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AN ABSTRACT DIFFERENTIAL EQUATION AND THE POTENTIAL BIFURCATION
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Jan NEUMANN

Abstract: A proof of a certain generalization of two poten-
tial bifurcation theorems by M.A. Krasnoselskii (see [1)) ba-
sed on a method used by I.V. Skrypnik to prove another bifurca-
tion result (see [2. and }i,respectivelyl)fs given. A bifurca-
tion solution lying on the sphere S(O,g,) (with a sufficient-
ly small positive & ) in a Hilbert space is constructed as an
accumulation value (t-—cc ) of a map k:te<0,w) - S(0,¢ )
satisfying a certain initial value problem for an abstract ordi-
nary differential equation. The main contribution of the artic-
le consists in a detailed study of properties of this differen-
tial problem.

Key words: Potential bifurcation theorems, abstract ordin-
ary differential equations.

Classification: 35B32, 34A10, 34G20.

1. Introduction. A proof method, with help of which a cer-
tain important bifurcation theorem has been shown by I.V. Skryp-
nik (see [2] - p. 161, Theorem 3.4 and [3} - p. 178, Theorem 12,
respectively), is investigated. The Skrypnik 's procedures are
used to prove a generalization of two bifurcation results by M.A.
Krasnoselskii (see [ 1), Theorems 1 and 2). The mentioned genera-
lization is not, from the application point of view,‘essential.
The contribution of this article consists in an elaboration of
some Skrypnik 's ideas, which leads to give precision to certain
details of them.

The most meaningful results of this treatise are concentra-
ted in Section 2 where the following differential equation is ex-
plored:

K (£)=6(k(t))-(B(k(t)),k(t)) k(t)/ k(M2 ;

G is a continuous operator in a Hilbert space and k an abstract
aeH,r>0 S(a,r)=4xeH; lix-al =ry
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function of one real variable.

In Section 4,the theory constructed in Section 2 together
with several simple assertions comprehended in Section 3, is uti-
lized to prove our modification of the Krasnoselskii s theorems
which reads as follows:

Theorem 1: Let H be a real Hilbert space and let ¢ > 0.
Let:

1. F be a real functional defined and Fréchet differentiab-
le on B(0, @) c H,

"9, F':B(D,§A)c H — H be a completely continuous operator,

3. F'(0)=0,

4. the Fréchet differential F"(0):H — H exist.

Then A#0 is a bifurcation point of the equation Ax-F (x)=0
(with respect to the line of the zero solutions) if and only if
A is an eigenvalue of the linear operator F"(0).

Remark: Krasnoselskii (see (1)}, Theorem 1) assumes, more-
over, that the functional F is weakly continuous and uniformly
Fréchet differentiable on B(0, ) and the operator F"(0) is
selfadjoint and completely continuous. Our reduced assumptions
guarantee the validity of the first, the third and the fourth
from the conditions introduced (see [ 4] - p. 104, Theorem B8.2;
i5] - p. 70, Theorem 5.11 and [4) - p.74, Theorem 4.7). In addi-
tion, from the proof it will be apparent that it is redundant
to suppose the uniform differentiability of F.

From Theorem 1 the following assertion, being a special case
of the potential bifurcation theorem by Skrypnik (see [2]- p.l161,
Theorem 3.4 and [3] - p. 178, Theorem 12), follows (see [4) - p.
99, Theorem 7.6).

Theorem 2: Let H be a separable real Hilbert space and let
¢ >0.
Let:

1. F be a real functional defined, weakly continuous and
uniformly Fréchet differentiable on B(O, e JCH,

2. F'(0)=0,

3. the Fréchet differential F"(0):H —>H exist.

+)

acH,r>0 B(a,r)={xeH; Ix-ai<rk
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Then A %0 is a bifurcation point of the equation A.x-F (x)=0
if and only if A is an eigenvalue of the linear operator F"(0).

The investigated Skrypnik s method may be also exploited to
derive some .interesting assertions on eigenvalues and bifurcati-
on points of variational inequalities - an illustration example
is the content of the author’s following article (see i{61).

Note that for the sake of completeness we do not omit some
standard and simple proofs in this paper.

2. Basic differential problem. Let H be a real Hilbert spa-

ce and let ¢, T>0. Consider a continuous operator 6:8(0, ) <
CH—H and xeB(0,® )\ 40%. We shall look for an abstract func-
tion

(2.1) k:I — B(0,@)~{0%cH such that .
(2.2) keclcr,m),

(2.3) K (£)=6(k(£))-(G(k(t)), k(t))-k(t)/ ik(t)i? for all t<1I,
(2.84) k(0)=x,

where I=<0,T> and <0,o), respectively.

For the main results of this section see Lemma 6 and Example.
Lemmas 3 - 5 serve not only for proving Lemma é but they are also
applied directly in our proof of the bifurcation theorem.

Lemma 1: Let k be a solution of (2.1) - (2.4) with I=<0,T>.
Then J(k(t)® = 4x!t for all t e<0,T).

Proof: Because (d/dt)(uk(t)12)/2=(k (t),k(t))=(6(k(t))-
—(6(k(t)), k(1)) -k(t)/ ik(t)iZ,k(t))=0 on <0,T>, the function
t ¢<0,T> —1k(t)! is constant.

Lemma 2: Let k:<0,T>— B(0, @ )N {0 ZH. Then the following
assertions are equivalent:
1. k fulfils (2.2),(2.3) and (2.4) with I=<0,T),
2. k(t)=x+ ,é
te<o,T>,
3. k()= Dxs [76(k(x)) exp(  “(6Ck(§)),k(§))/ i k(i 2dDd ] .
cexp(- T (B(k(£)),k(§))/ .:k(;).'?d;) *) tor all t<<0,T>.

B k(%)) - (BK(2) k() k(T)/ 1k(x)123 dv *) for ali

The sign f denotes the Bochner type integration.
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Proof: 1is very simple - therefore we introduce a proof of
one implication only. Let us put:

(2.5)  m (£)=(6(K(1)),k(£))/ Nk(t))? and
(2.6) 1(t)=k(t) exp(‘];t n ()d) for all te<0,T).
From the equation 3 we have:
(2.7) 1(0)=x+ [*6(k()) exp( [T (Pdpdw ,
and hence
(2.8) 17()=6(k(t))-exp( [* 7 (§)df).
From the definition of 1 we obtain:
(2.9) K()=1(t)-exp(- [ ()80,
Differentiating the last equation and using (2.6) and (2.8)

we get:
. . ~t ot e
(2.10) k' (t)=1 (t)»exp(—Ju p (©)dv)-1(t) - ’l(t)'e"p('./c p (R)do)=
=6(k(t))- n(t)-k(t).

Lemma 3: Let the operator G be Lipschitz continuous on
B(O,Su). Then for every xe B(U,go)\-i()} there exists the unique ab-
stract function k=k(:,x) satisfying (2.1) - (2.4) with I= {0,w).
The mapping k:<0,cc ) x B(O,@)\iﬂ’s——-’ H is continuous, Nk(t,x)li=
= jixh,

Proof: Denote:

(2.11) M=sup {uG(x)\\;xeB(O,gu)} (<w),
(2.12) L=sup $16(x)-G(y)i/ N x-yh; x,y < B(O,@),x ¥y¥ (< ).

1. Existence. Take an xeB(O,@)\ {0%}. Put A = Iixl and choo-
se a 0> 0 such that 0<F-J5< 6+ <@. Put:

(2.13) T=minAd /(2M),1/{4(L+2M/(F-3))])%
and define the operator

(2.18) W:9D=41eCK0,Ty,H); 1(t)e B(x,d) for all t<<0,T)5 —
—> C(<0,TY,H) as:

(2.15) (Hl)(t)=x+./:[G(l("c))—(G(l(t)),l(t‘))-l('c)/ 1) 11d=
for all 1 e 9D and te0,T).

Obviously W(9 )c D and for all 1 and TeD:

(2.16) sup {N(WL)(t)-(WI)(t)li; t<<0,T>5 «(1/2) -sup Lill(t) -
Tn; t e<o, o).

- 264 -



Hence according to the Banach fixed point theorem and Lemma
2, there is k satisfying (2.1) - (2.4) with I=<0,T). Making use
of Lemma 1 we get the existence of k satisfying (2.1) - (2.4)
with I=<0,c).

2. Uniqueness and continuous dependence on the initial con-
dition. Choose ¢ € (0,9), T>0. Let 11, l2 fulfil (2.1) - (2.3)
on <0,). Let &< | 11(0),Ii<(o for i=1,2. Put:

(2.17) c24-(L+2 M/€).
Then for all t e<0,T>:

, . ~t ,

(2.18) i1 (1)-1,()HN =11,(0)-1,(0)l+(c/2) -JG I, (e)-1,il-
-exp(-c-%) exp(+c.T)dx £ Illl(U)-lz(U)H +(c/2)‘sup{||11(t‘)-
-1, ()l -exp(-c.v);7€<0,T>t- jfexp(c. £)d§ = 11, (0) -

-12(0)“+(1/2)o(exp(ct)-1)»sup fl!ll('t,)-lz(‘l:)]l ~exp(-c.t);
v e0,TV}.

Hence we have that:

(2.19) sup illll(t)-lz(t)\l-exp(—ct); te(U,T)é—;’—nll(O)-lz(O)ll +
+(1/2)+sup {\111(t)-12(t)ll-exp(—ct); te<0,T>%.
Accordingly, for all t e<0,T):

(2.20) i\11(t)-12(t)|i «2-exp(cT): xi11(0)-12(0)u.

Lemma 4: Let:

1. {an‘r']‘:’l be a sequence of closed linear subspaces of H,
2. 4¢ "% be a sequence of positive numbers, lime¢ _= O,
n'n=1 o N
A
3. G:B(U,@)C H — H be a completely continuous operator,

5 )
+ 00 - N _
4. {Gn.B(U,SD)r\Hn—i Hn}n=1 be a sequence of continuous opera

tors such that llGny—ﬁyI\ £ ¢, for all n €N and ye B(O,P)r\ Hno

5. -\annC:’ICE(U,@)\{U}, x,e H, for all n € N, XeB(0,¢) \ {0},

lim x_=X,
m—soo N

6. k, solve (2.1) - (2.4) with I= {0,00), 6=6,, x=x_ for all n e IN.

Then there exist an increasing sequence of positive integers
“n*Eﬁ and an abstract function K satisfying (2.1) - (2.4) with
I= <0,m), 6=0 and x=X such that {ki}*r‘:l tends to k on <0,c0)
locally uniformly. 0
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Proof: Denote:
(2.21) M=sup {liGxl; x€B(0,p)t (<o0),
(2.22) 6’=inf-ﬂxn||; neiN$) (>0),
(2.23) @, (£)=(Bk (£)),k (£))/ Ik, ()N? and

(2.28)  y (D)=(6_(k (£)),k ())/ Nk (OI? for all te0,00),
neiN.

Choose a T>0. According to Lemma 2, for all n € IN ard
te0,T>
(2.25) kn(t)=pn(t)+qn(t),
where X
A tA ~
(2.26) p ()=R-exp(- [* @ (PP [F6k (@) expC [* ¢ (P)aPET,

(2.27)  q (t)=x - Texp(- [F ¥ (£)dE)-exp(- [y ¢ (I +(x ).
~exp(- _f;tgan(g)d?)i»j;"[Gn(kn(‘c‘))-a(kn(’c))]-exp(j;”%(f)df)d'n

e ) Bk, @) Texp( [ (a9 -exn( [ (ap)de
are continuous functions.

Using the inequality |exp(a)-exp(b)| £ max {exp(a),exp(b)} -
+|b-a] and other simple estimates, we obtain that for all n eN
and t €<0,T)

(2.28) I\qn(t)\\—’.-exp(T(M+£n)/6)-[(2+TM/6)Tsn+\lxn—$?liJ-
Thus, g, ==%0 on the interval {0,T>.

Obviously, e(B(O,ga)) is a relatively compact subset of H.
For every positive integer n let us denote a finite 1/n - net of
the set 3(8(0,@)) by 3en. For all x,ye H and n € IN put mn(x,y)=
=max(0,1/n-lix-yll). Define the sequence of the continuous opera-
tors {Mn:xeﬁ(B(O,go)) — (y-.z_;e mn(x,y)-y)/(vez_-xnmn(x,y)) e
e (¥ )}"n‘fl. A simple accoun';: gives: lanx—xIIél/n .for all ne IN
and xeg(B(O,g)). For all n,j e iN and te<0,T) put:

(2.29) poy(0)=Reexp(- [Fg (£)aP)+ [T M5 Blk, (D) exp( [, g, (f)dprde.

Then for all n, j& N and t,t e <0,T>

(2.30) Ipnj(t)llé[|l'ill+T(M+1/j)]-exP(TM/ﬁ') and
(2.3 Wp,, ()P, (t)I=1R Texp(- [ g (©)a5)-exp(- [ g (£)aE)) +

+ [ Mk @) TexpC e (§)af)-exp( [ Fg (HdP) dor
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" J: M6 Ck, () - exp( jt’;rq-n(g)dj;)d vl ~exp(TM/5) - (M/6) .

S t-t ] +T(M+1/3) .exp(TM/A)(M/8) - | t-t | +(M+1/3) exp(TM/F)-
Jt-t | =LIRN-(M/6)+(M+1/3) - (1+TM/&)) - exp(TM/6) . | t-t "] .

In virtue of the Arzela-Ascoli theorem for every positive
integer j the set ip . 'I_‘]‘;'l is relatively compact in C(<0,T?,
i(wz U4R%%)) (and also in C(O0,T»,H)). Accordingly, the set

n}vn ) is relatively compact in C(<0,T»,H) as well.

Choose an increasing sequence 4i (T) s 1 of positive inte-

gers. Then there exists a sequence 5:,] (T)j chosen from
i, (T)iw" such that ﬂipJ (T)}nocl is convergent in C(K0,T>,H).
Hence 1k. tends to a k%’ T in C(X0,T>,H). Obviously, the

i, (T) n= 1
set u,-{k (T)(t) neiN,te<o,T>$ Uik 'T(t);t €<0,7>} is compact in

H and for all xeWU:@> \-x“’G Thus, the operator ¢ and the func
tional ¢ : § < u\—>(G§ §)/|i?|| are uniformly continuous on U.

8o k0sT =
Since k (T) = k° on £0,T?, 6 ck (T) =X 6ok and q:ckjn(T)—

R T
= an(T)=$§:=k »! on €0,TY.Hence 1t is easy to see that

(2.32) k% T(t)= IRECIU (T)(t)— limip, (T)(t)mJ (H(DI=13+

m ¥y oo
+ JTBk® T () vexpC [T 6 (< T(g)apd v )

cexp(- S5 @ T(g))df) for all te<o,T>.

By virtue of Lemma 2 we have: k% T satisties (2.1) - (2.4)
with I= <0,TY, G=G and x=X.
Obviously, there exists a system of increasing sequences of

positive integers {&jn(N)}‘:’“li;‘“’I with the following properties.

1. For all N € IN the sequence ‘\Jn(N+1)§*'n°:1 is chosen from the
sequence {j, (N)}“‘J

2. For all N €N the sequence -YkJ (N)}n ) tends to a mapping
KoM satisfying (2.1) - (2.4) w1th 1= <0,N?, G= & and x=X in
C(LO,NY,H).

Define R:40,00) —> S(0,0%1); ®(£)=k°*N(t) on the interval
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{N-1,N) for all N € IN. Obviously, K satisfies (2.1) - (2.4)
with I=X0,00), G=a and x=X. At the same time the sequence
‘(k. V -1» where i =3 (n) for all neIN, tends to Kk on €0,0)

locally uniformly.

Lemma 5: Let:
1. H be a finite dimensional subspace of H,
2 G:B(O,@)c H — H be a completely continuous operator,
3. 6’e(0,§o).

Then there exist a sequence {Hn};:’l of finite dimensional

subspaces of H and a sequence XGn:B(U,G)r\(’l-‘I'+Hn)—> Hn3+l:’°1 of

Lipschitz continuous operators such that thy—Gyll‘—él/n for all

neliN and y<B(0,8)n (ﬁmn).

Proof: For every positive integer n let us denote a finite
1/(2:n) - net of the set G(B(0,8)) by ?Cn. Take a sequence
{M G(B(O 6)) —H -%(3{ )} of continuous operators such
that \lM x-xlic1/(2. n) for all n e IN and st(B([] 8)).

Choose an n ¢ IN. Let {e Rl { and -ie ...,eri (rZp) be

an orthonormal basis of H and H+H respect1ve1y.

~ e it
(2.33) For all z e(H+Hn)n B(U,G):MnGz= PR fi((z,el),...
.,(z,er))-ei where fi (i=1,2,...,p) is a real function
of r real variables defined and continuous on B= {71=(711,...,Lr)€

v, 2, 2y,
€ R 32 mi=e ¢
h
(2.34) fi(’l)=(MnG(}§1 nj-e.),ei) for all n e B.

For every i=1,2,...,p there exists a real polynomial P such
that for all meB:|f. (-q) -P. (n)l-—l/(Z n-pl/2) (see 171). Defme
the continuous mapping G ZO 63(\(H+H )—>H as:

o PEP—
(2.35) Gn(Z)’t§4 Pi((z’el)""’(z’er))'ei for all zeB(0,6) N

n(ﬁ«-H )

and denote

(2.36) L, J-sup {I(6P /3m)(§) 15 §e B (<oo) for all i=1,...,p
and j=1, r.

Then:
(2.37) for all zeB(O,G‘)n(ﬁ+Hn): 16z-6z I\é.IIGz-MnGZI\+
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n
+ lMnGz—anﬂ=ﬂGz—MnGzﬂ+(L§%1(fi((z,el),...,(z,er))—

H
P (z,e)), e n(2e WMDY 22 1/(2em)+(Z, (1/(20nept 2 DH/Z
=1/n and

L=1

i . - 3 n
(2.38) for all z,z e B(0,6) A (H+H ):lI6_2-6 2 I1%=, =, (P, ((z,e)),
n“ °n i 1
"

2 5 2 X
.oy (z,e))-Pi (2 ,el),...,(z ,er))) ﬁi§: (@

L..|(z-2~
14 1J|( :

H " 2

ej)l)zu_z = L2)0z-2 2.

i1 3-1 1)

Lemma 6: Let the operator G be completely continuous on
B(0,p). Then for every xe.B(O,@)\ {0% there exists at least one
solution k of the problem (2.1) - (2.4) with I=<0,w). In addi-
tion, I k(t)U=lx | for all te<0,w0).

Proof: Let an x eB(U,@)\ 10% be given. Choose a 6 c(ixi,p).
Lemma 5 guarantees the existence of a sequence {Hn':fl of finite
dimensional subspaces in H and a system {anﬁzﬁjgjf\(%ﬂ{x}+Hn)-f>
— Hn‘;fl of Lipschitz continuous operators such that for all
nelN and ye B(0,6)n (LAx}+H ): 6, y-Gyll £1/n. Further, according
to Lemma 3 for all n eIN a kn:<0,oo)~—» éﬁ{x5+Hn satisfying (2.2) -
(2.4) with I=40,c0) and G=G_ has to exist. Finally, in virtue of
Lemma 4 we get that there exist an increasing sequence {inﬁgfl c
c IN and a k satisfying (2.1) - (2.4) with I=40,00) such that

{ki §¥fl tends to k on <0,c0) locally uniformly.
n

The following example shows that the complete continuity of
G does not guarantee the uniqueness of the solution of the prob-
lem (2.1) - (2.4) for all initial conditions x aB(O,@)\\{O}
(xeB(0,8)\40% with arbitrary 6 «(0,p), respectively). A poten-
tial operator G with a potential F satisfying the assumptions of
Theorems 1 and 2 is chosen.

Example: Consider F: RZ— RL, F(x,y)=x2+y2+|x|3/2-y2 tor
all x,ye R. The functional F is Fréchet differentiable on Rz
and uniformly differentiable on every ball in |R2; F':IRZ——>|R2,
F (x,y)=(2:x+(3/2)-sign(x) - x|/ 2.y2, 2.y+2:|x|3/2)7 tor all
X,y elRl. The Fréchet differential F"(0,0) exists; F"(0,0)=
=diag(2,2). The equation (2.3) is represented by the differential
system:
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(2.39) kj(0)=[-2- 1k, (D132 K2+ (3/2) Iy (D12 kG0
csign(k, ())/[K3()+k3(D)],
¢ = 7/2 3/2 .3
kz(t)—[z-lkl(t)l -kz(t)—(3/2)~|k1(t)l vk (0))/

/[k%(t)+k2(t)J
for k=(k,,k 2)
Take £:0, V37T) — RY; £(2)= [F12 ag/c§t/2. g . 3-7-§ )0
and 6> 0. Then for every J'e <0,00? the mapping kd-;kd-(t)=(lll,6’)T
for all te<0,d), ky()=(t6.871@> 2. (t-6)),6-1-1271 672

-('c—.ﬁ’))]z)l/z)T for all te<d,o); is a solution of the system
(2.39) with the initial condition k1(0)=0, k2(0)=6’. The problem

(2.39), k(0)=c, k2(0)=(52—a)2)1/2, 0< |w|< 6- V377 has the uni-
que solution k(t)=(6’.sign(w)-f—1(63/2- t+£@ L | ), 6(1-
132 tp67 L 0N HYHT.

Remark: Although the functional F defined in the foregoing
example fulfils the assumptions of Theorem 1 (and Theorem 2, res-
pectively), it is obvious that every mapping k:<0,00 ) =<:5(0,6) —>
—» 5(0,8), where 6 >0 and k(-,x) solves (2.1) - (2.4) with H=
= IR2, 1=<0,e0) and G=F ', is not continuous.

3. Auxiliary assertions. In this section several simple and

mostly well known assertions are summarized.

Lemma 7: Let H be a Hilbert space and let §o>0. Consider a
continuous operator G:B(O,@)CH —>H and define the operator
D:B(U,g)\{O}——»H by the formula:

(3.1) D(x)=6(x)-(6(x),x)- x/'llxll2 for every st(O,@)\{M Take
6c (0,9),x,yeH, y+0 and {x JHh% € 5(0,6) such that x,—>x,
G(xn)—->y and D(".n)'—’ 0 in H. Then xg—> x in H and (y,x)- x/6 -
-6(x)=0. ’

Proof: Evidently

. 2,_ 4 N
(3.2) m1;210[(Gxn,xl_l).xn/l\xnh J-,,L]'_.I,TD[GXH-DXn]_y +0
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and consequently
R Z 13 J . 2 -
(3.3) |(y,x)|-m11’u:»|(Gxn,xn)|-m1_1'mw[6 I(Gx %) x o/ Hx 0 =
=6-llyll+0.

Thus, (Gxn,xn)#ﬂ for arbitrary sufficiently large n € IN and

(3.4) xn=(Gxn-Dxn)-62/(Gxn.)<n) —> Y 62/(y,x)=x for n—> 00 .
Then obviously Gx_ —> Gx=y and Dx —> Dx=0 for n — oo ; Ixli=6.

Finally, (y,x). x/6‘2—Gx=(Gx,x)-x/lxllz—ze -Dx=0.

Definition: Let R.be a metric space.

1. Let MI’MZC R. Suppose that a continuous mapping f:Mlx <o,
1> —> R such that f(x,0)=x for all xeM1 and f(M1,1)=M2 ex-
ists. Then we say that the set M2 is a continuous deformati-
on of the set M1 within R.

2. Let McR. We say that the set M is contractible within R if
there exists an ae€R such that {a} is a continuous deformati-
on of M within R.

Lemma B8: Let R be a metric space. Let MZCR being contract-

tible.within R be a continuous deformation of Mlc R within R.Then
M1 is contractible within R.

Proof is obvious.

Lemma 9: Let H1 be a finite dimensional subspace of a Hil-
bert space H and let P1 be the orthogonal projection of H onto
H . Put R= {x eH;Plx#lJ}. Then:

1. For every @ >0 the set 5;o=5(0'(°)" H1 is not contractible
within R.

2. Every subset U of R such that Pl(u)n%{xolw @ for an X, €
e H)N\ 10% is contractible within R.

Proof: 1. Assume the existence of © > 0 such that the set
Sp is contractible within R. Then an XOER and a continuous map-
ping £:S_x<0,1> —> R satisfying the relations f(x,0)=x and
f(x,1)=xolfor every x € S, have to exist. Consider the continu-
ous mapping g:B([],gp)m.H1 —> S, given as:

|4
(3.5) g(x)= -Q.Plf(p-x/llx“,l- le\\/p)/l\Plf(@-x/I\xIl,l- Wx /@)

for all xe B(0,0) nnlxiol;g(0)= - @-Px /P x .
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According to the Brouwer fixed point theorem there exists x_e S
such that x§°=g(x@)= -f(x_. ,0)= —XS"' However, it is impossible.

2. Define the mapping f:U%x<€0,1) — H by the formula
f(x,t)=(l—‘t:)-x+t-x0 for all xe U and te<0,1). Obviously, this
mapping is continuous; f(x,0)=x and f(x,1)=x0 for all xe U
The existence of (tl,xl) €(0,1)x U such that Plf(xl,t1)=0 imp-
lies P1x1=t1- xo/(tl—l)e Pl(u)n%{xoi, which contradicts our
assumptions.

4. Proof of the bifurcation theorem. We confine ourselves
to a proof of the fact that every eigenvalue A+ 0 of F"(0) is a
bifurcation point of A.x-F (x)=0. A proof of the converse imp-
lication is obvious.

1. Choose an eigenvalue 20>0 of F"(0). Put H0=Ker( .7\0-1—

" - " " L i
-F"(0)), Hl—:C(ALZJ%Ker(?\-I-F (0))) and H,=H]. Obviously, the

spaces H0 and H1 are finite dimensional and the one H2 is clo-
sed. Denote Pi the orthogonal projection of H onto Hi for i=1,2
and put R= (er;Plx*O}. Without loss of generality we may as-
sume that F(0)=0. Let us define the functions w,&:(0,p) — Rl
as:

(4.1) eo(8)=sup{|F(x)-(F"(0)x,x)/2 I/\'Ix"z; x ¢ B(0,8) \ {01},

(4.2) & (&)=sup LNF(x)-F"(0)xI/Ux1; x ¢B(0,8)\ $0%}% on (0,p).

Evidently, the functions w, & are increasing and 1lim c(6)=
: 6 — 0+

= lim &(6)=0.

6 >0+

Further, denote /A the set of all eigenvalues of F"(0); put
?\1=supA and ?\2=sup LA ﬁ(O,?\D)U{O}J. Choose a 605(0,@)
such that 2,-(A, - A, - 4-@(6))/(A] - A,)-d(6,) >0. Put:
(4.3) N =C A= Ay 4-w(6))/ (X - A,), dy= A, 0)- d(6,).
Obviously, the constants d‘l, or"2 are positive. Denote:

(8.4)  DO)=F (x)=(F"(x),%) -x/IxI? for all xeB(0,p)\ {0%.
Finally, choose an arbitrary 65(0,6’0).

2. Choose an xe S(0,6)n Hl and consider k satisfying
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(2.1) - (2.4) with I=<0,) and G=F  (the existence of k is
guaranteed by Lemma 6).

(4.5) For all te<0,0):lk (£)2=(F (k(£))-(F (k(t)),k(t))-
-k(t)/nk(t)ﬂz,k'(t>)=<F'(k(t)),k'(t>)=(u/dt)F(k(t))

and therefore

(4.6) |r(k<t))=F(x)+fvt k@M 2dT 2 F(x) = (F"(0)x,x)/2 -

-w(8) Ix1? > [ Ag/2- @)1 1k (1))2.
Further,
(4.7) for all t e<0,00):F(k(t)) £ (F"(0)k(t),k(t))/2+co(6)-

M CENZ=CF (0P k()P K(£))/24 (7 (0)P(£),P k(1)) /2+
+ (6 k()N 2 AL P k(£)12/24 Ay Pk (D)12/2+ w(6)-
SRCONZ=CA - 20+ 1P k(£)12/2+ Ay Ik (0)2/2+ wo(e) -
k(N2
From (4.6) and (4.7) we obtain that
(4.8) WP k()N 2z g k(D)2 for all te<0,o00).

3. We shall show that for every T>0 a k satisfying the
conditions (2.1) - (2.3) (I=<0,e0), G=F’), k(0)eH;ns(0,8)
and k(T)e H +H2 exists.

According to Lemma 5 a sequence {H i*“’ of finite dimensio-
nal subspaces of H and a system {Gn B(_U—ﬂ)n (H +H )-—>~n§+n°°1
of Lipschitz continuous operators such that for all ne IN and
y eﬁ?fr7i§ n(H1+Hn).HGny -F'yl&1/n, exist. Further, according
to Lemma 3 for every n e IN and x e S(0 ,6)N H1 there exists the
unique k n(e>x) satisfying (2.1) - (2.4) with I= <0,c0) and G= G,
Mureover, for every n € N the mapping K :{0,00)x 5(0,6)AH
—> 5(0 6)1\(H +H ) is continuous.

Choose T>0 Let it }" 1€€0,T7, ix 3*’“’ € 5(0,8) nH, and

‘pn};wlc N, p, Ao , such that for all n elN Pikpn(tysx, ) o,

exist. Without loss of generallty we may assume that {t &’“ and

(xn}* converges to a 1 e<0,T> and an X e S(0 G)r\Hl, respect1-

vely. For the sake of brevity write 1 instead of an(v,x ).

According to Lemma 4 there exist an 1ncre351ng sequence {r }

of positive 1ntegers and a k satisfying (2.1) - (2.4) with

I=<0,0), 6= and x=X such that {1 e n=1 tends to k on {0,m)
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locally uniformly. Thus:

(4.9) I\Plk('t\)ﬂél\Pllk(?:)—k(trn)]l| WPy Tk(E, -1, (4, )4

z \Ik(%)-k(tr M +sup fik(t)-1, (£)h; te<0,T>3.
n n

Passing to the limit (n —cv ) we obtain that Plk('t\)=0. Howev-
er, from (4.8) we have: IIPlk(’t\) Il_’d'.tl/z'llk(,t\)ll = d‘}/z- 6>0.

Hence there exists an no=n0(T) e IN such that for all positi-
ve integers nZnO, te<0,T> and x € S(0,6)n H_l:kn(t,x)e R. Evid-
ently, for all nZno:kn(T,S(U,‘S)h Hl) is a continuous deformati-
on of S(0,8)n H1 within R. According to Lemma 8 and the first
part of Lemma 9 for all nZnO:kn(T,S(U,G)r\Hl) is not contract-
ible within R. Further, in virtue of the second part of Lemma 9
we have that for every positive integer n2 n, an QneS(O,G)n H1
such that Plkn(T,Qn)eHD— i.e. kn(T,§<‘n)<~:H0+H2 - has to exist.
Finally, according to Lemma 4 there exist an increasing sequence
-\un’i';j‘fl of positive integers greater than n0=n0(T) and a Kk satis-
fying (2.1) - (2.3) with I=<0,00) and G=F  such that

(ku (-,;?u )};‘:1 tends to k on <0, ) locally uniformly. Thus,
n n

N - o A ~ _ . A "
k(O)_ml-iﬂ) kun(O,xun)e 5(0,8)n H1 and k(T)-ﬂlﬁan‘9 kun(T,xun)cH0+H2.

4. Choose an increasing sequence "anna:l of positive num-
bers such that li_’mw Tn=oo . Then for all n € IN there exists a T<n
mn -
satisfying the conditions (2.1) - (2.3) (I=<0,00), G=F'),

Qn(O)e 5(0,6)n H, and ?(n(Tn)ﬁ H,+H,. According to Lemma 4 there

2°
exist an increasing sequence {anr'mo:ol c IN and a f(m satisfying
(2.1) - (2.3) with I=<0,e0) and G=F " such that ik "%, tends

A n
to /I\<°u on <0,00 ) locally uniformly. Obviously, k. (0)¢ S(U,G)nHl.

For every T>0:
(8.10) FRy (MFF(Ry, (00)= £ (F7(Ry, (43),k5(1))dt =
- [y Wig, (onZat= [T ok, (Hn?at.
Because the operator F’° is completely continuous on B(O,@), the
functional F is bounded on B(0,p) and hence J;mlinﬁw(t)llzdt< @ -

Accordingly, there exist a sequence of positive numbers {%n‘ 0nu=‘1

A A ~
and x,yeH such that ¥_Aco and D(k,, (1)) —0, &k, (})) —x,
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F'(Qw(?:n))—> y in H. For every n € IN:
. AN A N A A A
(4.11)  (F (R (10),P Kg (R0 2 (F"(0)Reo (£),P K, (R 0)-D(6).
~ " 2 + A~ A 2
Wy EDNE 2 APk, OIS - Be). IK (’t‘n)“?Z
A
2y Mgy T N2= 562,
The last inequality follows from (4.8). Further, passing to the
limit (n —>o00 ) in (4.11) we get:
(4.12) (y,P x) 2 0, -62.
Thus, y=+0. According to Lemma 7 an(?n)—" xe S(0,6) and
(4.13) A.x-F(x)=0, where A =(y,x)/82=(F (x),x)/62.

5. For every n <IN put /1\n='l2 , @ =T . Since the functional

v.’“n v
. n n .
F is continuous on B(0,p), for every n € IN there exists an m_=
=m,(n) € IN such that for all mZmD:F(Qw (?n))i- F(’im(?n))+ 6°.
Take an n € IN..Choose a positive integer mIZ mo(n) satisfying

A > c? e (R B
'l:’mlz t,. Then for all m—ml.F(lm(fr_’m)) F(lm(tn))-

7, -

- fi\""ll'im(g)llzdgzo and thus F(Ko (£ )2 F(T (¢ ))+ 6>, Since
T @ )eH +H,, F(Ry (22 F (DT (v ),1 (¢ ))/2+ w(6)6% 672
mTm’ € Mg*higs % *"n’t T nTn’s 0T -

£02,/2+w(6)+ 6162, Passing to the limit (n—>c ) in the
last inequality we get:
(4.18) F(x)£ LA /2+(@)+61.62,

Further, it is obvious that for all n e lN:F(Qw(?n)) z
Z Fkgp (0)) 2 (F"(0)Rgp (0),R 0 (0))/2- 2(8) - 622 [ /2- (6)1-62.
Hence passing to the limit (n —>c> ) we have:

(4.15) F(x) 2 [A,/2-w(6)]-62.
The inequalities (4.14) and (4.15) imply: |F(x)- 9\06'2/2|é(6’+
+w(6)). 62. Accordingly: )

(4.16) 10 = A |=](F (x),x)/62- Al £ 8 2.0 (F (x)-F"(0)x,x) |+
+|2:F(Ox)=(F"(0)x,x) | +|2-F(x)- Adszlls D(8)+b w0 (6)+2-6 .
The proof is finished.
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