

Werk

Label: Remarks

Jahr: 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0028|log26

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ANNOUNCEMENTS OF NEW RESULTS .

ON MULTIVALUED AND SINGLEVALUED ACCRETIVE MAPPINGS

Josef Kolomý (Math. Institute, Charles University, Sokolovská 83, 18600 Praha 8, Czechoslovakia), received 12.1. 1987.

Let X be a real normed linear space, X[★] its dual. Recall

- that a mapping $A: X \longrightarrow 2^X$ is said to be: (i) hemicontinuous (HC) at $u_0 \in \operatorname{int_aD}(A)$ (an algebraic interior of D(A)) if for any v \in X and any null-sequence of positive numbers t_n and $x_n \in$ A(u_n), where $u_n = u_0 + t_n v \in$ D(A) for sufficiently large n, $x_n \rightarrow x_0$ weakly in X and $x_0 \in A(u_0)$;
- (ii) directionally upper semicontinuous (DUSC) at u c 6 int_aD(A) if its restriction to any half line $L_v = \{u_n + tu: t \ge 0\}$, v € X is upper semicontinuous (USC) at u_o;
- (iii) demicontinuous (DC) at $u_0 \in D(A)$, if $(u_n) \in D(A)$, $u_n \rightarrow$ \rightarrow u_o, x_n \in A(u_n) imply that (x_n) converges weakly to x_o and $x_0 \in A(u_0)$. Clearly, if A is (HC) at $u_0 \in int_B D(A)$, then A is (DUSC) at u_n . Conversely, if A is singlevalued and (DUSC) at u_0 , then A is (HC) at u_0 . Similar relations are valid between (DC) and norm-to-weak (USC). The following results are related to that of [3] - [5].

Theorem 1. Let X be a reflexive Banach space, A:X \longrightarrow 2 an accretive mapping with D(A) \subseteq X. Then
(i) If X is smooth and rotund and A is singlevalued at $\mathbf{u}_{\mathbf{0}}$ \in

- ϵ int_aD(A), then A is (HC) at u₀;
- (ii) If int D(A) \neq Ø and A(u) is convex and bounded for each u \in int D(A) and the graph G(A) of A is closed in (X, $\|\cdot\|$) \times \times (X, $\mathfrak{G}(X,X^*)$), then A is singlevalued and (HC) on a dense $\mathfrak{G}_{\mathfrak{F}}$
- (iii) If X is Frechet-smooth and A is (HC) at $u_0 \in \text{int } D(A)$, then A is (DC) at u_0 . Thm. 1(iii) extends the result of Kato [2], where it is assumed that X* is uniformly rotund and A is single-
- Theorem 2. Let X be a dual (i.e. X=Z* for some Banach space Z) smooth rotund and (H)-Banach space (i.e. if $(x_n) \subset X$, $x \in X$, $X_n \longrightarrow X$ weakly, $\|x_n\| \longrightarrow \|x\|$ imply that $x_n \longrightarrow x$), $A:X \longrightarrow 2^X$ a maximal accretive mapping with respect to the duality mapping $J:Z^*\longrightarrow Z$ and such that $D(A)\subset X$. If $\overline{R(A)}^{\mathfrak{C}(Z^*,Z)}$ is convex, then $\lim_{A\to +\infty} \frac{1}{A} J_A(u) = -a^0 \text{ for each } u \in A_{>0}(D(A) \cap R(I + AA)), \text{ where} .$ $J_{A}=(I+\lambda\,A)^{-1}$ and a^{O} is a unique element of $\overline{R(A)} \delta'(Z^*,Z)$ with the minimum norm. - 191 -

Using the result of [1] concerning the convexity of $\overline{R(A)}$ we get $\frac{\text{Corollary 1}}{\text{Corollary 1}}.$ Let X be a reflexive rotund (H)-Banach space which is uniformly Gâteaux smooth (or equivalently X* is weakly* uniformly rotund), A:X \longrightarrow 2^X an m-accretive mapping with D(A) \subset X.

Then $\lim_{\lambda \to +\infty} \frac{1}{\lambda} J_{\lambda}(u) = -a^0$ for each $u \in D(A)$, where a^0 is a unique point of $\overline{R(A)}$ with the minimum norm.

- As a further consequence of Thm. 2 we obtain the result of [6] concerning maximal monotone mappings in Hilbert spaces.

 References:
- [1] L. GOBBO: On the asymptotic behavior of the resolvent of the inverse of an m-accretive operator in a Banach space, Rend. Sem. Mat. Univ. Politecn. Torino 42(1984), 47-64.
- [12] T. KATO: Demicontinuity, hemicontinuity and monotonicity II, Bull.Amer.Math.Soc. 73(1967), 886-889.
- [3] J. KOLOMÝ: Set-valued mappings and structure of Banach spaces, Rend.Circolo Mat.di Palermo (to appear).
- [4] J. KOLOMÝ: Maximal monotone and accretive multivalued mappings and structure of Banach spaces, Proc.Int.Conference "Function Spaces", Poznań, August 25-29, 1986 (to appear).
- [5] J. KOLOMÝ: On accretive multivalued mappings, Comment.Math. Univ.Carolinae 27(1986), 420.
- [6] G. MOROSANU: Asymptotic behavior of resolvent of a monotone mapping in a Hilbert space, Atti Acad.Naz. dei Lincei 59(1976), 565-570.

MINIMAL CONVEX-VALUED WEAK USCO CORRESPONDENCES

Luděk Jokl (ČVUT Praha, Thákurova 7, 16629 Praha 6, Czechoslovakia), received 15.1. 1987.

We say that a function $f:V\longrightarrow R$ defined on a vector space V is rotund if it is convex and f((u+v)/2) < t whenever $u,v\in V,\ u\ne v$ and f(u)=t=f(v). In what follows X will be a real Banach space.

Theorem 1. If there exists a weak* lower semicontinuous rotund function $f: X^* \longrightarrow R$, then X belongs to the Stegall class \mathcal{G} .

We denote by w* the weak* topology for any dual Banach space. Let D be a topological space. Then we write $F \in USCOC(F, (X^*, w^*))$ if and only if, using the weak* topology, F is a convex-valued usco correspondence from D into X^* . The set $USCOC(D, (X^*, w^*))$ is partially ordered with order \subseteq , where $E \subseteq F$ iff $E(d) \subset F(d)$ for each $d \in D$. We denote by $uscoc(D, (X^*, w^*))$ the set of all minimal elements of $USCOC(D, (X^*, w^*))$.

Theorem 2. Let $T:X\longrightarrow X^*$ be a maximal monotone operator and D be an open subset of X. If $Tx + \emptyset$ for all x in D then $T|D\in U^scoc(D,(X^*,w^*))$.

If F is a correspondence from D into X* then we define the set $C(F,D,X^*)$ as follows: $d\in C(F,D,X^*)$ if and only if $d\in D$ and,

using the norm topology, F is upper semicontinuous and single-valued at d. In the following theorem X will be regarded as a closed vector subspace of X^{**} .

Theorem 3. Let K be a closed convex subset of X. Then K has the Radon-Nikodým property if and only if the set $C(F,D,X^{**})$ is dense in D whenever D is a Baire space, Fe uscoc(D,(X**,w*)) and the set $F^{-1}(K)$ is dense in D.

References:

- [11] E. ASPLUND: Fréchet differentiability of convex functions, Acta Math. 121(1968), 31-47.
- [2] P.R. CHRISTENSEN, P.S. KENDEROV: Dense strong continuity of mappings and the Radon-Nikodým property, Math. Scand. 54(1984), 70-78.
- [3] S.P. FITZPATRICK: Monotone operators and dentability, Bull. Austr.Math.Soc. 18(1978), 77-82.
- [4] P.S. KENDEROV: Multivalued monotone mappings are almost everywhere single-valued, Studia Math, LVI(1976), 199-203.
- [5] P.S. KENDEROV: Monotone operators in Asplund spaces, C.R. Acad.Sci.Bulgare 30(1977), 963-964.
- [6] C. STEGALL: More Gâteaux differentiability spaces, Banach Spaces, Proceedings, Missouri 1984.

. •

.

.