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1. This remark concerns the categorical (direct) product of
simple graphs. In the paper [1] the formula for the distance bet-
ween vertices in the product of bipartite graphs is given and
the diameter of this product is also determined. In [2] these
questions are examined for non-bipartite graphs. We show a simp-
le approach to the solution of these questions based on the noti-
on of the odd and even distance between vertices.

The graphs we consider are undirected and have no multiple
edges and no loops; we call these graphs simple. Let us recall
that the (direct) product 1EII Gi of a family {Gi;is 1t of simp-
le graphs is defined by

and

= IR < ie P2
E‘&f!; Gi) %{x,yx,{xi,yi}v E(Gi) for every ie I?

where x; denotes the i-th coordinate of the vertex x in iETIGi'
In general, graphs under consideration and the set I can be in-
finite.

The diameter of a connected graph G is denoted by d(G). A
sequence S in G is any finite series (vo,vl,...,vn) of vertices
in G such that consecutive vertices are connected by an edge.
The vertices Vo and v, are called the endpoints of S; we also
write S=S(v0,vn). The sequence is closed iff Vo Vn- The number n
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is the length of the sequence. We denote the length of the sequen-
ce S by £(S) and say that S is odd or even if £(S) has this pro-

perty. If 51=(v°,v1,...,vn) and 82=(vn,v ’vn+k) are two se-

nel’c e
quences with a common endpoint, we define 51+52=(v0,v1,...

WVoak?
2. Let G be a simple graph and x, y be vertices in G. We
define the odd and the even distance between vertices x and y by
dl(x,y)=min 1£{(S); S is an odd sequence between x and y}
and
dz(x,y)=min {£(S); S is an even sequence between x and y}.

Here we put dl(x,y)= &:(dz(x,y)=<c ) if there is no odd (even)
sequence between x and y.
For i€41,2% we define d'(G)=sup 1di(x,y);x,ye V(G)¢.

Observation:

(1) d(x,y)=min(dl(x,y),d2 (x,y))

(2) G is bipartite if and only if for every pair of verti-
ces x, y either dl(x,y)=oc or dz(x,y)=oc.

3. Let {Gi;i ¢ I} be a fixed family of graphs without iso-
lated vertices and x, y fixed vertices ot LEHLGi' Let us denote

1

di=

il 2_.,2 _
d (xi,yi), i—d (Xi’yi)’ di—d(xi,yi).

Proposition 1: d(x,y)=min(sup d¥,sup d?)
el 1iel 1

4 €

Proof: It can easily be shown that dl(x,y)asu% di and
v e
dz(x,y)=§ug df, hence the proposition follows from the observa-
1€

tion (1).

This proposition has a number of immediate corollaries.

Corollary 1 (see {11): Let all graphs G;, ieI, be bipar-
tite. Then d(x,y) <co if and only if the set {di;ie 1% is boun-
ded and either all di's are odd or all di's are even. If d(x,y)<

< oc then d(x,y)=§2% di' Consequently, every component OfizIIGi

has diameter equal to sup d(G.).
rel 1

Proof: If d(x,y)< oo then either sup d}<co or su d?<oo.
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By Observation (2), in the first case di=di for every i and in
the second case d§=di for every i. Therefore all di's are odd in
the first case and all di's are even in the second case. In both
cases d(x,y)=figldi by Proposition 1. The converse direction is
similar.

Further we shall need the following simple proposition.

Proposition 2: Let G, H be connected graphs (with at least
one edge), H non-bipartite. Then Gx=H is connected.

Now let us formulate the main theorem (compare [2]).

Theorem: Let all graphs Gi’ ieI, be non-bipartite. Then
JZI G; is connected if and only if '
(1) J-1ieI;d(6;)=o0} is finite
and
(2) id(Gi);i¢ J} is bounded.
Moreover ;sgpld(Gi)‘—-_ld(_i'DI Gi)é2~3|.épld(ﬁi) and these estimates

are the best possible.

The proof is an immediate consequence of the Propositions 1
and 2 and the following lemma.

Lemma: Let G be a non-bipartite graph with the finite dia-
meter d. Then dl(G)é2d+1 and dz(G)éZd.

Proof: We shall prove the second inequality (the proof of
the first one is similar). Obviously dz(x,y)<w . Let S=S(x,y)
be the shortest sequence of even length between vertices x and y.
Let us suppose that its length is equal to 2d+2k, k>0, and de-
note S=Sl(x,u)+(u,z,v)+52(v,y) where Sl and S2 are sequences of
length d+k-1. There are paths P1 and P2 between vertices u, y
and x, v respectively, of lengths d—il and d-£, where 0= ZI,ZZéd.

Then there are sequences 514»P1 and P2+S.2 between x and
y of lengths (2d—1)+(k—li)< 2d+2k, hence the numbers k-ll are
both even according to the choice of S. Then 11+»€’2 is even and
therefore there exists a sequence P2+(v,z,u)+Pl of even length
2d—(11+52)+2 between x and y. But 2d—(ll+12)+2<2d+2k (if £=£,=0

then k 22 because k-Ei are even) contradicting the choice of S.
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Proof of Theorem: By Proposition 2 it suffices to show that

.77 .G, is connected. But if d(G,)<£d for i¢ J then, by Lemma,

1eIN\) 1 1

sup d“(x.,y.)£ 2d for every pair of vertices x, y in T1. _G.. We
i*74 1eIN) 1

conclude d(x,y)< 2d by Proposition 1.

4, In this section we show that the estimates in Theorem
are the best possible. The notation [n,m) for the set of all in-

tegers k such that n£k<m will be used. By C(0,1,...,k) we shall
denote the circuit ({0,kl;44i,i+1}; ie LO0,k-1)}u 1{k,08¢) of
length k+1. The path (r,r+l,...,s) for r<s or (r,r-1,...,s) for

r>s is denoted by P(r,s).

Let G be a non-bipartite graph and 6" its n-th square. Then
by Theorem
d(6) £ d(6™) £ 2-d(6).

Moreover, the following proposition holds.

Proposition: For every dz2 and i¢l0,d] there exists a
graph G such that d(G)=d and d(6")=d+i.

Proof: We reformulate the proposition in the following way:

For every k21 and i€ [0,%} there exists a graph G such that
d(6")=k and d(G)=k-i.

Since d(Gn)=min(d1(G),d2(G)) the proof can be carried out
in the following two steps:

(1) For every k=21 and i ¢ [0,k] there exists a graph G such that
2k=d2(6) < d'(6) and d(6)=2k-i.

(2) For every k21 and i« [0,k] there exists a graph G such that
2k+1=d1(6)< d%(6) and d(6)=(2k+1)-i.

Case (1): Let kZ1, iel0,k). First we construct a graph G
such that d(6)=d?(6)=2k and d!(G)=2k+1.
Let Cak=C(0,1,...,4k—l) be the circuit of length 4k. Let us
define
6=(10,4k-11, E(Cy) ) vii0,2k}t).

Then clearly d(G)=2k, d2(k,k+1)=2k, dl(k,k)=2k+1.
We show that dz(m,n)’=2k and dl(m,n)é2k+l for every m,ne [0,4k-1].
We can suppose without loss of generality that me[0,k].
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We consider three cases.

(a) nelo,2k].
Then both m and n lie on the circuit of odd length 2k+1 and the
proposition is clear.

(b) nel3k,s4k]-
We can suppose without loss of generality that m=d(m,0) £ d(n,0)=n.
Then P(m,n) and P(m,0)+(0,2k)+P(2k,n) are paths between m and n
of lengths % 2k+1, one of them even and the other odd, hence both
numbers d (m n) and d (m n) are less than 2k+2.

(c) nel2k,3k).
We can suppose that m=d(m,0)& d(n,2k)=n-2k and the proof can be
finished using the same paths as in the case (b).

Now we consider the circuit C
length 4k-2i and define
G=([0,4k-2i-11, E(Cy, _,;) v 1{0,2k}}).

Then d2(8)=2k and dl(G)=2k+1 (the proof is analogous to the case
i=0) and d(G)=2k-i.

=C(0,1,...,4k-2i-1) of N

4k-2i

Case (2): Let Cp ,,=C(0,1,...,2k) and Cppe1=CCO 17, 0.
.22) ") be the circuits of lengths 2k+1 and 2£+1 with disjoint
sets of vertices.
For ie(0,2k], jel0,2£] let us define the graph Gy

V(Gk 2) [0,2k)J v 0,221 where

k 1 by

[0,2£]" denotes the set fi";i¢e 10,221} and

K2 _ ‘ ‘ :
E(Gi’j)-E(CZk+1 2pe1) ¥ 10,073 vil,il .
k,&

Let Li’j=max ii,j,2k+1—i,2£+1-3}. It is easy to show that

Yu E(C,

k,2
(1) d(G )‘ Ly’ '3 +1.

Further we define the graph G o= (L0, 2k1 v 0,227

(Copsrdv
uE(cu 1)u(o 0'%t) and denote L= max(2k+1 22+1). Then

(2) a6 &L and a2(6) & L+1

For this, let x, y be the vertices of BO. We show that there
exists a path of even length £L+1 and also a path of odd length
€L+1 between x and y. If ix,yt< 0,2kl or {x,y}lc [0,221’ then
the proposition is obvious. Hence we can suppose that x=iel0,k],

y=3 € (0,21 and i&3j. Then P(i,0)+(0,0")+P(0°,3 ) and

- 237 -



P(i,0)+(0,0 )+P(0°,3 ) are the paths to be found.

Now let us define a graph G¥ by
V(G*)= [0,2k} uL0,2kK)
and
E(6*)=E(Cy,, ;) v E(Cyy ;) v iti,i}5ie 0,2k} .

Lemma 1: dl(6*)=2k+1 and d2(G*)=2k+2 -

Proof: By (2) dl(G’)é.2k+1 and dz(G')é 2k+2. We show that
d1(0,0)=2k+1 and dz(0,0')=2k+2. Let S be a sequence of odd lengih
from 0 to 0. Let f be a mapping defined by f(i)=f(i )=i. Clearly
S contains an even number of edges of type §i,i }. Therefore the
image f(S) of S is the closed sequence from 0 to 0 of odd length
in the graph C(0,1,...,2k). Hence, f(S) contains every edge of
c(0,1,...,2k) and the length of S is at least 2k+1. Now, let S
be an even sequence from 0 to 0 . Then f(S) is the closed sequen-
ce from 0 to 0 of odd length, hence S contains at least 2k+1 ed-
ges of type {i,i+1% or {i ,(i+1) . But S must contain some edge
of type {i,i '}, hence the length of S is at least 2k+2.

Next we consider graphs GE’E, 14 i€k, and denote G?’? simp-
ly by Gi' An immediate consequence of (2) and Lemma 1 is the fol-
lowing:

Lemma 2: d'(G;)=2k+1 and d(G,)=2k+2.

Lemma 3: d(Gi)=(2k+l)—(i—1) for 1€i<k.

Kok i_ .

Proof: By (1) d(Gi)éLi i+1-(2k+1—1)+1.

If i is odd then d(0,ZKgltly-q(; Zialrly. Zkelod - pence
d(2k+1+i’(2k+1+i)-): 2k+1-i Ll 2k+1-i =(2k+1-1)+1.

2 2 2 2
If i is even then d(0,2k*l). ZkoisZ . 2ol ) .g(y 2Kely

o 2k+i+2y-y_ 2k-i+2 _ 2k
((HepleZy oy, Zcisd

and d(i 2-1 +1=d(0’,(25%112)')+1, hence

acZkrd (ZkedrZy oy, Zked L (ZKeD Lg)1=(2ke1-1) 40
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By Lemma 2 and Lemma 3 the proof of Case (2) will be comple-
ted if we construct the graph G such that 2k+1=dl(G)<:d2(G) and
d(G)=k+1. But G* has these properties as follows from Lemma 1
and the following Lemma 4.

Lemma 4:

G*,;. .¢ . iz
(1) d” (i,37)=min(|i-]j],2k+1-]i-3])+1
(2) d(6*)=k+1.
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