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Abstract: The parity of orthogonal automorphisms of some
finite abelian groups is investigated.
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The concept of orthogonal permutations of groups is well
known and these permutations were used by many authors in vari-
ous situations (see e.g. {1] for further details and references).
In the present note, we are investigating the parity of orthogo-
nal automorphisms of some finite abelian groups. The results al-
low us to construct idempotent quasigroups with prescribed order
and parity of translations.

1. Introduction. Let Q be a quasigroup (i.e. a groupoid
with the unique division). For each aeQ, we have two transfor-
mations of the underlying set Q; they are called the left and
the right translation by a and they are defined by %(a,Q)(x)=ax
and R(a,Q)(x)=xa for every xe Q. Since Q is a quasigroup, both
these transformations are permutations, and hence they belong to
the permutation group $(Q) of Q. We put ’N:I(Q)=<;ﬁ(a,ﬂ);aeﬂ>§
S¥(Q); M(Q)=<R(a,D);a€0Q> and N(D)= <M (D) v M (Q) ) -

A quasigroup Q is said to be
- of type (1) if M(Q) cG(Q) (the alternating group);

- of type (2) if onl(u) c a(Q) and R(a,Q) ¢ (Q) for each acQ;
- of type (3) if M (Q) ¢ G(Q) and %£(a,Q) ¢ G(Q) for each acQ;
- of type (4) if %(a,Q), R(a,Q) ¢ &(Q) for each acQ.

1.1. Lemma. Let n=z2, Sl,...,Sn be finite sets of orders
1»---»>m, resp. and let £, e 9(S)),...,f, e ¥(s,). Put S=5, =
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X ...% Sn, f=flx o 5w X fn and ni=m1,...,mn/mi, i=1,2,...,n. Then

n.
sgn(f)= gzi1(sgn(fi)) ' In particular, if n=2, then sgn(f)=

m m
=sgn(f1) 2.sgn(f2) L

2. Orthogonal and complete mappings. In this section, let
G be a group. A permutation h of G is said to be complete if the
mapping x — h(x)x is again a permutation of G and, moreover,
h(1)=1. An ordered pair (f,g) of permutations of G is said to be
a pair of orthogonal permutations of G if f(x'l)x=g(x) for every
x €6 and, moreover, f(1)=1. The permutation g (which is determin-
ed uniquely) is then called the orthogonal mate of f. A permuta-

tion of G is called orthogonal if it possesses the orthogonal
mate.

Now, we shall formulate some easy observations concerning

orthogonal and complete mappings. They are collected here Jjust
for the sake of reference.

2.1. Lemma. A pair (f,g) of permutations of G is a pair of
orthogonal permutations iff the pair (g,f) is so.

2.2. Lemma. (i) If (f,g) is a pair of orthogonal permuta-
tions of G, then the mappings x —a—f(x)x_l=g(x_1) and x —= f(x_1)=
=g(x)x-1 are complete permutations.

(ii) If h is a complete permutation of G, then the mapping
X —> h(x_l)x_l is a complete permutation and (x -— h(x_l), X =
—> h(x)x is a pair of orthogonal permutations of G.

2.3. Lemma. (i) If G. is finite and f is an automorphism
of G, then f is orthogonal iff f(x)<#+x for any l+x¢ecG.

(ii) If G is finite and commutative and h is an automorph-
ism of G, then h is complete iff h(x)-4t=x-l for any 1+ x¢€G.

2.4. Lemma. Let H be a group, (f,g) a pair of orthogonal
permutations of G and (h,k) a pair of orthogonal permutations
of H. Put K=GxH, p=f h and g=gxk. Then (p,q) is a pair of or-
thogonal permutations of the group K. Moreover, if both f and h
(resp. g and k) are automorphisms, then p (resp. q) is an auto-
morphism.

2.5. Lemma. Let (f,g) be a pair of orthogonal permutations
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of G. The following conditions are equivalent:
(i) Both f and g are automorphisms of G.

(ii) G is commutative and f is an automorphism.
(iii) G is commutative and g is an automorphism.

Now, suppose that G is finite. We denote by Upl(G) (resp.
ODZ(G), 0p5(6), 0p,(G)) the set of pairs (f,g) of orthogonal
permutations such that sgn(f)=1=sgn(g) (resp. sgn(f)=1, sgn(g)=
=-1; sgn(f)=-1, sgn(g)=1; sgn(f)=-1=sgn(g)). Moreover, if G is
commutative (see 2.5) and 14 i< 4, then we put Oai(G)=0pi(G)(’\
N (Aut(G)= Aut(G)).

3. Orthogonal mappings and idempotent gquasigroups. In this
section, let G be a group and (f,g) a pair of orthogonal permuta-
tions of G. We shall define a new binary operation, say o , on
G by x oyzf(xy-l)y=g(yx'1)x for all x,ye G and we denote by
0’(G,f) the corresponding groupoid G(o ). It is easy to see that
G(e ) is an idempotent quasigroup. The following results are
clear.

3.1. Lemma. Put G(x )= 0(G,g). Then the quasigroups G(o )
and G(x ) are opposite, i.e. xoy=yx x for all x,ye G.

3.2. Lemma. R(x,6(c¢ ))= R(x,60f R(x"L,6)=R(x,6)f R (x,6) L
and (x,6(e )= R(x,6)g R(X_I,G)= R(x,6)g R(x,G)'l. In particular,
R(1,6( < ))=f and &£(1,6(e ))=g.

3.3. Lemma. Suppose that f (resp. g) is an automorphism of
G. Then R(x,6( ¢ ))= R(g(x),6)f (resp. £ (x,6(<c ))= R(f(x),6)g)
and 7nr(s(o ))= <7nn(G),f> (resp. 7n1(G(c ))= <7nr(G),g)).

3.4. lemma. Suppose that f, g are automorphisms of G. Then
Mo ))= <M (6),f,9>-

3.5. Lemma. (i) hMh l=M for any h € 'mt(G), where

M={R (x,6( o ));xeBG3.
(ii) hNh"l=N for any h € M_(6), where N={s£(x,6(e ));xe G3.
(iii) The group ’m.r(G) is contained in each of the groups

Moy M(BCe ), Mgy (M (BCe 2)) and Mgy (M(BCe ).

3.6. Lemma. Suppose that G is finite.
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(i) If both f and g are even, then G(e ) is of type (1).
(ii) If f is odd and g is even, then G(< ) is oi type (2).
(iii) If f is even and g is odd, then G(e ) 'is of type (3).
(iv) If both f and g are odd, then G(c ) is of type (4).

3.7. Lemma. If f is an automorphism of G, then x cy=
=f(x)g(y). If g is an automorphism of G, then x cy=g(y)f(x.

An idempotent quasigroup Q is said to be orthomorphic if
there exist an abelian group Q(+) with the same carrier and a
pair (f,g) of orthogonal automorphisms such that Q(e¢ )=
= U'(Q(+),f). An idempotent quasigroup Q is said to be orthostrop-
hic (left orthomorphic, right orthomorphic) if there exist a
group Q(+) (not necessarily commutative) and a pair (f,g) of or-
thogonal mappings such that Q= C’'(Q(+),f) (and f is an automorp-
hism, g is an automorphism of Q(+)). Clearly, orthostrophic (left
orthomorphic, right orthomorphic, orthomorphic) idempotent quasi-
groups are closed under cartesian products.

3.8. Remark. For a group G and a pair (f,g) of orthogonal
permutations of G we could define an idempotent quasigroup
J(G6,£)=6(& ) by x€y=xf(x-1y)=yg(y'1x). Then %L(x,6(@ ))=
= (x,6)f Z(x,6)") and R (x,6(®))=L(x,6)g£(x,6)7L. 1f T is
the group opposite to G, then 0(G,f)= U(G,g).

4. Orthogonal automorphisms of cyclic groups. In this sec-

tion, let nZ3 be an odd positive integer (cyclic groups of even
orders and infinite cyclic groups have no orthogonal automorph-
isms) and let G=G(+)=Zn(f)= {0,1,...,n-1% (the additive group of
integers modulo n). Further, denote by G*=Z: the multiplicative
group of invertible elements of the ring Zn' Hence G*= {i;l=<i=<
zn-1,gcd(i,n)=13% and card(G*)= ¢(n), where ¢ denotes the Euler
function. Notice that ¢(n) is an even number. For any me G* we
have an automorphism f_ of G defined by fm(x)=mx for each xe€G.
Since G is a cyclic group, every automorphism f of G is equal to
fm for some me€ G* and the mapping f — m is an isomorphism of
Aut(G) onto G*. For meG™, let 5(m)=sn(m)=sgn(fm).

4.1. Lemma. The following conditions are equivalent for
meG*:

(i) f=f_ is orthogonal.
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(ii) m-1¢€G*.
In this case the mapping g:x — (1-m)x=(m-1)(-x)=(nm-n-m+1)x
is the orthogonal mate of f. Moreover, sgn(g)=s(n-1)s(m-1).

4.2. Lemma. n-le G* and s(n—l):(_l)(”‘l)/z.

Proof. fn-l is composed from (n-1)/2 2-cycles.

4.3. Suppose that n=pr, where p=3 is a prime and r=1. Let
ZEmépr-l be such that m generates the group G*. We shall find
the decomposition of fm into cycles. If r=1 then fm is a (p-1)-
cycle (since m generates Z;=Zp-{0}), and hence sgn(fm)=sp(m)= -1.
Assume that r=2 and, for every i=0,},...,r—1, let Ai be the set
of je G such that p1 divides j and p1+1 does not (in Z). Then
G-40% is the disjoint uniqn of the sets A.1 and fm(Ai)=Ai for any
i. Moreover, card(Ai)=pr_l-1(p—1) are even numbers. Clearly, the
set A.1 contains just all elements from G which have order pr'1
in G. However, each subgroup of G is cyclic, and hence, if a,b e
= Ai’ then b=ja for some jeG¥. But j is a power of m and now it
is clear that fmIAi is a cycle. In particular, sgn(fm)=(—1)r.

4.4, Lemma. Suppose that n=pr, where pZ3 is a prime and
rz1l. Let me G* be a generator of G¥.

(i) s(m)=(-1)F.

(ii) If r is even, then every automorphism of G is even and
s(i)=1 for every ie G¥.

(iii) If r is odd, then card {ic G*;s(i)=1% =card {ie G*;
s(i)=—1§=pr'1(p—l)/2.

Proof. See 4.3.

4.5. Lemma. Let n=pr, where p2 3 is a prime and either p>7,
or pe {3,5% and r is even. Then there exists i e G™ such that
i+l e G™* and s(i)=s(i+l)=1.

Proof. If either n=7 or pe 43,5}, then we can put i=1 (use
4.4(ii)). Now, assume that p>7, n>11 and that the assertion is
not true. Then s(1)=1, s(2)=-1, s(4)=s(2)s(2)=1, s(5)=-1, s(9)=
=s(3)s(3)=1, s(10)=s(2)s(5)=1, a contradiction.

4.6. Lemma. Let n=pr, where pZ3 is a prime and rZ 2. Then
s(kp+1)=1 for every 0<k< pr_l-l.
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r-~1
Proof. (kp+1)P =1 in G (by induction on r), f
automorphism of odd order and s(kp+1)=1.

kp+1 is an

4.7. Lemma. Let n=pr, where p=3 is a prime and r is odd.
Then there exists i€ G* such that i+1eG* and s(i)=1, s(i+1)=-1.

Proof. Let meG* be a generator of this group. There exist
Uél<épt_l—1 and 1< j4p-1 such that m=kp+j. Consider the numbers
kp+1l, kp+2,...,kp+p-1. By 4.6 and 4.4(i), s(kp+1)=1 and s(kp+]j)=
=-1. The assertion is now clear.

4.8. Lemma. Let n=pr, where pZ3 is a prime and r is odd.
Then card {i;1=1i<p-1,5(i)=1% =card {i;1=1i<p-1,s(i)=-1} =
=(p-1)/2.

1

Proof. There are pr' elements in G* of the form kp+l. As

(kp+l)pr 1=l in G, the Sylow p-subgroup S< G* is formed exactly
by all these elements. Consider the set P= {1,2,...,p-1;. If
i=fkp+1(j) for any i,j:z P, then i-J is divisible by p, and hence
i=j. Therefore G*=PS=SP, and by 4.6 card iiz G™;s(i)=1' =
=card(S)+card {i e P;s(i)=1}. The rest follows from 4.4(iii).

4.9. Lemma. Let n=pr, where p> 5 is a prime and r is odd.
Then there exists i€ G* such that i+le G* and s(i)=s(i+l)=-1.

Proof. Assume that this is not true.. As s(1)=1, by 4.8 we
have s(2i-1)=1, s(2i)=-1 for any 1=1i% (p-1)/2. However, s(4)=
=s(2)s(2)=1.

4.10. Lemma. Let n=pr, where pZ5 is a prime and r is odd.
Then there exists ie G* such that i+le G* and s(i)=-1, s(i+l)=1.

Proof. Assume that this is not true. We have s(1)=1, s(4)=
=s5(2)s(2)=1, and hence s(2)=s(3)=1. Now, by induction on i, we
are going to show that s(i)=1 for any icG*, p~i~4. If i is not
a prime, then s(q)=1 for each prime divisor q of i, and so s(i)=
=1. If i is a prime, then p >i+l, i+l is even, s(i+l1)=1, and so
s(i)=1.

4.11. Lemma. Let p=Z2k+l, k=1, be a prime.

(i) If k is even, then 4 divides p®-1 for any r :1.

(ii) If k is odd, then 4 divides pr-l iff r is even.
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Proof. We have pr+l-1=p(pr-1)+p—l.
Put specc(n)= {ij;l=1i+= A,Cai(G)#=ﬂ¥.
Ty Ty
4.12. Proposition. Let n=p, ceePy where 1= UyTyy...,T
and 3 2 Pi< Pp<...< p, are odd primes.

u

(i) 1If piZ 7 and r; are odd for some 1< i£ u, then specc(n)=
= {1,2,3,4%.

(ii) 1If p1=3, rlis odd and the numbers Tys-..,C, are even, then
specc(n)= 14+%.

(iii) If all the numbers r; are even, then specc(n)= 11%.

(iv) If either p1=3, p2=5, T, is odd and the numbers r r

17 T3see-
-»T, are even or pl=5, r, is odd and the numbers rz,...,ru are

even, then specc(n)= {2,3,4%.

(v) 1If p1=3, p2=5, Ty r, are odd and r3,...,ru are even, then
specc(n)= i1,2,35%.

Proof. The ring Zn is isomorphic to the cartesian product

Ty

of the rings Zn » Ni=Ppy- The assertion may be now derived easily
i

from 1.1, 2.4 and the results of this section.

5. Orthogonal automorphisms and finite fields. In this sec-
tion, let T be a finite field of order n=pr, pZ2 a prime and
rz1l. For every az T*=T-:0% we have an automorphism £, of T(+)=T
defined by f,(x)=ax. We put s(a)=sT(a)=sgn(fa).

The prime subfield of T will be denoted by P.

5.1. Lemma. (i) If p=2 then s(a)=1 for every ae T*.
(ii) If p=3, then card 1a:T%;s(a)=1}=card ya . Tis(a)=-1:=
=(n-1)/2.

Proof. (i) 7% is a group of odd order.
(ii) If a<T* is a generator of T*, then s(a)=-1. The rest
is clear.

5.2. Lemma. Suppose that pz3 and r= 2. Then there exist
a,b,dec T-P such that s(a)=s(a'1)=s(a'l+1)=s(d+1)=—l and s(d)=
=s(a+1)=s(b)=s(b+1)=1.

Proof. If ceT-P, s(c)=-1, then s(c'1)=-1 and s(c+l)=
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=s(c)s(c'1+1)=—s(c_1+l). If S(C—1+1)=—1; we put a=c, otherwise
1 Further, put d=a+max {i;s(a+i)=1 and 1« i< p}. If s(a+2)=
=1, we put b=a+l; in the other case let b=a(a+2). Then s(b)=
=s(a)s(a+2)=1 and s(b+l)=s(a+l)s(a+1l)=1.

Put specf(n)= 4i;1< i<4, Dai(T(+))r\(Lx L) +@%, where L=
= -\faac-.T"?.

a=c

5.3. Proposition. Let n=pr, p22 a prime and r= 1.
(i) If pz7, then specf(n)=41,2,3,4%.

(ii) If p=2 and r> 2, then specf(n)= 11}.
(iii) If p23 and r> 2, then specf(n)= 11,2,3,47%.
(iv) specf(2)=@, specf(3)= 14} and specf(5)= {2,3,4}%.

Proof. Use 5.1, 5.2 and 4.12.

6. Summary. For a positive integer n, let spec(n) designa-
te the set of 1<i< 4 such that Oai(G) is non-empty for a finite
abelian group of order n.

6.1. Proposition. Let nzZ3 be odd.
(i) If n is divisible by a prime = 7, then spec(n)= 41,2,3,4%.

(ii) If n is divisible either by 9 or by 25, then spec(n)=
= £1,2,3,8}.

(iii) spec(3)= 14}, spec(5)= 12,3,4} and spec(15)= 41,2,3}.
Proof. Apply 4.12, 5.3, 2.4 and 1.1.

6.2. Proposition. Let nZ4 be an even number divisible by
4. Then le spec(n).

Proof. Apply 6.1, 5.3, 2.4 and 1.1.

6.3. Corollary. 1 espec(n), provided either n=7 is odd or
n is even and divisible by 4.

6.4. Corollary. 4e spec(n), provided n is odd and n#15.
6.5. Corollary. 3,2espec(n), provided nZ5 is odd.

6.6. Corollary. Let nZ2 be an integer.
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(i) 1If either nZ7 is odd or n is divisible by 4, then there
exists an orthomorphic idempotent quasigroup of type (1) and
order n.

(ii) If n25 is odd, then there exists an orthomorphic idempo-

tent quasigroup of type (2) (resp. (3)) and order n.

(iii) If n#15 is odd, then there exists an orthomorphic idem-

potent quasigroup of type (4) and order n.
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