

Werk

Label: Article **Jahr:** 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0028 | log33

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 28,2(1987)

AROUND A NEUTRAL ELEMENT IN A NEARLATTICE A.S.A. NOOR and W.H. CORNISH

Abstract: Nearlattices, or lower semilattices in which any two elements have a supremum whenever they are bounded above, provide an interesting generalization of lattices. In this context, we define different types of elements in a nearlattice S and then for a fixed element n, using the ternary operation J study the behaviour of $S_n=(S; \cap)$ where $x \cap y=(x \wedge y) \vee (x \wedge n) \vee (y \wedge n); x, y \in S$.

Key words: Standard element, neutral element, nearlattice. Classification: O6A12, O6A99, O6B10

1. <u>Introduction</u>. A nearlattice is a lower semilattice which has the property that any two elements possessing a common upper

bound, have a supremum. Cornish and Hickman [1] called this the upper bound property. For detailed literature, we refer the reader to consult [1],[2] and [7].

A nearlattice-congruence Φ on a nearlattice S is a congruence of the underlying lower semilattice such that, whenever $a_1 = b_1$, $a_2 = b_2(\Phi)$ and $a_1 \vee a_2$, $b_1 \vee b_2$ exist, $a_1 \vee a_2 = b_1 \vee b_2(\Phi)$. In the second section of [41, a fundamental contribution was made by Hickman. Defining a ternary operation j on a nearlattice S by $j(x,y,z)=(x \wedge y) \vee (\dot{y} \wedge z)$, he showed that the resulting algebras of the type (S;j) form a variety.

Standard and neutral elements, as well as standard ideals in a nearlattice were extensively studied in [2]. An element s in a nearlattice S is called standard if for all x,y,teS, $t \wedge [(x \wedge y) \vee (x \wedge s)] = (t \wedge x \wedge y) \vee (t \wedge x \wedge s).$ An element n in a nearlattice S is called neutral if it is standard and for any $t,x,y \in S, \ n \wedge [(t \wedge x) \vee (t \wedge y)] = (n \wedge t \wedge x) \vee (n \wedge t \wedge y).$ Clearly, every element of a distributive nearlattice is neutral. An ele-

ment n of a nearlattice S is called <u>superstandard</u> if it is standard and for any $x,y \in S$, $n \land [(x \land y) \lor (x \land n) \lor (y \land n)] = (x \land n) \lor \lor (y \land n)$, whenever $(x \land y) \lor (x \land n) \lor (y \land n)$ exists. Of course, every neutral element is superstandard. But in the pentagonal lattice $\{0,a,b,n,1\}$ where 0 < a < n < 1; 0 < b < 1: $a \land b = n \land b = 0$ and $a \lor b = n \lor b = 1$, n is superstandard but not neutral. [7] provides an example of a standard element in a lattice which is not superstandard.

An element n in a nearlattice S is called <u>medial</u> if $m(x,n,y)=(x\wedge y)\vee(x\wedge n)\vee(y\wedge n)$ exists for all $x,y\in S$, while n is called <u>sesquimedial</u> if $J_n(x,y,z)=([(x\wedge n)\vee(y\wedge n)]\wedge[(y\wedge n)\vee(z\wedge n)])\vee(y)$ $\vee j(x,y,z)$ exists for all $x,y,z\in S$ where $j(x,y,z)=(x\wedge y)\vee(y\wedge z)$. Since $J_n(x,y,x)=m(x,n,y)$ for all $x,y\in S$, any sesquimedial element is medial. A nearlattice S is called <u>medial</u> if $m(x,y,z)=(x\wedge y)\vee(y\wedge z)\vee(y\wedge z)\vee(z\wedge x)$. exists for all $x,y,z\in S$. Of course, every element of a medial nearlattice is sesquimedial (see Lemma 3.1).

Let n be a fixed element of a nearlattice S.By an n-ideal of S, we mean a convex subnearlattice of S containing n. The n-ideal generated by a_1,\ldots,a_m is denoted by $\langle a_1,\ldots,a_m\rangle_n$. Clearly $\langle a_1,\ldots,a_m\rangle_n=\langle a_1\rangle_n\vee\ldots\vee\langle a_m\rangle_n$. When S is a lattice, $\langle a_1,\ldots,a_m\rangle_n=\langle a_1\wedge\ldots\wedge a_m\wedge n,a_1\vee\ldots\vee a_m\vee n\rangle_n$. Thus, for a lattice S, the set of finitely generated n-ideals of S is a lattice and its members are simply the intervals [a,b] such that $a \leq n \leq b$, and for such intervals, $[a,b]\vee [a_1,b_1]=[a\wedge a_1,b\vee b_1]$ and $[a,b]\cap [a_1,b_1]=[a\vee a_1,b\wedge b_1]$. The n-ideal generated by a single element is called a Principal n-ideal and the set of Principal n-ideals of S is denoted by $P_n(S)$. When S is a lattice, it is not hard to see that $P_n(S)$ is a lattice if and only if n is complemented in each interval containing it.

For a fixed element n, the binary operation $x \cap y = m(x,n,y) = (x \wedge y) \vee (x \wedge n) \vee (y \wedge n)$ has been studied by several authors including Jakubík and Kolibiar [5] for distributive lattices, Sholander [8] for distributive medial near lattices and Kolibiar [6] for an arbitrary lattice with n as a neutral element in it. Sholander [8] showed that for a distributive medial nearlattice S, $(S; \cap)$ is a semilattice. On the other hand Kolibiar [6] showed that if n is a neutral element in an arbitrary lattice S, $(S; \cap)$ is a semilattice. Recently, Noor [7] extended their work and showed that for a neutral and sesquimedial element n of a near-

lattice S, $S_n=(S; \cap)$ is not only a semilattice, it is a nearlattice. Moreover, the n-ideals of S are precisely the ideals of S_n . According to [7], we refer to S_n as an <u>isotope</u> of S.

In Section 2, we introduce the notion of a <u>nearly neutral</u> element in a nearlattice and then generalize and extend some of the results in [7]. We show that for a medial superstandard element n of a nearlattice S, S_n is a nearlattice wherein $J_n(x,y,z) = \frac{S_n}{S_n}(x,y,z)$ if and only if n is nearly neutral and sesquimedial in S. We also show that for a nearly neutral and sesquimedial element of a nearlattice S, n is neutral if and only if the nearlattice congruences of S are precisely the nearlattice congruences of S_n .

In Section 3, introducing the ternary operation $M_{\Pi}(x,y,z)$ we show that for a sesquimedial neutral element n of a nearlattice S, S is medial if and only if S_{Π} is so.

2. Nearly neutral element of a near lattice. An element n of a nearlattice is called nearly neutral if it is standard and has the property $n \wedge ((t \wedge x \wedge n) \vee (t \wedge y)) = (t \wedge x \wedge n) \vee (t \wedge y \wedge n)$ for all $x,y,t \in S$. Of course, a neutral element is always nearly neutral. Observe that in Figure 1, n is nearly neutral but $n \wedge (a \vee b) > (n \wedge a) \vee (n \wedge b)$ shows that it is not neutral there.

The following result shows that every nearly neutral element is superstandard, but in the pentagonal lattice $\{0,a,b,n,l\}$ where 0 < a < n < 1; 0 < b < 1; $a \land b = n \land b = 0$; $a \lor b = n \lor b = 1$, n is superstandard but not nearly neutral.

 $\frac{\text{Proposition 2.1}}{\text{following conditions are equivalent.}}. \ \ \, \text{for an element n of a nearlattice S, the}$

- (i) For all x,y,t∈S, n∧((t∧x∧n) v (t∧y))=(t∧x∧n) v (t∧y∧n).

Moreover, if n is sesquimedial, (i) and (ii) are also equivalent to each of the next two conditions.

(iii) For all x,y,z \in S, $(x \cap y) \land n = (x \land n) \lor (y \land n)$ and $J_n(x,y,z) \land n = (x \cap y) \land (y \cap z) \land n, \text{ where } x \cap y = (x \land y) \lor \lor (x \land n) \lor (y \land n).$

(iv) For all $x,y,z\in S$, $(x\cap y)\wedge n=(x\wedge n)\vee (y\wedge n)$ and $J_n(x,y,z) \wedge n \leq x \wedge y$.

Proof. (i) \Rightarrow (ii). Suppose (x \land n) \lor y exists. Then $\mathsf{DA}((\mathsf{XAN}) \mathsf{VY}) = \mathsf{DA}[\dot{(}((\mathsf{XAN}) \mathsf{VY}) \mathsf{AXAN}) \mathsf{V}(((\mathsf{XAN}) \mathsf{VY}) \mathsf{AY})] = (\mathsf{XAN}) \mathsf{V}(\mathsf{YAN}).$ (ii) \Rightarrow (i) is trivial.

Suppose now that n is sesquimedial and (i) and (ii) hold. Then $n_{\Lambda}(x \cap y) = n_{\Lambda}((x \wedge n)_{\Lambda}(y \wedge n)_{\Lambda}(x \wedge y)) = n_{\Lambda}[(((x \wedge n)_{\Lambda}(y \wedge n))_{\Lambda}(n)_{\Lambda}(y \wedge n)]$ $v(x \wedge y)$] = $(x \wedge n) v(y \wedge n) v(x \wedge y \wedge n)$ = $(x \wedge n) v(y \wedge n)$. Also, $J_{n}(x,y,z)\wedge n = n\wedge[(((x\wedge n)\vee(y\wedge n))\wedge((y\wedge n)\vee(z\wedge n)))\vee(x\wedge y)\vee(y\wedge z)] =$ = $n \wedge [((x \wedge y) \wedge (y \wedge z) \wedge n) \vee (x \wedge y) \vee (y \wedge z)$ =

= $((x \cap y) \wedge (y \cap z) \wedge \Pi) \vee (\Pi \wedge ((x \wedge y) \vee (y \wedge z))) = (x \cap y) \wedge (y \cap z) \wedge \Pi$. Thus (iii) holds.

Clearly (iii) implies (iv).

Finally suppose (iv) holds. Let x,y ∈S be such that (x∧n)∨y exists. Then $J_{n}(x,y,(x\wedge n)\vee y)=[((x\wedge n)\vee (y\wedge n))\wedge (y\wedge n)\vee (n\wedge ((x\wedge n)\vee y)))]\vee (x\wedge y)\vee y=$ = $(x \wedge n) \vee (y \wedge n) \vee y$ = $(x \wedge n) \vee y$, and so by $(iv) n \wedge ((x \wedge n) \vee y) \neq x \wedge y$. Thus, $n \wedge ((x \wedge n) \vee y) \leq n \wedge (x \wedge y) = (x \wedge n) \vee (y \wedge n)$; it follows that $n \wedge ((x \wedge n) \vee y) = (x \wedge n) \vee (y \wedge n)$ and (ii) holds. \square

The following result is found in [7, Th. 2.1].

Proposition 2.2. If n is a standard element of a nearlattice S, then (S;⊆) is a partially ordered set and the map $x \rightarrow \langle x \rangle_n$ is an isomorphism of $(S;\subseteq)$ onto $P_n(S)$, where on S, $x \subseteq y$ if and only if $(x \land y) \lor (x \land n) \lor (y \land n)$ exists and is equal to $x . \square$

Let n be a medial element of a nearlattice S. For any x,y∈ S define the binary operation $x \cap y = m(x,n,y) = (x \wedge y) \vee (x \wedge n) \vee (y \wedge n)$. Recently Noor in [7] proved the following result.

Theorem 2.3. If n is a medial and standard element of a nearlattice S, then S_n is a semilattice if and only if n is superstandard in S.

Moreover, when n is neutral and sesquimedial then $S_{\mathbf{n}}$ is in fact a nearlattice and the n-ideals of S are precisely the ideals of S_n. \square

Our next theorem generalizes and extends the above Theorem. To obtain this, we need the following lemma. (i) is found in

[7; Lemma 2.4], and the proof of (ii) is similar to the proof of (ii) in [7; Lemma 2.4].

Lemma 2.4. In a nearlattice S,

- (i) a subset K of S is an ideal of S if and only if for all x,y ∈ K and a ∈ S, j(x,a,y) ∈ K.
- (ii) If n is a superstandard element of S such that \mathbf{S}_{N} is a nearlattice wherein

 $S_{n}(x,y,z)=j^{n}(x,y,z)=(x\cap y)\nu(y\cap z),$ then a subset K of S is an n-ideal of S if and only if it contains n and $J_{n}(x,a,y)\in K$ for any $x,y\in K$ and $a\in S$. \square

Corollary 2.5. Suppose n is a superstandard element of a nearlattice S such that the isotope S_n of S is itself a nearlattice wherein $J_n(x,y,z)=j^n(x,y,z)$. Then the ideals of S_n are precisely the n-ideals of S. \square

 $\underline{\text{Theorem 2.6}}. \quad \text{If S is a nearlattice and n } \& \text{S is medial and superstandard, then the following conditions are equivalent.}$

- (i) n is nearly neutral and sesquimedial in S.
- (ii) The isotope $S_n = (S; \cap)$ is a nearlattice wherein $J^{S_n}(x,y,z) = J_n(x,y,z)$.
- (iii) ${\bf S_n}$ has the upper bound property and n-ideals of S are precisely the ideals of ${\bf S_n}\,.$
- (iv) Any finitely generated n-ideal contained in a principal n-ideal is a principal n-ideal.

 $\frac{Proof}{}$. (i) \Rightarrow (ii). Suppose n is nearly neutral and sesquimedial in S. Then, clearly

 $J_{n}(x,y,z) = ((x \cap y) \wedge (y \cap z) \wedge n) \vee j(x,y,z),$ and so by [2;Th. 2.4], $J_{n}(x,y,z) \equiv j(x,y,z) (\Theta_{n}) \text{ and }$ $x \cap y \equiv x \wedge y (\Theta_{n}). \text{ Hence } (x \cap y) \wedge J_{n}(x,y,z) \equiv x \wedge y (\Theta_{n}) \text{ and similarly } (y \cap z) \wedge J_{n}(x,y,z) \equiv y \wedge z (\Theta_{n}). \text{ Therefore,}$ $[(x \cap y) \wedge J_{n}(x,y,z)] \vee [(y \cap z) \wedge J_{n}(x,y,z)] \vee [(y \cap z) \wedge J_{n}(x,y,z)] = (x \cap y) \wedge J_{n}(x,y,z) = (x \cap y) \wedge J_{n}(x,y,$

$$\begin{split} & [(x \cap y) \wedge J_{\Pi}(x,y,z)] \vee [(y \cap z) \wedge J_{\Pi}(x,y,z)] \vee [\pi \wedge J_{\Pi}(x,y,z)] & \equiv \\ & \equiv (x \wedge y) \vee (y \wedge z) \vee (\pi \wedge j(x,y,z)) & = j(x,y,z)(\Theta_{\Pi}). \end{split}$$

Since the left hand side of this congruence exceeds the right hand side, by [2;Th. 2.4],

left hand expression

= j(x,y,z) $_{\vee}(n\wedge(left\ hand\ expression))$

```
= j(x,y,z) \sqrt{(n \wedge J_n(x,y,z))} = J_n(x,y,z).
```

Thus, $J_n(x,y,z) \in \langle x \cap y, y \cap z \rangle_n$. On the other hand, $(x \cap y) \wedge J_n(x,y,z) \cong x \wedge y(\Theta_n)$ implies $(x \wedge y) \wedge J_n(x,y,z) = (x \wedge y) \vee (n \wedge (x \wedge y) \wedge J_n(x,y,z))$, and so $((x \wedge y) \wedge J_n(x,y,z)) \vee ((x \wedge y) \wedge n) = (x \wedge y) \vee (x \wedge n) \vee (y \wedge n) = x \wedge y$. Hence, $x \wedge y \in \langle J_n(x,y,z) \rangle_n$ and similarly $y \wedge z \in \langle J_n(x,y,z) \rangle_n$. Thus, $\langle x \wedge y, y \wedge z \rangle_n = \langle J_n(x,y,z) \rangle_n$ and so by Proposition 2.2, $(x \wedge y) \cup (y \wedge z) = J_n(x,y,z)$.

(ii) \Rightarrow (iii) follows immediately from Corollary 2.5.

 $\hbox{(iii)}\Longrightarrow\hbox{(iv) is an easy consequence of the isomorphism of }(S_n;\underline{c}) \text{ and }(P_n(S);\underline{c}), \text{ and the upperbound property of }S_n.$

 $(iv) \Rightarrow (i). \quad \text{Let a,b,c } \in \mathbb{S}. \text{ Since anb,bnc } \in \mathbb{S}, \langle \text{anb,bnc} \rangle_n \subseteq \mathbb{S}, \langle \text{bh}_n \text{ by Proposition 2.2. Thus, by } (iv), \text{ there exists } t \in \mathbb{S} \text{ such that } \langle \text{anb,bnc} \rangle_n = \langle t \rangle_n, \text{ and so } (\text{anb}) \wedge (\text{bhc}) \wedge n = t \wedge n. \text{ Now, anb } \subseteq t \text{ implies anb} = ((\text{anb}) \wedge t) \vee ((\text{anb}) \wedge n) \vee (t \wedge n) = ((\text{anb}) \wedge t) \vee ((\text{anb}) \wedge n), \text{ and so anb} = (\text{anb}) \wedge t (\Theta_n). \text{ Hence anb} \equiv \text{anb} \wedge t (\Theta_n).$

Similarly, bac \leq bacat(Θ_n). This implies $j(a,b,c) \equiv (a \wedge b \wedge t) \vee (b \wedge c \wedge t) \ (\Theta_n)$

and so $j(a,b,c) = (a \wedge b \wedge t) \vee (b \wedge c \wedge t) \vee (n \wedge j(a,b,c))$. Also, $j(a,b,c) \wedge t = (a \wedge b \wedge t) \vee (b \wedge c \wedge t) (\Theta_n)$, and so

 $j(a,b,c)\wedge t = (a\wedge b\wedge t)\vee (b\wedge c\wedge t)\vee (n\wedge t\wedge j(a,b,c)).$

Thus, $j(a,b,c) \cap t = (j(a,b,c) \wedge t) \vee (j(a,b,c) \wedge n) \vee (t \wedge n) = j(a,b,c) \vee (t \wedge n)$.

Again, and \equiv and (Θ_n) . So $(a \cap b) \land j(a,b,c) \equiv$ and $(a,b,c) = a \land b \land j(a,b,c)$ and hence $(a \cap b) \land j(a,b,c) = (a \land b) \lor ((a \cap b) \land j(a,b,c) \land n)$. This implies $(a \cap b) \land j(a,b,c) = a \land b$; that is, and $\subseteq j(a,b,c)$. Similarly, bnc $\subseteq j(a,b,c)$. Hence, $t \subseteq j(a,b,c)$, and so $t = t \land j(a,b,c) = j(a,b,c) \lor (t \land n) = j(a,b,c) \lor ((a \cap b) \land (b \cap c) \land n) = J_n(a,b,c)$, as n is superstandard. Hence n is sesquimedial, and $J_n(a,b,c) \land n = t \land n = (a \cap b) \land (b \cap c) \land n$. Also $(x \land y) \land n = (x \land n) \lor (y \land n)$, as n is superstandard. Therefore, by 2.1(iii), n is nearly neutral. \square

The following lemma is due to Hickman [4; Proposition 2.2].

Lemma 2.7. In a nearlattice S, an equivalence relation is a nearlattice congruence if and only if it is a congruence for the algebra (S;j). \Box

Now we consider the influence of ${\bf J}_n$ on congruences. The following theorem is an extension of [7; Lemma 2.6(ii)].

 $\underline{\text{Theorem 2.8}}$. Let n be a sesquimedial, nearly neutral element of a nearlattice S. Then the following conditions are equivalent.

- (i) n is neutral in S;
- (ii) an equivalence relation on S is a congruence for the algebra $(S;J_{\mbox{\it n}})$ if and only if it is a n earlattice-congruence of S.

<u>Proof</u>. (i) \Rightarrow (ii) is proved in [7; Lemma 2.6(ii)].

(ii) \Rightarrow (i). Define a relation Θ on the nearlattice S by $x \equiv y(\Theta)$ if and only if x \wedge n = y \wedge n. This is clearly an equivalence relation on S.

Now suppose $x \equiv y(\Theta)$. Then $x \land n = y \land n$, and so by 2.1, for any $s,t \in S$, $n \land J_n(x,s,t) = (x \land s) \land (s \land t) \land n = ((x \land n) \lor (s \land n)) \land ((s \land n) \lor (t \land n)) = ((y \land n) \lor (s \land n)) \land ((s \land n) \lor (t \land n)) = n \land J_n(y,s,t)$. Thus, $J_n(x,s,t) \equiv J_n(y,s,t)(\Theta)$. Similarly, $J_n(s,x,t) \equiv J_n(s,y,t)(\Theta)$ and $J_n(s,t,x) \equiv J_n(s,t,y)(\Theta)$, and so Θ is a congruence for the algebra $(S;J_n)$. Thus, by (ii), Θ is a nearlattice congruence on S. Now, clearly $x \equiv x \land n(\Theta)$ and $y \equiv y \land n(\Theta)$ for all $x,y \in S$. So for any $t \in S$, $(t \land x) \lor (t \land y) \equiv (t \land x \land n) \lor (t \land y \land n)(\Theta)$, and hence, $n \land [(t \land x) \lor (t \land y)] = n \land [(t \land x \land n) \lor (t \land y \land n)(t \land y \land n))$, which implies n is neutral in S. \Box

Combining Theorem 2.6, Lemma 2.7 and the above theorem, we have the following extension of $[7,Th.\ 2.7]$.

Theorem 2.9. Let n be a nearly neutral sesquimedial element of a nearlattice S. Then n is neutral if and only if the nearlattice congruences of S are precisely the nearlattice congruences of S_{n} . \Box

The following proposition will be needed to prove one of our main results in Section 3. This was known by Kolibiar [6] in case of a bounded lattice with n as a central element.

<u>Proposition 2.10</u>. If n is a nearly neutral sesquimedial element of a nearlattice S with 0, then 0 is neutral and medial in $\mathbf{S_n}$. Moreover, the double isotope $(\mathbf{S_n})_0$ is precisely S.

 $\frac{\text{Proof.}}{\text{nond}} \quad \text{By 2.6, for all } r,x,y \in S, \ 0 \cap ((\text{rnx}) \cup (\text{rny})) = 0 \cap J_n(x,r,y) = \text{nnd}_n(x,r,y) = J_n(\text{rnx},0,\text{rny}) = (0 \cap \text{rnx}) \cup (0 \cap \text{rny}).$ Also, $\text{rn}((\text{xny}) \cup (\text{xn0})) = \text{rnJ}_n(y,x,0) = \text{rn}((\text{xnn}) \vee (\text{xny})) = (\text{rnn}) \vee (\text{xnn}) \vee (\text{rnx}) \vee (\text{rnx}) = \text{nond} = \text{no$

Now, clearly $x \wedge y, x \wedge 0, y \wedge 0 \subseteq x \wedge y$, and so $(x \wedge y) \cup (x \wedge 0) \cup (y \wedge 0)$ exists and it is $\subseteq x \wedge y$. Thus, 0 is medial in S_n , and so $((S_n)_0; \overline{\wedge})$ is a semilattice by Theorem 2.3, where

$$x \overline{\wedge} y = (x \cap y) \cup (x \cap 0) \cup (y \cap 0).$$

Suppose xny,xn0,yn0 \in s for some s \in S_n. Then s \land n \in (xn0) \land n = = xnn. Similarly snn \in ynn, and so snn \in xnynn. Also,

$$x \cap y = (x \cap y) \cap s = ((x \cap y) \wedge s) \vee ((x \cap y) \wedge n) \vee (s \wedge n) =$$

= $((x \cap y) \wedge s) \vee ((x \cap y) \wedge n)$.

Then

 $x \wedge y = (x \wedge y) \wedge (x \wedge y) = (x \wedge y \wedge s) \vee (x \wedge y \wedge n) = (x \wedge y) \wedge s.$

This implies $x \land y \subseteq s$, and hence

$$x \overline{\wedge} y = (x \cap y) \cup (x \cap 0) \cup (y \cap 0) = x \wedge y;$$

in other words, $(S_n)_0 = S$.

Finally, suppose that n is neutral in S. Since O is neutral in S_n,

```
((xn0)u(yn0))n((yn0)u(zn0)) = (x\overline{\wedge}y)n(y\overline{\wedge}z)n0 =
```

- = $(x \wedge y) \cap (y \wedge z) \cap 0 = L(x \wedge y) \cap (y \wedge z) \int 1 dx = 0$
- = $(x \wedge y \wedge n) \vee (y \wedge z \wedge n) = n \wedge j(x, y, z)$

as n is neutral. Also it can be easily shown that $x \cap y, y \cap z \subseteq j(x,y,z) = J_0(x,y,z)$. Therefore

[((xn0)u(yn0))n((yn0)u(zn0))]u(xny)u(ynz)

exists in $\boldsymbol{S}_{\Pi};$ whence 0 is sesquimedial in $\boldsymbol{S}_{\Pi}.$ The rest follows by 2.6. $\boldsymbol{\Box}$

It should be noted that the above proposition is not true when n is merely hearly neutral. For example, in Figure 2 which is the isotope of Figure 1, 0 is not sesquimedial.

- Lemma 3.1. Every element of a medial nearlattice is sesquimedial.

Suppose \$ is a medial nearlattice and a,b,c \in \$. If avb, bvc, cva exists, we define $m^d(a,b,c) = (avb) \wedge (bvc) \wedge (cva)$. Of course, when \$S\$ is distributive, $m^d(a,b,c) = m(a,b,c)$. For a fixed element n of \$S\$, let us introduce a ternary operation \$M_n\$, defined by $M_n(x,y,z) = m^d(x \wedge n, y \wedge n, z \wedge n) \vee m(x,y,z)$; $x,y,z \in S$. Notice that $m^d(x \wedge n, y \wedge n, z \wedge n)$ always exists in \$S\$. But also we have:

Lemma 3.2. In a medial nearlattice S with neS, $\boldsymbol{M}_{\Pi}(x,y,z)$ always exists for all $x,y,z\in S.$

<u>Proof.</u> Notice that $m^d(x \wedge n, y \wedge n, z \wedge n)$, $x \wedge y \neq m(x, n, y)$, $m^d(x \wedge n, y \wedge n, z \wedge n)$, $y \wedge z \neq m(y, n, z)$ and $m^d(x \wedge n, y \wedge n, z \wedge n)$, $z \wedge x \neq m(z, n, x)$. Then by the upper bound property and the three property both $m^d(x \wedge n, y \wedge n, z \wedge n) \vee (z \wedge x)$ and $m^d(x \wedge n, y \wedge n, z \wedge n) \vee (y \wedge z)$ exist. Thus a second application of the three property yields the existence of $M_n(x, y, z)$. \square

Note that if n is nearly neutral in a nearlattice S, $M_{\Pi}(x,y,z) = ((x \cap y) \wedge (y \cap z) \wedge (z \cap x) \wedge n) \vee m(x,y,z), \text{and when n is neutral,}$ $M_{\Pi}(x,y,z) \wedge n = (x \cap y) \wedge (y \cap z) \wedge (z \cap x) \wedge n. \text{ Also if S is a lattice and n is neutral,}$ $M_{\Pi}(x,y,z) = (m^{d}(x,y,z) \wedge n) \vee m(x,y,z) = m^{d}(x,y,z) \wedge (n \vee m(x,y,z)).$

Of course m(x,y,z) and M $_{\Pi}$ (x,y,z) are symmetric in x,y and z, whereas j(x,y,z) and J $_{\Pi}$ (x,y,z) are not. Thus, the operations - 207 -

m and $M_{f D}$ are better behaved and easier to handle than the operations j and J_{n} respectively.

The following proposition is easily verifiable and so is given without proof.

Proposition 3.3. For an element n of a medial nearlattice S, $M_n(x,y,z) = m(x,y,z)$ for all $x,y,z \in S$ if and only if (n) is a distributive lattice.

Hence in a distributive medial nearlattice S, $M_{D}(x,y,z) =$ = m(x,y,z) for all $x,y,z \in S$. \square

Now we present the following interesting result which extends Theorem 2.6.

Theorem 3.4. Suppose n is a neutral sesquimedial element of a nearlattice S. Then the following conditions are equivalent.

- (i) S is medial;
- (ii) S_n is a medial nearlattice and $m^{S_n}(x, y, z) = M_n(x, y, z)$ for all $x,y,z \in S$.

Moreover, (i) does not necessarily imply (ii) when n is merely nearly neutral.

 \underline{Proof} . (i) \Rightarrow (ii). Since n is neutral, $M_n(x,y,z) \wedge n = (x \cap y) \wedge (y \cap u) \wedge (z \cap x) \wedge n$.

By [2, Th. 2.41,

$$M_n(x,y,z) \le m(x,y,z)(\Theta_n)$$

and $x \wedge y = x \wedge y(\Theta_n)$. Thus, $(x \wedge y) \wedge (M_n(x, y, z) = x \wedge y(\Theta_n)$. Similarly,

$$(y \cap z) \wedge M_{\Pi}(x, y, z) \equiv y \wedge z(\Theta_{\Pi}),$$

and

$$(z \cap x) \wedge M_{\Pi}(x, y, z) \equiv z \wedge x(\Theta_{\Pi}).$$

Then using the technique of the proof of $(i) \Rightarrow (ii)$ in Theorem 2.6, we obtain $\langle x \wedge y, y \wedge z, z \wedge x \rangle_n = \langle M_n(x, y, z) \rangle_n$, and (ii) follows from the isomorphism of $(S_n; \subseteq)$ and $(P_n(S); \subseteq)$.

(ii) \Rightarrow (i). Adjoint a new 0 in S and form (S;0)_n. Then by 2.10, 0 is neutral and medial in $(S;0)_n$. Thus $(S;0)_n$ is medial as S_n is medial. Hence, by (i) \Rightarrow (ii), (($S_i(0)_n$) is medial. But $((S;0)_{D})_{D} = (S;0)$ by 2.10, and so S is medial as required.

For the final assertion consider the lattice of Figure 1, where n is nearly neutral but not neutral. But its isotope,

given by Figure 2 is not medial. \Box

It is well-known by Kolibiar [6] that if L is a lattice with 0 and 1 and n is central in it, then L_n is also a bounded lattice with n and n´ as the smallest and the largest elements respectively, where $x \cup y = m(x, n`, y)$ for all $x, y \in L$.

An element n in a lattice L is called $\underline{\text{central}}$ if it is neutral and complemented in each interval containing it.

We conclude this paper with the following extension of Kolibiar's result.

<u>Proposition 3.5</u>. Suppose L is a lattice and neL is standard. Then the isotope L_{n} is a lattice if and only if n is central in L.

<u>Proof.</u> Since n is standard, $(L; \underline{c})$ and $(P_n(L); \underline{c})$ are isomorphic by 2.2. Thus, L_n is a lattice if and only if $P_n(L)$ is a lattice, i.e. if and only if n is complemented in each interval containing it. Consequently, the result follows by [2,Th. 3.5].

Figure 1

Figure 2

References

- [1] William H. CORNISH and R.C. HICKMAN: Weakly distributive semilattices, Acta Math. Acad. Sci. Hungar. 32(1978), 5-16.
- [2] William H. CORNISH and A.S.A. NOOR: Standard elements in a nearlattice, Bull. Austral. Math. Soc. 26(1982), 185-213.
- [3] E. Evans: Median lattices and convex subalgebras, Colloq. Math. Soc. Janos Bolyai, 29, North Holland Amsterdam, New York 1982, 225-240.
- [4] Robert HICKMAN: Join algebras, Commun. Alg. 8(1980), 1653-1685.
- [5] J. JAKUBÍK and M. KOLIBIAR: On some properties of a pair - 209 -

of lattices (Russian), Czechoslovak Math. J. 4(1954), 1-27.

- [6] Milan KOLIBIAR: A ternary operation in lattices (Russian), Czechoslovak Math. J. 6(1956), 318-329.
- [7] A.S.A. NOOR: Isotopes of nearlattices, Ganit. J. Bangladesh Math. Soc. 1(1)(1981), 63-72.
- [8] M. SHOLANDER: Medians, lattices and trees, Proc. Amer. Math. Soc. 5(1954), 808-812.

Department of Mathematics Rajshahi University Rajshahi Bangladesh School of Mathematical Siences Flinders University Bedford Park South Australia 5042 Australia

(Oblatum 19.11. 1986)