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A GENERALIZATION OF THE INTERIOR MAPPING THEOREM OF CLARKE
AND POURCIAU
M. FABIAN and D. PREISS

Abstract: We prove the following generalization of a re-
sult of Clarke and Pourciau. A mapping acting between two (su-
per) reflexive Banach spaces which is locally approximable by
convex subsets of linear surjections is locally surjective. The
main tool of the proof is a modification of the Caristi s fixed
point principle. We also show that this tool can be used fer .
deriving theorems of Cramer and Ray, DZumabaev, and Graves.
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Jacobian, interior mapping theorem.
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1. Introduction. A special case of the well known theorem
due to Graves [9], see Corollary 3, asserts that the image of a
neighbourhood of X, € X under a mapping F acting between Banach

spaces X and Y is a neighbourhood of Fx_ provided that F is con-

0
tinuously Fréchet differentiable at x_ and the derivative of F

at x_ is surjective. Clarke [21 for X=Y=R" and Pourciau [11] for
x=R" and Y=Rk, k£n, have generalized this result for Lipschitz,

not necessarily differentiable, mappings by showing

Theorem 1. Let F:D(F)c Rn——a-Rk,l<éru be a Lipschitz map-
ping and let X be an interior point of the domain D(F) of F.
Let aF(xo) denote the set of nx k-matrices obtained as the clo-
sed convex hull of all possible limits

li F
mviﬂﬂn (xm),
where Xn—>X, and the derivatives DF(xm) exist.

If aF(xo) consists of matrices of maximal rank only, then
F(D(F)) is a neighbourhood of Fx,.

Let us suppose that GF(xo) contains matrices of maximal
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rank only. Then, owing to the finite dimensionality, a compact-
ness argument ensures that there is an & > 0 such that. for eve-
ry Le 8F(x0) and every y € RK there exists x e R' satisfying

Lx=y and Iyl Zz oilx\,

Moreover, if [e (0, « ) is given, then by using the mean value
theorem [11, Theorem 3.1, Proposition 3.2) and the compactness
once more, we can find an r >0 such that for any X1, X in the
closed ball B(xo.r) centred at Xg and of radius r there exists
an L eaF(xo) such that

IIFxl-sz-L(xl—xz)li‘Eﬁllxl—lel.
These observations have led the first named author in L7]
to generalize the above theorem to Hilbert spaces. The result
obtained there asserts that if the above relations hold when re-
placing 3F(x0) by a convex bounded subset of the space &(X,Y)
of continuous linear mappings from X to Y, then the closure of
F(D(F)) is a neighbourhood of Fxo. Recently Ursescu [13]1 has
shown by a more direct and simpler method that Fx(J is in fact in
the interior of F(D(F)). It should be noted that this can also
be derived from the quoted result of [ 7] by using the Ptdk’s
closed graph theorem [10].

In this paper we go on in generalizing this result:

Theorem 2. Let (X,ll-)) and (Y,H-1) be two reflexive Banach
spaces, r >0, ©>0, 2 0, let F:0(F)c X—>Y be a mapping and
let Xq € D(F). Let us suppose that either F is continuous and its
domain D(F) is closed or that F has a closed graph and Y is su-
perreflexive. Moreover, let there exist a convex bounded subset
™ of K(X,Y) such that whenever xeB(xo,r)f\D(F) and he X, the-
re are ¢ € (0,1) and L e @1 fulfilling

(1) NF(x- eh)-Fx+ eLh il = e Blinl.

Finally, let us assume that the mappings from 7% are uniformly
open in the sense that, for each L € ¥ and each y €Y, there ex-
ists x e X such that

(2) Lx=y and UyN\z(fp+ @)ixl.
Then the open ball ‘é(Fxo, 91‘) of centre Fx0 and radius @r
is included in F(B(xo,r)f\D(F)).

Recall that in [7) it is required that whenever x and x- €¢h
belong to B(xo,r), then (1) holds with some L ¢ 991 . It should
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be noted that the case ﬁ > 0 can be reduced to that of ﬁ=0; see
Remark 5.

The proof consists of three steps. First, from a variant of
the Caristi s fixed point principle (Lemma 1), we derive an in-
terior mapping theorem (Corollary 2). Then we prove Lemmas 2 and
3 which show that the hypotheses of Theorem 2 lead to the situa-
tion occurred in Corollary 2.

We also show how Lemma 1 may be used to derive the interior
mapping theorems of Cramer and Ray [3, Theorem 2.11, DZumabaev
L6), and Graves [9, Theorem 1].

2. Caristi’s principle and its consequences. We shall use
the Caristi’s fixed point principle [11,[5] in the following
slight reformulation and generalization.

.

Lemma 1. Let Z be a set and let do’ d
rics on Z. Suppose further that

,d,_ be pseudomet-

1009k

d(z,Zz)=max {do(z,i),...,dk(z,i)}, z,ze 1,

is a metric in which Z is a complete metric space. Let us consi-
der functions fo,fl,...,fk:Z———>[0,+oo) which are lower semicon-
tinuous with respect to d. Finally fix z € Z and let us assume
that, for any zeZ fulfilling fo(z)> 0 and

< - j=
(3) di(zo,z)==fi(zo) fi(z), i=0,...,k,
there exists ZeZ, Z+z, such that
(4) di(z,i) éfi(z)—fi(f), i=0,...,k.

Then there exists ze Z such that f0(2)=0 and di(zo’Z) £
éfi(zo), i=0y v . k.

Proof. A simple induction argument ensures that there ex-
ists a sequence {zo,zl,...§c Z such that for all n=0,1,...

dy(z,2,,)) €1;(z )1, (2,10, i=0,... K,

and
1
d5(zs24,1) 350
where
s,=sup {do(zn,z):z eZ,di(zn,z)é.fi(zn)—fi(z), i=0,...,k 1.
Clearly
)

d;(z,2z )£ di(zn,z )+...+di(zmm_1,zn+m £
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£ fi(zn)_fi(zn+1)+"'+fi(Zn+m-1)'fi(zn+m):fi(zn)-fi(zn+m)
for all n, m and
fi(zo)Zfi(zl)z .-
It follows that {an is a Cauchy sequence in each pseudometric
di,
the metric d to some ze Z. Then from the lower semicontinuity of

hence in the metric d. As d is complete, {zn§ converges in

fi we have for all n

di(zn’z)=,m1_i,'2cdi(zn’zn+m)éfi(zn)',ml_&'fb fi(zmm)_‘.ffi(zn)-fi(z)
and, especially,

di(zg,2) ££,(2)-£,(2) ££,(2.), i=0,...,k.

If fo(z)=0, we are done. Further let us assume tihat fo(z)>0.
Then, by the assumptions, there exists Ze Z, 7% z, such that
— _ =

di(z,z)=fi(z) £,(2).
For each i, we add this inequality and
< =
d;(z 2) &1, (z )-1,(2),
and we obtain
d; (z, ,f)édi(zn,z)+di(z,2) <
g’fi(zn)—fi(z)+fi(z)—fi(z)=fi (zn)—fi(Z)-

The definition of s_ then yields that s, Z do(z ,Z). But

n
£
s, & 2d°(zn,zn+1)—> 0. Hence

n

do(z,z)=m'1‘i’rgod0(zn,f) éml_i'rl sn=0,
a contradiction with Z4z. We have thus shown that the possibi-

lity fo(z) > 0 cannot occur and so the proof is completed.

Remark 1. a) 1In apblications the existence of Z is often
required for any z €Z with fo(z)>0, which strengthens a little
the assumptions of Lemma 1.

b) It is obvious but useful to realize that the functions
fi can be replaced by Qio fi’ where fi are as in Lemma 1 and
Qi: [0,+e0) —> [0,+02) are nondecreasing lower semicontinuous
with Qi(s)=0 if apd only if s=0.

c) Another useful variant of b) is to replace (3) and (4)
by
39 d;(z5,2) €A; (£,(z))(£;(z)-1,(2)) and
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4 42,2 £A (8, (2))(E;(2)-1, (D)

respectively. If Aié 0, if Qi fulfil the same hypotheses as in
b), and if

(5) Ay (u-v) £ @, (u)- ®; (v) whenever 0£v<uy,

then, according to b), there is z € Z such that fo(z)=0 and
di(zo,z) = @i(fi(zo)). Often used situations in which (5) holds
are, for example: a

A: (0,+@)—(0,+00), J; A(s)ds< +o for all ¢ >0, and

w
«) A is nonincreasing. Then, if we take Q(u)=f A(s)ds,

0
we get for 0£v<u

(W)= 8(v) = [“A(s)ds Z ACu) (u-v).
Hence (5) is satisfied.

2
B) A is nondecreasing. Then the choice ¢(u)= jo'“A(s)ds
yields for 0£v<u

Su)- dv)= f;’:A(s)ds Z f:u’A(s)dsé ACu)u > ACu) (u-v)
if 2v £u, and
Q(u)- &(v) 2 A(2v) (2u-2v) > A(u) (u-v)

if 2v>u. Thus (5) holds again.

¥) A(s)s is nondecreasing. Then for & (u)= j:wA(s)ds and
0£v<u we have
eul

Glud- d(v)-= _};iuA(s)ds 2 f:ﬁ\(s)s é ds;A(u)uL £ ds=
=A(u)u> ACu)(u-v)
if ev£u, and
P (u)- @(v)éA(ev)evfe«'l ds > A(uu-1n(¥)» ACu)(u-v)
ev S v
if ev>u.
d) Requiring stronger versions of (3°), (4°) we can get

better choices for § . For example, if Ai(s)s are nondecreas-
ing and if we replace (37),(4") by the inequalities

di(zo,z)éAi(fi(zo))(fi(zo)-max(qifi(zo),fi(z))),
d;(2,2) £ A; (£, (2))(£;(2)-max(a; 1, (2),£,(2)))
respectively, where q; € [0,1) are fixed, then we can take
wet%;
Q]_(u)zj‘; Ai(s)ds.
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Corollary 1. Let (X,d), (Y,d) be complete metric spaces,
r>0,@>0, c>0,let F:D(F)c X—Y be a mapping and let xoeD(F).
Let us assume that F is continuous and D(F) is closed (or that
F has a closed graph only). Finally, suppose that, for any xe
€ B(xo,r) N D(F) and any ye,B(Fxo, ©r), y+Fx, there exists Xe
e D(F), X#%x, such that

(6) god(x,i)éd(Fx,Y)-d(Fi,y)

(and moreover, if F has a closed graph only, that

(7 - cd(Fx,Fx) £d(Fx,y)-d(FX,y)).
Then B(Fxo,yr)c F(B(xo,r)nD(F)).

Proof. Fix yeB(FxD, gor). We are to find an xeB(xo,r)n
ND(F) such that Fx=y. Denote Z=D(F)

d,(x,%)= @d(x,%), d;(x,%)=cd(Fx,FX), x,XeZ,
fo(X)=f1(x)=d(Fx,y), xelZ.

If F is continuous and D(F) is closed, take k=0, while in the
parenthetic case consider k=1. Clearly Z is complete and fo, fk
are continuous in the metric max(do,dk). Also, the inequalities
(6) and (7) pass exactly to (4). The assumptions of Lemma 1 are
thus verified and so there exists an x € D(F) such that fo(x)=0,
i.e., Fx=y, and that do(xo,x) £ fo(xo), which implies that
ch(xo,r).

Remark 2. a) For slightly weaker assumptions of the above
corollary see the exact formulation of Lemma 1.

b) In the same way as in Remark 1 - b),c),d) one can repla-
ce (6),(7) by using the functions A and ® . In fact, the versi-
on of Corollary 1 obtained by the use of d) implies [3, Theorem
2.1).

c) Corollary 1 can be extended to multivalued mappings.
Thus, if F:D(F)c X—> 2Y is upper semicontinuous closed valued
and D(F) is closed, then (6) should be replaced by

ed(x,x) & dist(Fx,y)-dist(FX,y),

while if F has a closed graph only, then (6) and (7) should read
as
max(@ d(x,X),cd(v,V))€d(v,y)-d(V,y),
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where (x,v) and (X,v) lie in the graph of F.

d) .We also notice that, if F is continuous, the complete-
ness of Y is not necessary. A similar remark applies also to the
consequences of Corollary 1.

Corollary 2. Let X, Y be Banach spaces, r>0, @> 0, qe
e[0,1), let F:D(F)c X —> Y be a mapping and let X be in D(F).
Let us assume that F is continuous and D(F) is closed (or that
F has a closed graph only). Finally, suppose that, for any xe
eB(xO,r)ﬂD(F) and any yeB(FxO,gar), y #Fx, there exist 0% he
e X and £ e (0,1] such that

(8) ENhi+ %IIF(x—eh)—Fx«r e(Fx-y)i £l Fx-yll
(and moreover, if F has a closed graph only, that
(9 L WF(x- eh)-Fx+ e(Fx-y)ll £ qliFx-yll).
Then B(Fxo’ gor)c F(B(xo,r)ﬂ D(F)).
Proof. Take x €B(x_,r)ND(F), yc-,B(Fxo,gor)\{Fx} arbitra-

rily. By the hypotheses find h and e corresponding to x and y.
The triangle inequality then yields

NF(x-€h)-y N&liF(x- eh)-Fx+ e(Fx-yXN+(1- e ) IFx-yll.

Thus, by (8),
IF(x- e&h)-y Il £lIFx-yll- @elnl,

and after denoting X=x- €h, we get
e lix-xl&lFx-yli-NFx-yl,
which is the inequality (6). If (9) holds, then

iIFX-y h £eqliFx-yh+(1- e)liFx-yh=(1- e (1-q))IFx-yl,
and
NFx-FXUL€WFR-Fx+ e(Fx-y)l+ eliFx-yll € e (1+q)iFx-yll=

= %‘%(llFx-yll-(l- e(l-q))llFx—y“)éi—t%(qu—yﬂ—ﬂFi—y”)
and so (7) is verified. It means that Corollary 1 can be applied

and consequently B(Fx_, @r)c F(B(x ,r) ND(F)).

In the proof of Theorem 2 we shall need only Corollary 2.
But we feel that further consequences of this corollary should
also be mentioned.
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Corollary 3. Let X, Y be Banach spaces, r >0, e@>0,B3z0,
let F:D(F)c X —> Y be a mapping with a closed graph and let X o€
€ D(F). Let us assume that there exists L e &(X,Y) such that, for
every xeB(xo,r)nD(F) and every heX, there is €€ (0,1] ful-
filling
(10) NF(x- eh)-Fx+ eLhl £ g g lhl.

Finally, suppose that the L is such that to each yeY there is
x € X satisfying Lx=y and lylZ(@B+@)lixl.
Then B(Fxo,@r)cF(B(xo,r)ﬂD(F))-

Proof. Fix xeB(xo,r)ﬁD(F) and yeB(Fxo,gor), y+Fx. Find
h €X such that Lh=Fx-y and (f +@)IhlI£0Fx-yll. Let & correspond
to x and h. Then
LiF (x- eh)-Fxs €(Fx-y)l= LIF(x- eh)-Fxs+ gLl £
. B
< f3lhlg
A iny B+
and so both (8) and (9) hold. Now apply Corollary 2.

IFx-y I

Remark 3. The above corollary is a slight improvement of
the result of Graves [9, Theorem 1], where (10) is required to
hold whenever x and x- &h belong to §(x0,r). Another proof of the
theorem of Graves, by using Nadler s contraction principle for
multivalued mappings is due to Szildgyi [12)].

Corollary 4. Let X, Y be Banach spaces, r >0, « > 0,
Qe(0,1), let F:D(F)c X—>Y be a mapping with a closed graph and
let Xy € D(F). Let us assume that, for every x from B(xo,r)ﬂD(F),
tgere are o, >ox , 3 el0, 0« ), d'x>0 and a mapping Cy:
:8(0, d'x)c X —> Y such that I\Fu—Fx—Cx(u—x)ll & Bxl\u-x\l whenever
usﬁ(xo,r)ﬁﬁ(x, d’x), and that for every ye Y there is he X sa-
tisfying ly ilZo(,xllhll and Cx(ah)ﬂay for all @ > 0 sufficiently
small.

Then B(Fx,,(1-8) wr) c F(B(x_,r) N D(F.

Proof. Choose a fixed T € (0,r). Take arbitrary x in B(xo'ﬁ)n
ND(F) and y in'B(Fx_,(1-8)«?)\{Fxt. Find he X and €, €(0,1)
such that i\Fx-yl\;ocxﬂhl\ and Cx(- eh)= ¢(Fx-y) whenever e €
e (0, eo). Fix an & € (0, so) so small that

I x-egh-xk< d'x and llx- eh-xoll<r.
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Then we can estimate
EIF (x- e )-Fxe e(Fx-y)l= TIF(x- e h)-Fx-C (- en)l £ llhli<

£ 0 Fx-yll
and
(1- ®)ee Inli+ %llF(x— eh)-Fx+ e(Fx-yll £ -—(i;—@)o—‘ﬂl:x—ﬂh

+BlFx-yN<liFx-yli.

It means that Corollary 2 applies. Hence B(Fxo,(l—e)cc ()
F(B(xo,'f)ﬂD(F)) and by letting T go to r the result follows.

Remark 4. This corollary is a slight improvement of the
resuwlt of DZumabaev [6), where the Cx are assumed to have inver-
ses and an additional condition d')'()h‘(l-@)ot/ocx with a fix-
ed te(0,1) is required.

.

Corollary 5. Let X, Y be Banach spaces, r >0, ©@> 0, and
gel0,1). Let F:D(F)c X —>Y be a continuous mapping (or a map-
ping with a closed graph), Gateaux differentiable on B(xo,r) c
c D(F). Let for every st(xo,r) and every ye B(Fxo,@r), y +Fx,
there exist 0% h e X such that

EIhl+UIFx-y-DF (x)h £ Fx-y
(and moreover, if F has a closed graph only, that
IFx-y-DF (x)hll £qllFx-yll).

Then B(Fxo, er)c F(ﬁ(xo,r)).

Proof. Take @ e (0,@), de(qg,1), and 0<F<r<r. Let F be
the restriction of F to B(xo,'f'). Then D(f) is closed and the abo-
Ve inequalities ensure that there exists ee (0,1) such that
the assumptions of Corollary 2 hold with r,¢, q, and F replaced
by ¥, &, §, and F respectively. Hence B(Fx,, e F(B(xo,?)) and
we conclude the proof by letting {3 converge to @ and ¥ conver-
ge to r.

Corollary 6 ([9, Theorem 3]). Let Lo_‘:' £(X,Y) and let the-
re exist o« > 0 such that to every y eY there is xe X satisfying
L0x=y and lly MZ ot lix Il

If Le £(X,Y) is such that llL—L0}|<c(,, then
(o - IiL-Lol\)BYc L(BX), where B, and By denote the closed unit
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balls in X and Y respectively.

Proof. Let L be as above and take any x € X and any ye Y\
N {Lx3. Find h € X such that L h=Lx-y and e hhil€liLx-yl. Then
h#+0 and

(< —'nL-LoI\)llhl\+IIL(x-h)-Lx+(Lx—y)l| =(a —IIL—LOII)!Ihll+lth—L0nlIé
2 wlihh&nFx-yl.

Thus (B) holds with €=1 and so, by Corollary 2
(oo -liL-L 1By =B(L(0), (¢ -HL-L 1)) C L(B(O,1)=L(By).

Remark 5. The above corollary enables us to reduce in The-
orem 2 the case (3> 0 to that of (3=0. Let us show it. Define

WAL e LX, V)L -LI = [} for some L e M}i.

Let xeB(xo,r)ﬂ D(F) and he X be given. Clearly, we may suppose
that h+0. Let G¢c X be a hyperplane such that Wh+gllzlihll for all
gé G. Define

L (th+g)= - L(F(x- eh)-Fx)+Lg, teR, geG,

where € >0 and L € %L correspond to x and h. Then F(x-¢h) -
-Fx+ ¢L 'h=0. Further, L  is linear and by (1)

IL”Ctheg)-L(theg)ii= NECF(x- em)-Fo+L(tmn & Ltlegini-
& %Leﬁumhltl,@ Ilhll < glith+gll
for all teR and all ge G. Hence IL'-LIl 2B , and so L e 9~ .
Now applying Corollary 6 we get that

@Byc (B +@-iL -LIByc L (By).
From this inclusion it easily follows that for every yeY there
is x € X such that L x=y and llyllzpllxll. Thus we have shown that

the assumptions of Theorem 2 are fulfilled with [ and M re-
placed by 0 and #’ respectively.

3. Geometrical lemmas and the proof of Theorem 2. If X is
a Banach space, let X* denote its dual, X** its second dual,
#:X—> X** the canonical embedding and <{x*,x> the value of
x*e X* at xe X. If L e £(X,Y), then L* means the adjoint to L.

Lemma 2. Let X and Y be Banach spaces, #tc £(X,Y) be a
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convex set, and o¢ > 0. Let us consider the following asserti-
ons:

(i) for every y*e Y™ there is 0= x € X such that <y*,Lx>2
z & liy¥ll Ixlh whenever L e 291

(ii) for every y*¥e Y* and every Le 2 IIL*y*)lZ | y¥;

(iii) whenever y<Y and L € 91 then there is x e X such that
Lx=y and llyllZ2eclix

Then (i) — (ii), (iii) —= (ii) and, if X is reflexive,
then all the assertions are equivalent.

Proof. (i) =>(ii). Let y*e Y* and L € 2¢ . By (i) there
is O%x e X such that <y*,Lx> Zally®ll Ixli. Hence

N y* U Nx 2Lk yx ) ={yx ,Lx> Z aclly® I Ixh, HLsy*l Z ccliy*).

(iii) =(ii). For y*e Y*and an arbitrary o > 0 find ye Y,
lyl =1, such that {y*,y>Z (1-&)lly*l. Then by (iii), for any Le
e M there exists x € X such that Lx=y and 1= lyllZ «llx. Hence

B y* 0 hx D24 y* , x)={y*,Lx)={y*,y> Z (1- &) Jly*l =
Z(1- Nl y=I I x M, WX y*h = (1-d ) hy*l.

And since d > 0 was arbitrary, we get (ii).

Let X be reflexive by the end of the proof. Let us prove
(ii) =>(i). We shall proceed as Clarke in the proof of [2, Lem-
ma 3]. Fix O%y*e Y*. Let us remark that the set §L* y¥:L e @}
1s convex and disjoint trom {x* e Xr:ix¥| < o ly*Il}. Hence by the
separation theorem and reflexivity there is xe X, x#%0, such that
for any Le M

Cy* ,Lxy=A* y* x>z sup £4 x*, x> : Ix*N < e hy*u} = xily* Il Uxl.

It remains to prove (ii)==r(iii). By (ii) ¥ maps Y¥ onto
the closed subspace Z=L¥(Y*) of X* and there exists S e £(Z,Y¥)
such that ISV €1/« and S(LXy*)=y* for all yxe Y¥ . Then S* maps
Y¥* into Z*. Fix now ye Y, y%0. Then S*( 2 (y)) is in Z* and
hence, by the Hahn Banach theorem, there exists x** ¢ X** such
that Ix**ll = IS¥ ¢ (y)l and that <x**,z>= (S%X4e(y),z> for all ze
€ Z. As X is reflexive, we can write x*¥¥= ¢(x) with some x eX.
Then we have

Cy* ,Lxy={lFy* x?= {ae(x),* yr> = (S*¥2e(y),l*y*) =
= {(y),SL* (y¥)Y = <ee(y),y*)> = {y*,y>

for all y* e Y* Hence Lx=y. Moreover IS*I = lISH& 1/« and so
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Dxh=l® = 1s*ae(y)li € 2 NaeCy)d = Liyh.
Thus (iii) holds.

Lemma 3. Let X, Y be Banach spaces, let c > 0, ¥ e (0, )
be given and let # c &£ (X,Y) be a nonempty convex bounded set
such that for every y* e Y* there exists 0= x € X satisfying

Ly*,LxYZ o ly*N i)l whenever L e 21 .

If the norm of Y is Fréchet differentiable off the origin,
then for every O+ye Y there are te (0,1/9 ) and ge X such that

(11) Ngl=llyl and lly-tLglh < (1- ¢t)llyl whenever L € 921-.

If the norm of Y is uniformly Fréchet differentiable on the unit
sphere, then there exists te (0,1/7 ) such that for every O%ye
e Y there is ge X fulfilling (11).

Proof. Let O+yeY be given. Let llyll’ denote the Fréchet
derivative of |-l at y. By assumptions, to y*=llyll", there exists
g&X, lgl=lyll, such that

QylyLg>Z eyl lligh=ccliyll
for all L & %t . Denote c=sup {lLI:Le @} . As ? is bounded,

c is finite. Since the norm is Fréchet differentiable at y, the-
re is t >0 such that

hy-zW&lyll - Kyl 2>+ Z=Liz |
whenever z e Y and llzl £tcllyll. We note that if the norm on Y is
uniformly Fréchet differentiable on the unit sphere, then t can

be chosen independently of the concrete y. As litLgl £tcliyll for
all L e @ , we have

liy-tLgl £ hyl- <y i, tLgd+ =L utigll £

oL
2c

£lyli-thyll+ telly < (1- yt)liyl,

which was to prove.

Proof of Theorem 2. According to Troyanski [4, p. 1l64] Y*
admits an equivalent locally uniformly rotund norm. If Y is su-
perreflexive, so is Y* (4, p. 87) and by Enflo [4, p. 87) there
exists an equivalent uniformly rotund norm on Y*. Further, it is
known and easy to check [8] that such norms can be taken arbit-

- 322 -



rarily close, in the sense of Banach-Mazur distance, to the ori-
ginal norm on Y*. Hence, by an easy duality argument [4] we get
that Y admits an equivalent norm which is Fréchet (or uniformly
Fréchet) differentiable on the unit sphere and is arbitrarily clo-
se to the original norm on Y. Thus we may assume that the origi-
nal norm on Y is Fréchct (uniformly Fréchet) differentiable on
the unit sphere and that the assumptions of Theorem 2 hold with
(5 and @ replaced by (5+d‘ and @—ZJ respectively, whered’
is some fixed number from (0,§>/3).

Take x eB(xO,r)F\D(F) and ye.B(Fxo,(@ -3J°)r), y+Fx. From
(2), by applying subsequently Lemmas 2 and 3 we can find te
< (0,1/(ﬁ+g>-2d')) and g¢ X such that

lgh=1Fx-yl and liFx-y-tLgh<(1-(B+@-24)t)Igl

.

for all L e 9% . Let us note that in the case of uniform Fréchet
differentiability the t does not depend on the choice of x and
y. From the hypotheses choose ¢ « (0,1] and L e 91 such that

IF(x- etg)-Fx+ eL(tg)ll £ e (B +J)ltgl.
Then the last two inequalities yield

%HF(X— etg)-Fx+ s(Fx-y)Hé-%NF(x— etg)-Fx+ eL(tg)h+

+IFx-y-tLgl < (B +u ) htgh+(1-(p +I -2 )t) ligl=
=lFx-yl-(@ -30" ) litgl=(1-(p -30" )t)IFx-yl,

(@ -30)Itgl+ %HF(X— etg)-Fx+ e(Fx-y)ll< Il Fx-yl.

It means that (8) and (9) hold with h=tg, g=1-(@ -3J")t, and
with @ replaced by @ -3¢°. Thus by Corollary 2

B (Fxo,(@ =34 )r)c F(B(xo,r)ﬂ D(F)). And since J > 0 could be ar-
bitrarily small, the conclusion of Theorem 2 follows.

Remark 6. From the above proof one can see that the versi-
on of Theorem 2 with F continuous and D(F) closed holds under
weaker assumptions. Namely, the reflexivity of Y can be replaced
by the requirement that the set of equivalent Fréchet differen-
tiable norms on Y is dense in the sense of Banach-Mazur distance.
We do not know whether this case occurs if one such norm exists.

Final note. After this paper had been prepared for publi-
cation, we learned about the paper of P.H. Dien, Some results
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on locally Lipschitzian mappings, Acta Math. Vietnamica 6(1981),
97-105. Here a theorem similar to our Theorem 2 is presented un-
der a little stronger assumptions. Its proof is based on the
Ekeland ‘s variational principle.
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