve that oLy= [33= 7(3=0 and this is a solution.
?) Let max r=2.

a) Let al=bl=c1=0, a,,ay be linearly independent. If % = PyF
= ‘3'1=0, we have a solution. If [5%+ ‘xi+0, we may suppose that
¥, *0, o= ($1=0. Then b=0, which is a contradiction. (If c, and
cy are independent, we exchange a and c and get the following ca-
se, if c, and cy are linearly dependent, we subtract a multiple
of c from a to have nL1=0, a, and ag remain independent.)

So let finally ccl+0, {31= ‘,)*1=0. Then we have the solution
by=cy= {53= ¥3=0 in a suitable base.

b) Let al=0, b1+ 0, a, and as be linearly independent. Then the
determinant of the matrix a+ Ab must be zero for all A .It fol-
lows that b1=k32+m33, Cy=raj+say for real k,m,r,s. Let further

t)1 and c1 be linearly dependent. Then we add a multiple of b to
c to have cl=0, but then c=0, which is a contradiction. So bland
c, are linearly independent and we may suppose b1=az, Cy=as. The

solution then is

o, a,, ay =0,

a5, 0 »=3

ay, a;, 0
where a; are independent, or al=0. Together with translations we
obtain the following two solutions

i) 0 189+ o€y, a3+ osg|=0, ii) o« rag+ {31,33+7.1 =0,
a + °°2 , 0 »=8)-Cy a tat,, o , 0
a3+¢ac3 ,al+ocl, 0 ag+oty, o , 0

where a; are independent or al=0.
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4) Let max r=3, min r=1. (3) then can be changed to the equati-
on
(5) Ig,"‘?,n§|=0

if we multiply (3) by a~l from the left. We have

X,my,ny =0, which implies n2=n3=0. Multiplication by a
y,0 ,n,
z,0 Ny

from left and a change of the base yields now (3) in the form

al,bl,c1 =0. Further we consider also translations:
a,,0 ,0

2’ ’

33,0 ,0

Let (5%+ (5§+ 7§+ ’a’% 40. Then we may suppose pz*o, 1’2=0. Let us.
choose § in such a way-that az(g )=a}(§ )=0, a; (g )40. Then
73=0 and also ﬁ2=0, which is a contradiction. So we have ﬁz=
= fy= ¥o= 73=0 and this is a solution.

5) Let max r=3, min r=2. (5) is in the form

x, 0, " =0. We may suppose n11=0, let n§2+nf3=*0.

Yo Bgs N

z, my, ng
Choose x=0. Then we see that m must have rank 1 and this is a
contradiction. So n1=0. Then n is a multiple of m, which is im-
possible and we have no solution in this case.

3. Maximal F-motions. From all solutions of (2) we now
construct maximal F-motions. The solution la) obviously belongs
to the F-motion

(6) g( 9\1, (ui)X= Alx+ 32y+ }\32+ }\4
(hrx* ¥+ szt iy
z

where we omitted the first row consisting of 1. It is easy to
see that (6) is also maximal. Really, let (0 , 0 ) belong to

L
this motion. Then we must have | x, 0, c;+ ;| =0
0’ Y, Cz‘*Tz
0, 0, c5* ¥3
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and so Cy= 'X}=0.

The solution 1b) belongs to the F-motion

(7 g( A, Hi)X=X+)\ 0 [ HxE oyt pgzr
a+ ocz 0
A+ & \ 0

3 3
where ar+ L, and ag+ 063 are linearly independent (otherwise it
is a submanifold of (6)). Similarly as above we show that (7)
is also maximal.

The solution from 2) belongs to (6), 3a) belongs to (7).
The solution 3bi) leads to

(8)

gl A, @ ,» )X=X+A 0 \ +fagtly\ + Y fagt oy

gy

a}+oC}/ al+cx.1/ 0

0 —al-a(,1

1

where a; are linearly independent or a1=0, a2+o<,2, a3+a£3 are
linearly independent and ocl=\=0.
To show the maximality of (8), let C belong to (8). Then

we may write c§ = [ Jlal and | 0 ,a,,c; | =0
9\231+ "’233 32,0 1€y
A3y + Hyagt Vyagy 3a3:8),C3

A suitable choice of ? now shows that c=0 and a similar way is
used for translations.

Finally, 3bii) belongs to (8) as well as 4). This finishes
the proof.

Remark. The B8-dimensional motion d) has all trajectories
in parallel planes, c) has all trajectories parallel to one
direction, projection in this direction gives an affine plane
motion with only straight trajectories, b) is centro-affine, it
has a fixed point, given by a;+ oci=0.
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