

Werk

Label: Article **Jahr:** 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0028 | log35

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 28,2(1987)

A REMARK ON RADICAL-SEMISIMPLE CLASSES OF FULLY ORDERED GROUPS S. VELDSMAN

 $\underline{\mbox{Abstract}}\colon$ It is shown that a non-trivial radical-semisimle class of fully ordered groups cannot determine a hereditary upper radical or a homomorphically closed semisimple class.

 $\frac{\text{Key words}\colon}{\text{Classification}\colon} \ \text{Radical-semisimple class, fully ordered groups.}$

The study of radical and semisimple classes of fully ordered groups was initiated by Chehata and Wiegandt [1]. For references to the subsequent work on this topic, the references of Gardner [2] can be consulted. The radical theory of this class of groups has some peculiar properties; the mentioned two papers can be consulted. We will show here that a non-trivial radical-semisimple class of fully ordered groups (such classes do exist) can never have a hereditary upper radical or a homomorphically closed semisimple class. This result is based on two results from Gardner [2] and the theory of complementary radicals [3].

Let us firstly agree on some notation and conventions. Fully ordered groups (f.o. groups) are not necessarily abelian. If I is a convex normal subgroup of G, it will be denoted by I \triangleleft G. A class of f.o. groups $\mathcal M$ is <u>hereditary</u> if I \triangleleft G \in $\mathcal M$ implies I \in $\mathcal M$ and <u>homomorphically closed</u> if any O-homomorphic image of a member from $\mathcal M$ is also in $\mathcal M$. We will also use the following two conditions that $\mathcal M$ may satisfy:

- (*) $0 \neq A \triangleleft B$ and $A \in \mathcal{M}$ implies $B \in \mathcal{M}$.
- (**) $0 \neq A/B \in M$ implies $A \in M$.

As usual, $\mathcal U$ and $\mathcal G$ will denote the upper radical and semisimle operators respectively. The next two assertions have been

proved by Gardner [2] for fully ordered abelian groups. They remain true for arbitrary f.o. groups.

Let ${\mathcal R}$ be a radical class of f.o. groups, ${\mathcal S}$ the corresponding semisimple class. Then

- (1) \Re is hereditary iff $\mathcal F$ satisfies the condition (*).
- (2) $\mathcal G$ is homomorphically closed iff $\mathcal R$ satisfies the condition $(\star\star)$.

We shall also need the following: A radical class \Re of f.o. groups is a <u>complementary radical class</u> if $\Re \cup \Im \Re$ is the class of all f.o. groups. A semisimple class $\mathcal F$ is a <u>complementary semisimple class</u> if $\mathop{\mathcal{U}}\mathcal F$ is a complementary radical class. In [3] it was shown that there are no non-trivial complementary radical or semisimple classes in the class of all f.o. groups.

We can now state and prove our main result:

Theorem. Let \mathcal{R} + 0 be a radical-semisimple class of f.o. groups. The following are equivalent:

- (i) UR is hereditary
- (ii) \mathcal{GR} is homomorphically closed
- (iii) ${\mathcal R}$ is the class of all f.o. groups.

<u>Proof.</u> Clearly only (i) \Rightarrow (iii) and (ii) \Rightarrow (iii) need a verification. Firstly, assume \mathcal{UR} is hereditary. From (1) above, it follows that $\mathcal{SUR} = \mathcal{R}$ must satisfy the condition (**). Since \mathcal{R} is a radical class, Proposition 2.2 in [3] yields \mathcal{R} a complementary radical class. But such classes are only the trivial ones (Example 5 in [3]) and we conclude that \mathcal{R} must be the class of all f.o. groups. If \mathcal{GR} is homomorphically closed, then from (2) above $\mathcal{UGR} = \mathcal{R}$ must satisfy the condition (**). But any semisimple class which satisfies the condition (**) must be a complementary semisimple class in view of Proposition 2.2* in [3]. As above, we conclude that \mathcal{R} is the class of all f.o. groups.

References

- [1] C.G. CHEHATA and R. WIEGANDT: Radical theory for fully ordered groups, Mathematica (Cluj), 20(1978), 143-157.
- [2] B.J. GARDNER: Some aspects of radical theory for fully

ordered abelian groups, Comment. Math. Univ. Carolinae 26(1985), 821-837.

[31 S. VELDSMAN and R. WIEGANDT: On the existence and non-existence of complementary radical and semisimple classes, Quaestiones Mathematicae 7(1984), 213-224.

Dept. Mathematics, University of Port Elizabeth, P.O. Box 1600, 6000 Port Elizabeth, South Africa

(Oblatum 15.12. 1986)

- 219 -

