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AROUND A NEUTRAL ELEMENT IN A NEARLATTICE
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Abstract: Nearlattices, or lower semilattices in which any
two eTements have a supremum whenever they are bounded above,
provide an interesting generalization of lattices. In this con-
text, we define different types of elements in a nearlattice S
and then for a fixéd element n, using the ternary operation J
study the behaviour of Sn=(5;n) where x ny=(x Ay)\ (xAnNn) v
v(yAn);x,yeS.
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’

1. Introduction. A nearlattice is a lower semilattice which
has the property that any two elements possessing a common upper
bound, have a supremum. Cornish and Hickman [1] called this the
upper bound property. For detailed literature, we refer the rea-
der to consult [1],[2) and [71.

A nearlattice-congruence ® on a nearlattice S is a congru-

ence of the underlying lower semilattice such that, whenever
a;=b,, a2_=_b2((b) and a;va,, b, vb, exist, alvazibl\/bZ(é)‘
In the second section of (4], a fundamental contribution was ma-
de by Hickman. Defining a ternary operation j on a nearlattice S
by 3(x,y,z)=(x Ay) v(y Az), he showed that the resulting algeb-
ras of the type (S;j) form a variety.

Standard and neutral elements, as well as standard ideals
in a nearlattice were extensively studied in [2]. An element s
in a nearlattice S is called standard if for all Xx,y,teSs,
tALGxAY) Vv (xAS)) = (tAxAay) v(tAxAs). An element n in a
nearlattice S is called neutral if it is standard and for any
tx,yeS, nal(tax) v(tay)l = (nAtAx) v(nAtAay). Clearly,
every element of a distributive nearlattice is neutral. An ele-
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ment n of a nearlattice S is called superstandard if it is stan-
dard and for any x,yeS, nAal(xay) vix An)v(yan)l = (xAan) v
v (yan), whenever (xA y)v (xAn) v(yan) exists. 0Of course, eve-
ry neutral element is superstandard. But in the pentagonal lat-
tice 40,a,b,n,1} where 0<a<n<l; 0<b<1l: aAb = nAb = 0 and
avb=nvb = 1, n is superstandard but not neutral. [7) provides
an example of a standard element in a lattice which is not super-
standard.

An element n in a nearlattice S is called medial if m(x,n,y)=
=(xAy) v(xan)v(yan) exists for all x,yeS, while n is called
sesquimedial if Jn(x,y,z)=([(x/\ Nviyamlalyan)v(zan)l) v
v j(x,y,z) exists for all x,y,z &S where j(x,y,2)=(xAy) v(ynz).
Since Jn(x,y,x)=m(x,n,y) for all x,y €S, any sesquimedial element
is medial. A nearlattice S is called medial if m(x,y,z)=(xAy) v
v(yAaz)v(z Ax) exists for all x,y,zeS. Of course, every ele-
ment of a medial nearlattice is sesquimedial (see Lemma 3.1).

Let n be a fixed element of a nearlattice S.By an n-ideal of
S, we mean a convex subnearlattice of S containing n. The n-ideal

generated by aps---»8p is denoted by <al,...,am7n. Clearly
(al,...,am)n =<a]>nv'...v<am7n. When S is a 1attice,<al,...,am)n=
=<alA ...Aam/\n,alv c.eVag vn)n. Thus, for a lattice S, the set

of finitely generated n-ideals of S is a lattice and its members
are simply the intervals [a,b) such that a£n£b, and for such
intervals, [a,b] v[al,b13=[aA al,b\/bll and [a,b]rﬂ[al,b1]=

=[a val,b/\bll. The n-ideal generated by a single element is cal-
led a Principal n-ideal and the set of Principal n-ideals of S

is denoted by Pn(S). When S is a lattice, it is not hard to see
that Pn(S) is a lattice if and only if n is complemented in each

interval containing it.

For a fixed element n, the binary operation xny=m(x,n,y)=
=(xAy)v(xAn)v (yAan) has been studied by several authors in-
cluding Jakubik and Kolibiar [51 for distributive lattices, Sho-
lander [ B8] for distributive medial near lattices and Kolibiar
[6] for an arbitrary lattice with n as a neutral element in it.
Sholander [8) shohed that for a distributive medial nearlattice
S, (S5;n) is a semilattice. On the other hand Kolibiar [61 showed
that if n is a neutral element in an arbitrary lattice S, (S;n)
is a semilattice. Recently, Noor [7] extended their work and
showed that for a neutral and sesquimedial element n of a near-
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lattice S, Snz(S;n) is not only a semilattice, it is a nearlat-
tice. Moreover, the n-ideals of S are precisely the ideals of Sn.
According to [7], we refer to Sn as an isotope of S.

In Section 2, we introduce the notion of a nearly neutral
element in a nearlattice and then generalize and extend some of
the results in [71. We show that for a medial superstandard ele-
ment n of a nearlattice S, S, is a nearlattice wherein Jn(x,y,z)=

=] n(x,y,z) if and only if n is nearly neutral and sesquimedial
in S. We also show that for a nearly neutral and sesquimedial
element of a nearlattice S, n is neutral if and only if the near-
lattice congruences of S are precisely the nearlattice congruen-
ces of Sn.

In Section 3, introducing the ternary operation Mn(x,y,z) )

we show that for a sesquimedial neutral element n of a nearlatti-
ce S, S is medial if and only if Sn is so.

2. Nearly neutral element of a near lattice. An element n

of a nearlattice is called nearly neutral if it is standard and
has the property nA((tAxAn)v (t Ay))=(tAxAN)v (tAyan) for
all x,y,teS. Of course, a neutral element is always nearly neu-
tral. Observe that in Figure 1, n is nearly neutral but nA(avb)>
>(nAa)v(nAb) shows that it is not neutral there.

The following result shows that every nearly ncutral element
is superstandard, but in the pentagonal lattice {0,a,b,n,1} whe-
re 0<a<n<l; 0O<b<1l; aAab=nAb=0; avb=nvb=1, n is superstan-
dard but not nearly neutral.

Proposition 2.1. For an element n of a nearlattice S, the

following conditions are equivalent.
(i) For all x,y,teS,
nA((taxaAan) v(tay))=(tAxAn) v(tAayAan).
(ii) For all x,yeS,
nA((xAn) vy)=(xAn)v(yAn), whenever (xAn)vy
exists.
Moreover, if n is sesquimedial, (i) and (ii) are also equi-
valent to each of the next two conditions.
(iii) For all x,y,z €S, (xny)An=(xan)v(yan) and
Jn(x,y,z) An=(xny)A(ynz)Aan, where xny=(xAy) v
V(xAn)v(yAn).
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(iv) For all x,y,z€S, (xny)Aan=(xAn)v(yan) and
Jn(x,y,z)Alwéx ny.

Proof. (i) = (ii). Suppose (xAn)yvy exists. Then
nAC(xan)vy) = nAL(C(xan) vy) axam)v(((xan)vy)ay)] = (xan)v(yan).
(ii) = (i) is trivial.
Suppose now that n is sesquimedial and (i) and (ii) hold.
Then na(xny) = na((xan)v(yan)v(xay)) = naL(((xan)v(yAn))An)v
vixAy)]1 = (xan)v(yan) v(xayAn) = (xan)v(yan). Also,
Jn(x,y,z)An = nAl(((xan)v(yan))A((yan) v(zan)) ) vixay)v(yaz)] =
= nal((xay)ACynz)An) v(xay)viyaz) =
= ((xay)Aalynz)an)v(na((xay)v(yaz))) = (xny)a(ynz)Aan.
Thus (iii) holds.
Clearly (iii) implies (iv).

Finally suppose (iv) holds. Let x,y € S be such that (xAn)vy
exists. Then
Iy, (xn n)vyk LC(xan) v(yan) )ACyAn) v(nAa((xan) vy ) ) )Ivixay vy =
= (xan)v(yan)vy = (xan)vy, and so by (iv) na((xAn)vy) £ xny.
Thus, na((xan)vy)< na(xny) = (xAn)v(yan); it follows that
nA((xAn)vy) = (xan)v(yan) and (ii) holds. U

The following result is found in [7, Th. 2.1).

Proposition 2.2. If n is a standard element of a nearlat-
tice S, then (5;&) is a partially ordered set and the map
X —é-(x)n is an isomorphism of (S;€) onto Pn(S), where on S,

xcy if and only if (xay)v(xan)v(yan) exists and is equal to x.8

Let n be a medial element of a nearlattice S. For any x,ye S
define the binary operation xny = m(x,n,y) = (xAy)v(xan)v(yan).
Recently Noor in [7] proved the following result.

Theorem 2.3. If n is a medial and standard element of a
nearlattice S, then Sn is a semilattice if and only if n is su-
perstandard in S.

Moreover, when n is neutral and sesquimedial then Sn is in
fact a nearlattice and the n-ideals of S are precisely the ideals
of 5 . O

OQur next theorem generalizes and extends the above Theorem.

To obtain this, we need the following lemma. (i) is found in
- 202 -



[7; Lemma 2.4], and the proof of (ii) is similar to the proof of
(ii) in [7; Lemma 2.4J.

Lemma 2.4. In a nearlattice S,

(i) a subset K of S is an ideal of § if and only if for all
X, yeK and aeS, j(x,a,y)eK.

(ii) If n is a superstandard element of S such that Sn is
a nearlattice wherein

5
I,(x,y,2) = 3 "(x,y,2) = (xay)ulynz),
then a subset K of S is an n-ideal of S if and only if
it contains n and Jn(x,a,y)e K for any x,yeK and ae S.O

Corollary 2.5. Suppose n is a superstandard element of a
nearlattice S such that the isotope Sn of S is itself a neariat- .

S
tice wherein Jn(x,y,z) = 3 n(x,y,z). Then the ideals of S, are
precisely the n-ideals of §. O

Theorem 2.6. If S is a nearlattice and n€S is medial and
superstandard, then the following conditions are equivalent.

(i) n is nearly neutral and sesquimedial in S.

(ii) The isotope Sn=(S;n) is a nearlattice wherein

an(x,y,z) = J3.(x,y,2).

(iii) Sn has the upper bound property and n-ideals of S are
precisely the ideals of Sn'

(iv) Any finitely generated n-ideal contained in a princi-
pal n-ideal is a principal n-ideal.

Proof. (i) = (ii). Suppose n is nearly neutral and ses-
quimedial in S. Then, clearly
I, (x,y,2) = ((xay)alyaz)an)vilx,y,z),
and so by [2;Th. 2.4], Jn(x,y,z)sej(x,y,z)(en) and
Xny Exr\y(en). Hence (xny)/\Jn(x,y,z)Ex/\y(en) and simi-
larly (ynz)AJn(x,y,z) EyAZ(en). Therefore,
[(xny)AJn(x,y,z)]v[(ynz)AJn(x,y,z)]v[nAJn(x,y,z)] =
= (xay)vlyaz)v(najilx,y,z)) = ix,y,2)(@).
Since the left hand side of this congruence exceeds the
right hand side, by [2;Th. 2.41,
left hand expression
= 3(x,y,z)v(nAa(left hand expression))
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= 3(x,y,2)v(nAl (x,y,2)) = Jn(x,y,2)~

Thus, Jn(x,y,z)e<xny,ynz>n. On the other hand,
(xny)AJn(x,y,z)exAy(en) implies (xny)AJn(x,y,z) =
= (xAy)V(nA(Xny)AJn(X,y,Z)), and so ((xny)AJn(x,y,z))v((xny)An) =
= (xay)v(xan)v(yan) = xny. Hence , xnye {Jn(x,y,z))n and similar-
ly ynz € (Jn(x,y,z))n. Thus, {xny,ynz>, = <Jn(x,y,z)7n and so by
Proposition 2.2, (xny)u(ynz) = Jn(x,y,z).

(ii) = (iii) follows immediately from Corollary 2.5.

(iii) = (iv) is an easy consequence of the isomorphism of
(Sn;e) and (Pn(S);ED, and the upperbound property of S .

(iv)=>(i). Let a,b,c €S. Since anb,bnceb, {anb,bnco <
c <'b)n by Proposition 2.2. Thus, by (iv), there exists t €S such
that {anb,bnc> = (t)n, and so (anb)a(bnc)an= tAn. Now, anb <t im-
plies anb=((anb)at)v(anb)an)v(tan) = ((anb)At)v((anb)An), and so
anb E(anb)/\t(en). Hence aAb Eanba(anb)/\tsa)\b/\t(en).

Similarly, bAceabAcﬁx(en). This implies

j(a,b,c) = (aabat)v(bacat) (@n)
and so j(a,b,c) = (anbat)v(bacat)v(naj(a,b,c)). Also, j(a,b,c)At=
E(aAb/\t)V(b/\cAt)(Qn), and so
j(a,b,c)at = (aAbAt)v(bAcAt)v(nataj(a,b,c)).

Thus, j(a,b,c)nt = (3(a,b,c)at)v(j(a,b,c)an)v(tAan) =
= j(a,b,c)v(tan).

Again, anb zaAb(@n). So (anb)Aj(a,b,c)=anbaj(a,b,c) =
= aAb(Bn), and hence (anb)Aj(a,b,c) = (aab)v((anb)Aj(a,b,c)An).
This implies (anb)nj(a,b,c) = anb; that is, anb cj(a,b,c). Simi-
larly, bnc £j(a,b,c). Hence, t cj(a,b,c), and so t = taj(a,b,c)=
= j(a,b,c)v(tan) = j(a,b,c)v((anb)A(bnc)An) = Jn(a,b,c), as n is
superstandard. Hence n is sesquimedial, and Jn(a,b,c)An = tAan =
= (anb)a(bnc)an. Also (xny)An = (xan)v(yan), as n is superstan-
dard. Therefore, by 2.1(iii), n is nearly neutral. O

The following lemma is due to Hickman [4; Proposition 2.2].

Lemma 2.7. In a nearlattice S, an eguivalence relation is
a nearlattice congruence if and only if it is a congruence for
the algebra (S;3). O

Now we consider the influence of J_ on congruences. The fol-
lowing theorem is an extension of [7; Lemma 2.6(ii)].
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Theorem 2.8. Let n be a sesquimedial, nearly neutral ele-
ment of a nearlattice S. Then the following conditions are equi-
valent.

(i) n is neutral in S;

(ii) an equivalence relation on S is a congruence for the
algebra (S;Jn) if and only if it is a n earlattice-congruence of
S

Proof. (i) = (ii) is proved in [7; Lemma 2.6(ii)].

(ii) = (i). Define a relation © on the nearlattice S by
x=y(©) if and only if xAn = yan. This is clearly an equivalen-
ce relation on S.

Now suppose x=y(© ). Then xAn = yan, and so by 2.1, for any
s,te5, nAJn(x,s,t) = (xns)A(snt)An = ((xAn)v(sAn))A((sAn)v(tAn))=
= ((yAan)v(sAn))A((san) v (tAn)) = nAd (y,s,t). Thus, I (x,8,t) = |
=J,(y,s,t)(®). Similarly, Jn(s,x,t)_—EJn(s,y,t)(G) and
Jn(s,t,x)EJn(s,t,y)(e), and so © is a congruence for the algeb-
ra (S;Jn). Thus, by (ii), © is a nearlattice congruence on S.
Now, clearly x=xAn(® ) and y=yAan(® ) for all x,yeS. So for any
teS, (tax)v(tay) = (taxan)v(tayan)(8 ), and hence, nAal(tax)v(tay)]=
= nAl(tAxan)v(tayan)] = (taxan)v(tayan), which implies n is neu-
tral in S. O

Combining Theorem 2.6, Lemma 2.7 and the above theorem, we
have the following extension of [7,Th. 2.77].

Theorem 2.9. Let n be a nearly neutral sesquimedial element
of a nearlattice S. Then n is neutral if and only if the nearlat-
tice congruences of S are precisely the nearlattice congruences
of 5 . O

The following proposition will be needed to prove one of
our main results in Section 3. This was known by Kolibiar [6] in
case of a bounded lattice with n as a central element.

Proposition 2.10. If n is a nearly neutral sesquimedial
element of a nearlattice S with 0, then 0 is neutral and medial
in S,- Moreover, the double isotope (Sn)0 is precisely S.

If, in addition, n is neutral in S, then 0 os sesquimedial
. (s,
in S  and Jon(x,y,z) 2 j O(x,y,z) = j(x,y,z) = Jo(x,y,z) for
all x,y,zeS.
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Proof. By 2.6, for all r,x,yeS§, 0n((rnx)ulrny)) =
£ Dan(x,r,y) = nAJn(x,r,y) = Jn(rnx,O,rny) = (0nrnx)u(0Onrny) .
Also, rn((xny)u(xnD)) = ran(y,x,O) = rn((xan)vixay)) = (ran)v
v(xAn)v(raxay) as n is nearly neutral and hence standard. On the
other hand, (roxny)u(rnxn0) = Jn(y,rnx,O) = ((rnx)an)v(ya(rnx)) =
= (cAn)v(xan)viya(((rnx)Arax)v((rnx)an))] = (rAan)v(xan)v(raxay).
That is ra((xny)u(xn0)) = (raxny)u(rnxn0); conseguently 0 is ne-
utral in Sn.

Now, clearly xny,xn0,yn0< xAy, and so (xny)u(xn0)u(yn0) ex-
ists and it is € xay. Thus, 0 is medial in S , and so ((Sn)o; A)
is a semilattice by Theorem 2.3, where

xAy = (xny)u(xn0)u(yn0).
Suppose xny,xn0,yn0c s for some se¢S_ . Then sANn £(xn0)An =
= xAn. Similarly san £yan, and so sAn £xayAn. Also,

xny = (xny)ns = ((xny)as)v{((xay)an)v(san) =
((xay)as)v((xay) An).

Then
xAy = (xay)a(xny) = (xayas)v(xayAn) = (xAy)ns.

This implies xAyc s, and hence
xAy = (xny)u(xn0)u(yn0) = xAy;
in other words, (Sn)0 = S
Finally, suppose that n is neutral in S. Since 0 is neutral in Sn,
((xn0)u(yn0))n((yn0)u(zn0)) = (xAy)a(yAaz)n0 =
(xAy)n(yaz)n0 = L(xAy)n(yaz)lan =
= (xayan)v(yazan) = nAj(x,y,z)
as n is neutral. Also it can be easily shown that xny,ynz ¢
c jlx,y,z) = Jo(x,y,z). Therefore

L((xn0) u(yn0))n((ynd)u(zn0))] u (xny)ulynz)

exists in Sn; whence 0 is sesquimedial in Sn. The rest follows by
2.6. U

It should be noted that the above proposition is not true
when n is merely nearly neutral. For example, in Figure 2 which
is the isotope of Figure 1, 0 is not sesguimedial.
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3. Medial nearlattices. Recall that a nearlattice S is me-
dial if for all x,yeS, m(x,y,z) = (xay)v(yaz)v(zax) exists. A
nearlattice S is said to have the three property if, for any

x,y,z€S5, xvyvz exists whenever xvy, yvz and zvx exist. Nearlat-
tices with the three property were discussed by Evans in [31,
where he referred to them as strong conditional lattices. It is
easy to see that a nearlattice S has the three property if and
only if it is medial.

Lemma 3.1. Every element of a medial nearlattice is sesqui-
medial.

Proof. Suppose S is medial and n is any element of S. For
any x,y,zeS, ((xan)v(yan))A((yan)v(zan)), xAy £m(x,n,y) and
((xan)v(yAn))AC(yAn)v(zan)), yAz£m(y,n,z). Thus using the upper
bound property and the three property of S, (((xAn)v(yan)) A
ACCyAan) v(zAn) ) v (xay) v(yaz) = Jn(x,y,z) exists in S§. O

Suppose S is a medial nearlattice and a,b,ceS. If avb, byvc
cva exists, we define md(a,b,c) = (avb)Aa(bvc)Aa(cva). 0f course,
when S is distributive, md(a,b,c) = m(a,b,c). For a fixed ele-

’

ment n of S, let us introduce a ternary operation Mn, defined by
M (x,y,z) = md(XAn,yAn, zan)vm(x,y,z); x,y,zeS. Notice that
m-(xAn,yAn,zAan) always exists in S. But also we have:

Lemma 3.2. In a medial nearlattice S with neS§, Mn(x,y,z)
always exists for all x,y,zeS.

Proof. Notice that md(xAn,yAn,ZAn), xAy £ m(x,n,y),
md(XAn,yAn,ZAn), yaz ¢€m(y,n,z) and m (xAn,yan,zan), zax£m(z,n,x).
Then by the upper bound property and the three property both
md(XAn,yAn,ZAn)V(ZAX) and md(XAn,yAn,ZAH)V(XAy)V(YAZ) exist.
Thus a second application of the three property yields the exis-
tence of Mn(x,y,z). O

Note that if n is nearly neutral in a nearlattice S,
M (x,y,2)= ((xny)A(ynz)A(znx)An)vm(x,y,z),and when n is neutral
Mo (x,y,2)An = (xny)A(ynz)A(znx)An. Also if S is a lattice and n
is neutral, M (x,y,2z) = (md(x,y,z)An)vm(x,y,z) = md(x,y,z) A
Alnvm(x,y,z)).

0f course m(x,y,z) and Mn(x,y,z) are symmetric in x,y and
z, whereas j(x,y,z) and Jn(x,y,z) are not. Thus, the operations
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m and Mn are better behaved and easier to handle than the opera-
tions j and Jn respectively.

The following proposition is easily verifiable and so is
given without proof.

Proposition 3.3. For an element n of a medial nearlattice
5, Mn(x,y,z) =m(x,y,z) for all x,y,zeS if and only if (n] is
a distributive lattice.

Hence in a distributive medial nearlattice S, Mn(x,y,z) =
= m(x,y,z) for all x,y,zeS. O

Now we present the following interesting result which ex-
tends Theorem 2.6.

Theorem 3.4. Suppose n is a neutral sesquimedial element
of a nearlattice S. Then the following conditions are equivalent.
(i) S is medial; 5
(ii) S, is a medial nearlattice and m "(x, y,z) = Mn(x,y,z)
for all x,y,ze S.
Moreover, (i) does not necessarily imply (ii) when n is
merely nearly neutral.

Proof. (i) = (ii). Since n is neutral,

M (x,y,2)An = (xny)ACynu)A(zax)An.

By [2,Th. 2.41,
M (x,y,2)=m(x,y,z)(® )

and xnyEXAy(en). Thus, (xny)/\(Mn(x,y,z)=XAy(9n). Similarly,
(ynz)AM_(x,y2) = yaz(9,),

and ' .
(znx)AM_(x,y,2) =2zAx(Q ).

Then using the technigue of the proof of (i) = (ii) in Theorem
2.6, we obtain (xny,ynz,an)n = <Mn(x,y,z)>n, and (ii) follows
from the isomorphism of (Sn;s) and (Pn(S);E).

(ii) = (i). Adjoint a new 0 in S and form (S;O)n. Then by
2.10, 0 is neutral and medial in (S;O)n. Thus (5;0)n is medial
as S is medial. Hence, by (i) = (ii), ((S;0) ), is medial. But
((S;O)n)0 = (S;0) by 2.10, and so S is medial as required.

For the final assertion consider the lattice of Figure 1,
where n is nearly neutral but not neutral. But its isotope,
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given by Figure 2 is not medial. [

It is well-known by Kolibiar [6) that if L is a lattice
with 0 and 1 and n is central in it, then Ln is also a bounded
lattice with n and n” as the smallest and the largest elements
respectively, where xuy = m(x,n",y) for all x,yel.

An element n in a lattice L is called central if it is ne-
utral and complemented in each interval containing it.

We conclude this paper with the following extension of Ko-
libiar’s result.

Proposition 3.5. Suppose L is a lattice and nel is stan-
dard. Then the isotope Ln is a lattice if and only if n is cent-
ral in L.

.

Proof. Since n is standard, (L;c) and (Pn(L);E) are isomor-
phic by 2.2. Thus, Ln is a lattice if and only if Pn(L) is a lat-
tice, i.e. if and only if n is complemented in each interval con-
taining it. Consequently, the result follows by (2,Th. 3.5].

EP b

Figure 1 Figure 2
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