

Werk

Label: Article **Jahr:** 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0028|log43

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 28,2(1987)

ON THE MULTIPLICITY POINTS OF MONOTONE OPERATORS ON SEPARABLE BANACH SPACES II Libor VESELÝ

Abstract: The results from [1] are sharpened, e.g. it is proved that the set of multiplicity points of a monotone operator on a separable real Banach space can be written as a union of countably many subsets of Lipschitz hypersurfaces, having "finite convexity on curves with finite convexity".

Key words: Multiplicity points of monotone operators, finite convexity, Lipschitz surfaces in Banach spaces.

<u>Classification</u>: Primary 47H05 Secondary 52A20

Let T be a monotone operator on a real Banach space X,i.e. T:X \longrightarrow exp X* and $\langle x-y,x^*-y^*\rangle \ge 0$ whenever $x^*\in Tx$ and $y^*\in Ty$. Denote by coTx a convex hull of the set Tx and put

 $A_n = \{x \in X : dim(coTx) \ge n\},$

 $A^{\Pi_{\#}}\{x\in X : \text{coT}x \text{ contains a ball of codimension n}\}.$

In [1] there was proved that if X (or X* , respectively) is separable then A_{Π} (or A^{Π} , resp.) is representable as a countable union of Lipschitz fragments of codimension n (of dimension n, resp.), where F (see Definition 2) has "linearly finite convexity" (i.e. uniformly bounded convexity on lines).

By finer calculations with the Lipschitz fragments constructed in [1], the stronger result is obtained: they are in fact CFC-fragments (see Definition 3).

X will always be a real Banach space; by $\Omega(x,r)$ we shall denote an open ball in X with centre x and radius r>0.

Definition 1. Let $S \subset R$ and $c:S \longrightarrow X$. If card $S \ge 3$ we define

$$\mathfrak{K}(c,S) = \sup_{\mathbf{j}} \frac{\mathcal{K}}{\sum_{i=1}^{n}} \left\| \frac{c(s_{j+1}) - c(s_{j})}{s_{j+1} - s_{j}} - \frac{c(s_{j}) - c(s_{j-1})}{s_{j} - s_{j-1}} \right\|,$$

where "sup" is taken over all finite sequences $s_0 < s_1 < \ldots < s_{k+1}$ in M. We put $\mathfrak{X}(c,S)$ =0 if card $S \le 2$.

 $\mathfrak{K}(\mathsf{c},\mathsf{S})$ is called <u>convexity</u> of c on S.

Basic properties of mappings with finite convexity can be found in [1], part 2.

Definition 2. Let Bc X, $n \in \mathbb{N}$, and $n \angle \dim X$. We shall say that B is a <u>Lipschitz fragment</u> of dimension n (of codimension n, resp.) iff the following is satisfied:

There exist subspaces W and Z of X and a set Mc W such that

- (i) X=W ⊕ Z
- (ii) dim W=n (codim W=n, resp.)
- (iii) B= { w+F(w): w \in M } where F:M \longrightarrow Z is a Lipschitz mapping.

(⊕ denotes a topological sum.)
Fragments with M=W are called <u>surfaces</u>.

Definition 3. Let BC X be a Lipschitz fragment. We shall say that B is <u>CFC-fragment</u> (of the same dimension or codimension) iff W,Z,M,F from Definition 2 can be chosen in such way that for any mapping c:S \longrightarrow M with Sc R the following inequality holds:

 $\mathcal{K}(F \circ c, S) \leq a \cdot \mathcal{K}(c, S) + b \cdot Lip(c),$

where a and b are nonnegative constants independent on c and

$$Lip(c)=\sup \left\{ \left\| \frac{c(s)-c(s')}{s-s'} \right\| : s,s' \in S, \ s \neq s' \right\}.$$

Theorem. Let T be a monotone operator on a separable Banach space X and $n < \dim X$ be a positive integer. Then A_n is representable as a union of countably many CFC-fragments of codimension n. If the dual space X^* is separable then A^n is representable as a countable union of CFC-fragments of dimension n.

Proof. We shall prove both the propositions of the theorem simultaneously. Without any loss of generality we can assume that T is maximal monotone, hence Tx is always convex.

There was proved in [1] that if X (or X^* , resp.) is separable then A_n (or A^n , resp.) can be written as a countable union of Lipschitz fragments B of codimension n (of dimension n, resp.), each of them having the following properties:

- (I) $B = \{ w+F(w): w \in M \}$, $M \subset W$, $F:M \longrightarrow Z$ where W, Z, M, F are as in Definition 2.
- (II) There exist subspaces V, Y of X* such that $X^* = V \oplus Y$, $V = Z^{\perp}$, $Y = W^{\perp}$.
- (III) For any x \in B there exist $t_x \in$ Tx and a topological complement P_x of V in X* such that $\|t_x\| < m, \ \|\pi_x\| < q, \ (t_x + P_x) \land \Omega(t_x, r) \in Tx$ where $\pi_x : X^* \longrightarrow P_x$ is a projection in the direction of V and m,q,r are positive constants independent on x \in B. (Our constants m, r correspond to constants $m + \frac{r}{2}$, $\frac{r}{2}$ from [1], 3.9.)
- (IV) $t_x t_y \in V$ for any $x, y \in B$.

Now it is sufficient to prove that B is in fact CFC-fragment. Let B c R and c:S \longrightarrow M be arbitrary. If card S \neq 2 then $\mathcal{K}(F \circ c,S)=0$ by Definition 1. So let card S \geq 3 and s₀< s₁< < s_{k+1}, s_j \in S (j=0,1,...,k+1). Denote

$$w_{j} = c(s_{j}), x_{j} = w_{j} + F(w_{j})$$

 $t_{j} = t_{x_{j}}, \pi_{j} = \pi_{x_{j}}$

Let y^* be an arbitrary functional from a unit sphere in Y. Put

$$t_{j}^{+}=t_{j}^{+}+\frac{r}{q} \pi_{j}(y*).$$

The fact $t_{j}^{+} \in Tx_{j}^{-}$ follows from (III).

Now for any $i,j \in \{0,1,\ldots,k+1\}$, the monotonicity of T and properties (II),(III) imply:

$$\begin{split} 0 & \leq \langle \mathbf{x}_{i} - \mathbf{x}_{j}, \mathbf{t}_{i} - \mathbf{t}_{j}^{+} \rangle = \\ & = \langle \mathbf{w}_{i} - \mathbf{w}_{j} + F(\mathbf{w}_{i}) - F(\mathbf{w}_{j}), \mathbf{t}_{i} - \mathbf{t}_{j} + \frac{\mathbf{r}}{q} (y* - \pi_{j}(y*)) - \frac{\mathbf{r}}{q} \cdot y* \rangle = \\ & = \langle \mathbf{w}_{i} - \mathbf{w}_{j}, \mathbf{t}_{i} - \mathbf{t}_{j} + \frac{\mathbf{r}}{q} (y* - \pi_{j}(y*)) \rangle - \frac{\mathbf{r}}{q} \langle F(\mathbf{w}_{i}) - F(\mathbf{w}_{j}), y* \rangle. \end{split}$$

- (1) $\langle F(w_i) F(w_j), y* \rangle \leq \langle w_i w_j, \frac{q}{r} (t_i t_j) + y* \sigma_j(y*) \rangle$. By the same way it is possible to obtain
- $\begin{array}{ll} \text{(2)} & -\langle \mathsf{F}(\mathsf{w}_\mathtt{i}) \mathsf{F}(\mathsf{w}_\mathtt{j}), \mathsf{y*} \rangle \leq \langle \mathsf{w}_\mathtt{i} \mathsf{w}_\mathtt{j}, \, \frac{\mathsf{q}}{\mathsf{r}} (\mathsf{t}_\mathtt{i} \mathsf{t}_\mathtt{j}) \mathsf{y*} + \, \pi_\mathtt{i} (\mathsf{y*}) \rangle \\ \text{using } 0 \leq \langle \mathsf{x}_\mathtt{i} \mathsf{x}_\mathtt{j}, \, \mathsf{t}_\mathtt{i}^+ \mathsf{t}_\mathtt{j} \rangle. \end{array}$

For simplicity let us denote $Q(j,i)=\frac{w_j^{-w_i}}{s_j^{-s_i}}$ if $i \neq j$. The inequalities (1),(2) give for any $j \in \{1,2,\ldots,k\}$:

$$\langle \frac{F(w_{j+1}) - F(w_{j})}{s_{j+1}^{-s_{j}}} - \frac{F(w_{j}) - F(w_{j-1})}{s_{j}^{-s_{j-1}}}, y* \rangle \leq$$

$$\leq \langle Q(j+1,j) - Q(j,j-1), y* - \sigma_{j}(y*) - \frac{Q}{r} \cdot t_{j} \rangle + \langle Q(j+1,j), \frac{Q}{r} \cdot t_{j+1} \rangle -$$

$$\leq \langle Q(j+1,j)-Q(j,j-1),y^*-\sigma_j(y^*)-\frac{q}{r}\cdot t_j \rangle + \langle Q(j+1,j),\frac{q}{r}\cdot t_{j+1} \rangle - \frac{q}{r}\cdot t_j \rangle + \frac{q}{r}\cdot t_j \rangle - \frac{q}{$$

$$-\left\langle \mathbb{Q}(\mathtt{j},\mathtt{j-1}),\,\,\frac{\mathtt{q}}{\mathtt{r}}\cdot\mathtt{t}_{\mathtt{j-1}}\right\rangle \triangleq \|\mathbb{Q}(\mathtt{j+1},\mathtt{j})-\mathbb{Q}(\mathtt{j},\mathtt{j-1})\|\cdot(\mathtt{1+q+}\,\,\frac{\mathtt{qm}}{\mathtt{r}}) \ +$$

$$+ \ \, \langle \operatorname{Q}(\mathtt{j}+1,\mathtt{j}), \ \, \operatorname{\frac{q}{r}} \cdot \mathtt{t}_{\mathtt{j}+1} \rangle - \ \, \langle \operatorname{Q}(\mathtt{j},\mathtt{j}-1), \ \, \operatorname{\frac{q}{r}} \cdot \mathtt{t}_{\mathtt{j}-1} \rangle.$$

It is easy to see that $z^* \in Z^*$ iff there exists $\widetilde{y}^* \in Y$ such that $\tilde{y}^*=z^*$ on Z.

Since y^* was an arbitrary functional with $\|y^*\|=1$ then

$$\left\| \frac{\mathsf{F}(\mathsf{w}_{j+1}) - \mathsf{F}(\mathsf{w}_{j})}{\mathsf{s}_{j+1} - \mathsf{s}_{j}} - \frac{\mathsf{F}(\mathsf{w}_{j}) - \mathsf{F}(\mathsf{w}_{j-1})}{\mathsf{s}_{j} - \mathsf{s}_{j-1}} \right\| \leq$$

-
$$\langle Q(j,j-1), \frac{q}{r} \cdot t_{j-1} \rangle$$
.

$$\sum_{j=1}^{k} \left\| \frac{F(w_{j+1}) - F(w_{j})}{s_{j+1} - s_{j}} - \frac{F(w_{j}) - F(w_{j-1})}{s_{j} - s_{j-1}} \right\| \leq$$

$$-\sum_{j=0}^{k-1} \langle Q(j+1,j), \frac{q}{r} \cdot t_{j} \rangle = (1+q+\frac{mq}{r}) \sum_{j=1}^{k} \|Q(j+1,j) - Q(j,j-1)\| -$$

$$-\sum_{j=2}^{k-1} \langle Q(j+1,j)-Q(j,j-1), \frac{q}{r} \cdot t_{j} \rangle + \langle Q(k+1,k), \frac{q}{r} \cdot t_{k+1} \rangle +$$

$$+ \left< \mathbb{Q}(\mathsf{k},\mathsf{k-1}), \ \frac{\mathsf{q}}{\mathsf{r}} \cdot \mathsf{t}_{\mathsf{k}} \right> - \left< \mathbb{Q}(2,1), \ \frac{\mathsf{q}}{\mathsf{r}} \cdot \mathsf{t}_{\mathsf{1}} \right> - \left< \mathbb{Q}(1,0), \ \frac{\mathsf{q}}{\mathsf{r}} \cdot \mathsf{t}_{\mathsf{0}} \right> \in$$

$$\leq (1+q+\frac{2mq}{r}) \frac{k}{r} ||Q(j+1,j)-Q(j,j-1)|| + \frac{4mq}{r} Lip(c) \leq$$

$$\leq (1+q+\frac{2mq}{r}) \cdot \mathcal{K}(c,S) + \frac{4mq}{r} \operatorname{Lip}(c).$$

Then by Definition 1 we have

$$\mathcal{K}(F \circ c, S) \leq a \cdot \mathcal{K}(c, S) + b \cdot Lip(c)$$

where a=1+q+ $\frac{2mq}{r}$ and b= $\frac{4mq}{r}$. The theorem is proved.

Remark. Problem 1.1 from [1], whether it is possible to write " σ' -convex fragments" instead of "CFC-fragments" in Theorem, is still open.

Reference

[1] L. VESELÝ: On the multiplicity points of monotone operators on separable Banach spaces, Comment. Math. Univ. Carolinae 27(1986), 551-570.

Matematicko-fyzikální fakulta, Univerzita Karlova, Sokolovská 83, 18600 Praha 8, Czechoslovakia

(Oblatum 24.2. 1987)

