

Werk

Label: Article **Jahr:** 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0028|log21

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 28.1 (1987)

ON THE DIRICHLET PROBLEM FOR A DEGENERATE ELLIPTIC **EQUATION** J. H. CHABROWSKI

Abstract: We study the Dirichlet problem for an elliptic equation in a bounded domain $Q \subset R_n$ with the boundary data in $L^2(\partial Q)$. It is assumed that the ellipticity degenerates at every point of the boundary QQ. We prove the existence of a solution in a weighted Sobolev space $W^{1,2}(Q)$.

Key words: Degenerate elliptic equation, the Dirichlet pro-

Classification: 35005, 35J25

1. Introduction. In this paper we investigate the Dirichlet

problem for a degenerate elliptic equation
$$(1) \quad (L+\hbar)u = -\sum_{i,j=1}^{\infty} D_{i}(\rho(x)a_{ij}(x)D_{j}u) + \sum_{i=1}^{\infty} a_{i}(x)D_{i}u + (a_{0}(x)+\lambda) = f(x)$$
 in Q,

u=∳ on ∂Q. (2)

In a bounded domain $Q \subset R_n$ with a smooth boundary ∂Q , where λ is a real parameter, a boundary data Φ is in L²(∂Q) and $\wp(x)$ is a \mathbb{C}^2 -function on $\widehat{\mathbb{Q}}$ equivalent to the distance $d(x,\partial\mathbb{Q})$ for $x \in \widehat{\mathbb{Q}}$ and its properties are described in Section 2.

Throughout this paper we make the following assumptions

- (A) The coefficients a_{ij} , a_i and a_o (i,j=1,...,n) are in $C^{\bullet \bullet}(R_n)$ $a_{ij}=a_{ji}$ (i, j=1,...,n)
- (B) There exists a positive constant γ such that

$$\gamma^{-1}|\xi|^2 = \sum_{i,j=1}^{n} a_{ij}(x) \xi_i \xi_j \leq \gamma |\xi|^2$$

$$\begin{split} \gamma^{-1}|\xi|^2 &= \sum_{i,j=1}^m a_{ij}(x) \; \xi_i \xi_j \leq \gamma |\xi|^2 \\ \text{for all } x \in \overline{\mathbb{Q}} \; \text{and} \; \xi \in \mathbb{R}_n. \; \text{Moreover there exists a constant } \beta > 0 \\ \text{such that } a_0(x) \geq \beta \; \text{on } \overline{\mathbb{Q}}. \end{split}$$

(C) $f \in L^2(Q)$.

Since the elliptic equation (1) degenerates on ∂Q , the theory of second-order equations with non-negative characteristic form asserts that the boundary condition is to be imposed on a certain subset of ∂Q , which can be described with the aid of the so called Fichera function (see p. 17 in [10]). In our situation the Fichera function is reduced to $z(x) = \sum_{i=1}^{\infty} a_i(x)D_i \phi(x)$. Consequently following the terminology of [10], the boundary condition (2) should be imposed on

$$\Sigma_2 = \{x \in \partial Q: \sum_{i=1}^{m} a_i(x) D_i \rho(x) > 0\}.$$

Throughout this work it is assumed that (D) $\sum_{i=1}^{n} a_i(x)D_i\phi(x) > 0$ on ∂Q ,

therefore $\Sigma_2 = \partial Q$.

The main difficulty encountered in constructing a solution of the Dirichlet problem with L^2 -boundary data arises from the fact that functions in $L^2(\partial Q)$ are not, in general, traces of functions from the Sobolev space $W^{1,2}(Q)$. Consequently the Dirichlet problem (1),(2) cannot be reduced to the problem in $W^{1,2}(Q)$. It is also clear that the boundary condition (2) requires a proper formulation.

The purpose of this note is to establish the existence of solutions to the problam (1),(2). We construct a solution by approximating Φ and f in $L^2(\partial Q)$ and $L^2(Q)$, respectively, by sequences of smooth functions. Then we can use the recent results of [7] in which the existence of solutions in $C(\overline{Q}) \cap C^2(Q)$ has been established as well as some estimates near the boundary of the gradient of a solution. In Section 2 we find the uniform bound for this approximating sequence of solutions in a Sobolev space $\widetilde{W}^{2,2}(Q)$. The space $\widetilde{W}^{2,2}(Q)$, defined in Section 2, appears to be the right Sobolev space to study the Dirichlet problem (1),(2) with $\Phi \in L^2(\partial Q)$. Section 3 is devoted to the main existence result. In the final Section 4 we make some comments on the existence of solutions in the case when (0) is replaced by a weaker condition $\widetilde{W}^{2,2}(Q)$ on ∂Q .

The methods employed in this paper are not new and have appeared in [1],[2] and [9]. The degenerate Dirichlet problem has

an extensive literature (see for example [4],[5],[7],[10] and the references given there). The case where $\sum_{i=1}^{\infty} a_i(x)D_i o(x) < 0$ on ∂Q is more complex and in general the boundary condition is irrelevant (see [4]). Finally we point out that the case $\sum_{i=1}^{\infty} a_{i}(x)D_{i}\phi(x)$ $>\frac{1}{2}\sum_{i,j=1}^{\infty} a_{i,j}(x)D_{i,j}\phi(x)D_{j,j}\phi(x)$ on ∂Q has been considered in [5] but with zero boundary data.

2. Preliminaries. Let r(x)=dist $(x,\partial Q)$ for $x \in \overline{Q}$. It follows from the regularity of the boundary $\partial \mathbb{Q}$ that there is a number $\sigma_{\mathbf{Q}}^{r}$ such that for $\sigma \in (0, \sigma_0)$ the domain $0 = 0 \cap \{x : \min_{y \in \partial \Omega} |x-y| > \sigma \}$ with the boundary ∂Q_{γ} possesses the following property: to each $x_0 \in \partial Q$ there is a unique point $x_0(x_0) \in \partial Q_0$ such that $x_0(x_0) = x_0$ - of $\nu(x_0)$, where $\nu(x_0)$ is the outward normal to ∂Q at x_0 . The above relation gives a one-to-one mapping at least of class \mathbb{C}^2 , of ∂Q onto ∂Q_{σ} . The inverse mapping of $x_0 \longrightarrow x_{\sigma}(x_0)$ is given by the formula $x_0 = x_0 + \sigma v_\sigma(x_\sigma)$, where $v_\sigma(x_\sigma)$ is the outward normal to aQ at x .

Now let $x_0 \in \partial Q$, $0 < \sigma < \sigma_0$ and let \overline{x}_σ be given by $\overline{x}_{\sigma'} = x_{\sigma'}(x_0) = x_0 - \sigma \nu(x_0)$. Let

$$A_{\varepsilon} = \partial Q_{\sigma} \cap \{x_{\sigma}; |x_{\sigma} - \overline{x}_{\sigma}| < \varepsilon\},$$

$$B_{\varepsilon} = \{x; \ \widetilde{x} = x_{\sigma} + \sigma v_{\sigma}(\widetilde{x}_{\sigma}), \ \widetilde{x}_{\sigma} \in A_{\varepsilon}\},$$

$$\frac{dS_{o}}{dS_{o}} = \lim_{\varepsilon \to 0} \frac{|A_{\varepsilon}|}{|B_{\varepsilon}|},$$

where |A| denotes the n-1 dimensional Hausdorff measure of a set A. Mikhailov [9] proved that there is a positive number γ_0 such that

$$(3) \qquad \gamma_0^{-2} \le \frac{\mathrm{ds}}{\mathrm{dS}_0} \le \gamma_0^2$$

and

$$\begin{array}{ccc}
\text{(4)} & \lim_{\delta \to 0} \frac{dS_{\delta'}}{dS} = 1
\end{array}$$

(4) $\lim_{\delta \to 0} \frac{dS_{\delta}}{dS_{0}} = 1$ uniformly on ∂Q , and moreover $\frac{dS_{\delta}}{dS_{0}}$ is at least C^{1} -function on

 $\partial Q \times [0, \sigma_0]$ (see formula (16) in [9].

According to Lemma 1 in [3] p. 382, the distance r(x) belongs

to $C^2(\overline{\mathbb{Q}}-\mathbb{Q}_0)$ if \mathfrak{G}_0 is sufficiently small. Denote by $\mathfrak{G}(x)$ the extension of the function r(x) into \overline{Q} satisfying the following properties $\varphi(x) = r(x)$ for $x \in \overline{\mathbb{Q}} - \mathbb{Q}_{\overline{0}}$, $\varphi \in \mathbb{C}^2(\overline{\mathbb{Q}})$, $\varphi(x) \geq \frac{3\sigma_0}{4}$ in \mathbb{Q}_{σ_0} , $\gamma_1^{-1} \mathbf{r}(\mathbf{x}) \leq \rho(\mathbf{x}) \leq \gamma_1^{-1} \mathbf{r}(\mathbf{x})$ in Q for some positive constant γ_1 , $\partial Q_{\mathbf{r}} = \mathbf{r}(\mathbf{x})$ = $\{x; \varphi(x) = \delta \}$ for $\delta \in (0, \delta_0]$ and finally $\partial Q = \{x; \varphi(x) = 0\}$.

The following result is an immediate consequence of Theorem 2.3 in [7].

Theorem 1. Let $f \in W^{\ell,\infty}(\mathbb{Q})$ with $\ell \ge 1$. Then there exists $0 < \mathcal{H} < 1 \text{ with } \mathcal{H} < \inf_{\partial \Omega} \mathcal{H} = \underbrace{\mathbb{I}_{\partial \Omega}^{\mathcal{H}}}_{\mathcal{H}} a_{i}(x) D_{i} \mathcal{O}(x) \text{ such that any solution } u \text{ in } \underbrace{\mathbb{I}_{\partial \Omega}^{\mathcal{H}}}_{\mathcal{H}} a_{i}(x) D_{i} \mathcal{O}(x)$ $C^2(\mathbb{Q})\cap C(\overline{\mathbb{Q}})$ of (1),(2) with $\Phi=0$ on $\partial\mathbb{Q}$ satisfies the estimate

(5)
$$||e^{1-\mathcal{H}_{DU}}||_{L^{\infty}(\mathbb{Q})} \leq c(\ell)||f||_{W^{\ell,\infty}(\mathbb{Q})}$$

where C(l) is a constant.

To construct a solution of (1), (2) in $W_{loc}^{2,2}(\mathbb{Q})$ we need

 $\lim_{m\to\infty} \int_{\partial \mathcal{Q}} \left[\Phi_{m}(x) - \Phi(x) \right]^{2} \mathrm{d}S_{x} = 0 \text{ and } \lim_{m\to\infty} \int_{\mathcal{Q}} \left[f_{m}(x) - f(x) \right]^{2} \mathrm{d}x = 0.$ Let u_m be a solution of (1) with $f=f_m$ in $C^2(Q) \wedge C(\overline{Q})$ satisfying the boundary condition

(2m)
$$u_m = \Phi_m \underline{on} \partial Q$$
.

Then there exist positive constants λ_0 and C, independent of m, such that

(6)
$$\int_{\mathcal{Q}} |D^2 u_m|^2 \varphi^3 dx + \int_{\mathcal{Q}} |Du_m|^2 \varphi dx + \int_{\mathcal{Q}} u_m^2 dx \le$$

$$\leq C \left(\int_{\mathcal{Q}} f_m^2 dx + \int_{\partial \mathcal{Q}} \Phi_m^2 ds_x \right),$$

for all m=1,2,... and $\lambda \geq \lambda_0$.

Proof. According to Theorem 1 and Theorem 2.3 in [7] for each m there exists a solution u_m of $(1),(2_m)$ in $C^2(\mathbb{Q})\cap C(\overline{\mathbb{Q}})$ with $\wp^{1-\Re}\mathrm{Du_m}\in L^\infty(\mathbb{Q})$ provided $\lambda\succeq 0$. Multiplying (1) by $\mathrm{u_m}$ and

integrating by parts we obtain

(7)
$$\int_{\partial Q_{\sigma'}} \int_{a_{1}}^{\infty} \int_{a_{1}}^{a_{1}} a_{1} \int_{a_{1}}^{b_{1}} u_{m} \cdot u_{m} D_{1} \varphi dS_{x} + \int_{Q_{\sigma'}} \int_{a_{1}}^{\infty} \int_{a_{1}}^{\infty} a_{1} \int_{a_{1}}^{b_{1}} u_{m} D_{1} u_{m} dx + \int_{Q_{\sigma'}}^{\infty} u_{m}^{2} dx + \lambda \int_{Q_{\sigma'}} u_{m}^{2} dx = \int_{Q_{\sigma'}} f_{m} \cdot u_{m} dx.$$

$$- 144 -$$

The first integral can be estimated using Young's inequality

(8)
$$\int_{\partial Q_{\sigma}} d^{3} \sum_{i,j=1}^{m} a_{ij} D_{i} u_{m} u_{m} D_{j} dS | \leq C_{1} d^{2} \int_{\partial Q_{\sigma}} |Du_{m}|^{2} ds + \int_{\partial Q_{\sigma}} u_{m}^{2} ds,$$

where \mathbf{C}_1 is independent of \mathbf{o}^r . Integrating by parts the third integral we get

(9)
$$\int_{\mathcal{B}_{0}^{+}} \sum_{i=1}^{m} a_{i} D_{i} u_{m} \cdot u_{m} dx = \frac{1}{2} \int_{\mathcal{B}_{0}^{+}} \sum_{i=1}^{m} a_{i} D_{i} (u_{m}^{2}) dx =$$

$$= -\frac{1}{2} \int_{\partial \mathcal{B}_{1}} \sum_{i=1}^{m} a_{i} D_{i} \rho u_{m}^{2} dS - \frac{1}{2} \int_{\mathcal{B}_{1}^{+}} \sum_{i=1}^{m} D_{i} a_{i} u_{m}^{2} dx .$$

Combining (7),(8) and (9) with the ellipticity condition we arrive at the estimate

$$\begin{split} & \gamma^{-1} \int_{Q_{\sigma'}} \varphi |Du_{m}|^{2} dx + \int_{Q_{\sigma'}} (\lambda - \frac{1}{2} + a_{o} - \frac{1}{2} \underset{z}{\rightleftharpoons} D_{i} a_{i}) u_{m}^{2} dx \leq \\ & \leq C_{1} \sigma^{2} \int_{\partial Q_{\sigma'}} |Du_{m}|^{2} dS + \int_{\partial Q_{\sigma'}} (\frac{1}{2} \underset{z}{\rightleftharpoons} a_{i} D_{i} \varphi + 1) u_{m}^{2} dS + \frac{1}{2} \int_{Q_{\sigma'}} f_{m}^{2} dx \,. \end{split}$$

Since $1-\mathcal{H}_{Du_m} \in L^{\infty}(\mathbb{Q})$, $\lim_{\delta \to \mathbb{D}} \delta^2 \int_{\partial \mathcal{Q}_{\sigma}} |Du_m|^2 dS_{\chi} = 0$.

Consequently taking λ sufficiently large, say $\lambda \geq \lambda_0$, and letting $\sigma \longrightarrow 0$, we get

for all m, where C_2 is independent of m. To estimate $\int_{Q} |D^2 u_m|^2 \rho^3 dx, \text{ we first observe that, if v is a W}^{2,2}\text{-function}$ with compact support in Q, then

$$\int_{\mathcal{Q}} \mathfrak{S} \sup_{\mathbf{i}, \frac{\mathcal{S}}{2} = \mathbf{1}} \mathbf{a}_{\mathbf{i} \mathbf{j}} \mathbf{D}_{\mathbf{i}} \mathbf{u}_{\mathsf{m}} \mathbf{D}_{\mathbf{j} \mathbf{k}}^{2} \quad \mathsf{vdx} + \int_{\mathcal{Q}} \sup_{\mathbf{i} = \mathbf{1}} \mathbf{a}_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} \mathbf{u}_{\mathsf{m}} \mathbf{D}_{\mathsf{k}} \mathsf{vdx} + \int_{\mathbf{Q}} (\mathbf{a}_{\mathsf{o}} + \lambda) \mathbf{u}_{\mathsf{m}} \mathbf{D}_{\mathsf{k}} \mathsf{vdx} = \int_{\mathcal{Q}} \mathbf{f}_{\mathsf{m}} \mathbf{D}_{\mathsf{k}} \mathsf{vdx}.$$

Integrating by parts the first integral we get

$$\int_{\mathcal{Q}} D_{k} g_{i} \sum_{\lambda=1}^{\infty} a_{ij} D_{i} u_{m} D_{j} v \, dx + \int_{\mathcal{Q}} g_{i} \sum_{\lambda=1}^{\infty} D_{k} a_{ij} D_{i} u_{m} D_{j} v \, dx + \\ + \int_{\mathcal{Q}} g_{i} \sum_{\lambda=1}^{\infty} a_{ij} D_{ki}^{2} u_{m} D_{j} v \, dx - \int_{\mathcal{Q}} \sum_{\lambda=1}^{\infty} a_{i} D_{i} u_{m} D_{k} v \, dx - \\ - \int_{\mathcal{Q}} (a_{0} + \lambda) u_{m} D_{k} v \, dx = - \int_{\mathcal{Q}} f D_{k} v \, dx.$$

Letting $v = 0_k u_m (\wp - \delta')^2$ in $\mathbb{Q}_{\delta'}$ and v = 0 on $\mathbb{Q} - \mathbb{Q}_{\delta'}$ we deduce from the last equation

(11)
$$\int_{Q_{\sigma'}} D_{k} \varphi_{i} \frac{\partial}{\partial z^{i}} a_{ij} D_{i} u_{m} D_{jk}^{2} u_{m} (\varphi - \delta')^{2} +$$

$$+ 2 \int_{Q_{\sigma'}} D_{k} \varphi_{i} \frac{\partial}{\partial z^{i}} a_{ij} D_{i} u_{m}^{i} D_{k} u_{m}^{i} D_{j} \varphi (\varphi - \delta') dx +$$

$$- 145 -$$

$$\begin{split} &+\int_{Q_{\sigma}} \mathcal{P}_{i} \sum_{j=1}^{\infty} D_{k} a_{ij} D_{1} u_{m} D_{jk}^{2} u_{m} (\varphi - \delta)^{2} dx + 2\int_{Q_{\sigma}} \mathcal{P}_{i} \sum_{j=1}^{\infty} D_{k} a_{ij} D_{i} u_{m} D_{k} u_{m} (\varphi - \delta) D_{j} \varphi dx + \\ &+\int_{Q_{\sigma}} \mathcal{P}_{i} \sum_{j=1}^{\infty} A_{ij} D_{ki}^{2} u_{m} D_{kj}^{2} u_{m} (\varphi - \delta)^{2} dx + 2\int_{Q_{\sigma}} \mathcal{P}_{i} \sum_{j=1}^{\infty} A_{ij} D_{ki}^{2} u_{m} D_{k} u_{m} (\varphi - \delta) D_{j} \varphi dx - \\ &-\int_{Q_{\sigma}} \sum_{j=1}^{\infty} A_{i} D_{i} u_{m} D_{kk}^{2} u_{m} (\varphi - \delta)^{2} - 2\int_{Q_{\sigma}} \sum_{j=1}^{\infty} A_{i} D_{i} u_{m} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - \\ &-\int_{Q_{\sigma}} (a_{0} + \lambda) u_{m} D_{kk}^{2} u_{m} (\varphi - \delta)^{2} dx - 2\int_{Q_{\sigma}} \int_{Q_{\sigma}} (a_{0} + \lambda) u_{m} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx = \\ &= -\int_{Q_{\sigma}} \int_{Q_{\kappa}} D_{kk}^{2} u_{m} (\varphi - \delta)^{2} dx - 2\int_{Q_{\sigma}} \int_{Q_{\sigma}} \int_{Q_{\kappa}} D_{k} \varphi dx - 2\int_{Q_{\sigma}} \int_{Q_{\kappa}} D_{k} \varphi dx - 2\int_{Q_{\sigma}} \int_{Q_{\kappa}} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} \int_{Q_{\kappa}} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} \int_{Q_{\kappa}} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} \int_{Q_{\kappa}} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} \int_{Q_{\kappa}} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} \int_{Q_{\kappa}} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} \int_{Q_{\kappa}} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} \int_{Q_{\kappa}} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} \int_{Q_{\kappa}} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} \int_{Q_{\kappa}} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} \int_{Q_{\kappa}} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} \int_{Q_{\kappa}} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} \int_{Q_{\kappa}} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} \int_{Q_{\sigma}} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} \int_{Q_{\sigma}} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} D_{k} u_{m} (\varphi - \delta) D_{k} u_{m} (\varphi - \delta) D_{k} \varphi dx - 2\int_{Q_{\sigma}} D_{k} u_{m} (\varphi - \delta) D_{k} u_{m} (\varphi - \delta)$$

Let us denote the integrals on the left side of (11) by $\rm J_1,\dots,J_{10}$ Estimation of these integrals can be obtained as follows

(12)
$$J_5 \ge \gamma^{-1} \int_{Q_{\vec{p}}} \sum_{j=1}^{\infty} |D_{jk} u_m|^2 \varrho (\rho - \vec{\sigma})^2 dx.$$
 Using the Young inequality we get

(13)
$$|J_1 + J_2 + J_3 + J_4| \leq C_3(\epsilon) \int_{Q_{\sigma}} |Du_m|^2 (\varphi - \sigma) dx + \epsilon \int_{Q_{\sigma}} \frac{m}{2} |D_{kj}u_m|^2 (\varphi - \sigma)^3 dx.$$

Similarly we have

$$\begin{split} & \left| \mathsf{J}_{6} + \mathsf{J}_{7} \right| \leq \mathsf{C}_{4} \left[\int_{\varrho_{\sigma}} \varphi \left| \mathsf{D}\mathsf{u}_{\mathsf{m}} \right|^{2} \mathrm{d}\mathsf{x} + \int_{\varrho_{\sigma}} \left| \mathsf{D}\mathsf{u}_{\mathsf{m}} \right|^{2} (\varphi - \delta) \mathrm{d}\mathsf{x} \right] + \\ & + \varepsilon \left[\int_{\varrho_{\sigma}} \sum_{\mathfrak{p}=1}^{m} \left| \mathsf{D}_{\mathsf{k},\mathsf{j}}^{2} \mathsf{u}_{\mathsf{m}} \right|^{2} \varphi (\varphi - \delta)^{2} \mathrm{d}\mathsf{x} + \int_{\varrho_{\sigma}} \sum_{\mathfrak{p}=1}^{m} \left| \mathsf{D}_{\mathsf{k},\mathsf{j}}^{2} \mathsf{u}_{\mathsf{m}} \right|^{2} (\varphi - \delta)^{3} \mathrm{d}\mathsf{x} \right], \end{split}$$

$$\begin{aligned} |J_{9}|+|\int_{\mathcal{Q}_{\sigma}}fD_{\mathbf{k}\mathbf{k}}^{2}u_{m}(\varphi-\vec{\sigma})^{2}d\mathbf{x}| & \leq C_{5}\left(\int_{\mathcal{Q}_{\sigma}}u_{m}^{2}d\mathbf{x}+\int_{\mathcal{Q}_{\sigma}}f^{2}d\mathbf{x}\right) + \\ & + \varepsilon\int_{\mathcal{Q}_{\sigma}}\frac{\sum_{\mathbf{k}}\sum_{\mathbf{j}}u|^{2}(\varphi-\vec{\sigma})^{3}d\mathbf{x} \end{aligned}$$

and finally

(16)
$$|J_{8}+J_{10}| \leq C_{6} \left[\int_{\mathcal{Q}_{\sigma}} |Du_{m}|^{2} (\rho-\delta) dx + \int_{\mathcal{Q}_{\sigma}} u_{m}^{2} dx \right],$$

where C_i are independent of σ' and $\varepsilon>0$ is to be determined. We deduce from (11) - (16) that

$$\begin{split} &\int_{\mathbb{Q}_{\sigma'}} \left[\left(\gamma^{-1} - \epsilon \right) \rho (\rho - \delta)^2 - 3 \epsilon (\rho - \delta)^3 \right] \underset{j = 1}{\overset{m}{\geq}} \left| D_{jk}^2 u_m \right|^2 dx \; \leq \; \\ & \leq C_7 \; \left(\int_{\mathbb{Q}_{\sigma'}} \left| D u_m \right|^2 (\rho - \delta) dx + \int_{\mathbb{Q}_{\sigma'}} \left| D u_m \right|^2 \rho dx + \int_{\mathbb{Q}_{\sigma'}} f^2 dx + \int_{\mathbb{Q}_{\sigma'}} u_m^2 dx \right), \end{split}$$

where C7>0, Since

$$(\gamma^{-1} - \varepsilon)\rho(\rho - \delta)^2 - 3\varepsilon(\rho - \delta)^3 = (\rho - \delta)^2 [(\gamma^{-1} - \varepsilon)\rho - 3\varepsilon(\rho - \delta)] =$$

$$- 146 -$$

$$= (\wp - \delta)^{2} \left[(\gamma^{-1} - \varepsilon)(\wp - \delta) + \delta(\gamma^{-1} - \varepsilon) - 3\varepsilon(\wp - \delta) \right] =$$

$$= (\wp - \delta)^{2} \left[(\gamma^{-1} - 4\varepsilon)(\wp - \delta) + \delta(\gamma^{-1} - \varepsilon) \right] > (\wp - \delta)^{3} (\gamma^{-1} - 4\varepsilon)$$

for ε sufficiently small, say $\varepsilon = \frac{\chi^{-1}}{5}$, the last two inequalities yield

(17)
$$\int_{Q_{\sigma}} \frac{\pi}{2} \left[D_{jk}^{2} u_{m} \right]^{2} (\varphi - \sigma)^{3} dx \leq 5 \gamma C_{7} \left[\int_{Q_{\sigma}} |Du_{m}|^{2} (\varphi - \sigma) dx + \int_{Q_{\sigma}} |Du_{m}|^{2} (\varphi - \sigma) dx + \int_{Q_{\sigma}} |Du_{m}|^{2} (\varphi - \sigma) dx \right].$$

Letting $\sigma \to 0$ in (17) and combining the resulting inequality with (10) we easily arrive at (6).

Lemma 1 shows that a possible solution to the problem (1),(2) lies in the space $\widetilde{W}^{2,2}(\mathbb{Q})$ defined by

$$\tilde{W}^{2,2}(Q) = \{u; u \in W_{1,0}^{2,2}(Q) \text{ and } \int_{Q} |D^{2}u(x)|^{2} p^{2}(x)^{3} dx + \frac{1}{2} p^{2}(Q) \}$$

+
$$\int_{Q} |Du(x)|^2 \rho(x) dx + \int_{Q} u(x)^2 dx < \infty$$

and equipped with the norm

$$|\,|\,u\,|\,|_{\widetilde{W}^{2},\,2}^{2}=\int_{Q}|\,D^{2}u(x)\,|^{2}\,\wp(x)^{3}dx+\int_{Q}\,|\,Du(x)\,|^{2}\,\wp(x)dx+\,\int_{Q}\,u(x)^{2}dx\,.$$

The proof that u_m converges weakly in $\widetilde{W}^{2,2}(Q)$ to a solution of (1),(2) will be given in Section 4.

- 3. Iraces in $\widetilde{W}^{2,2}(Q)$. To proceed further we need some properties of the space $\widetilde{W}^{2,2}(Q)$.
- Lemma 2. If $u \in \widetilde{W}^{2,2}(\mathbb{Q})$ then $\int_{\partial \mathbb{Q}_{\sigma}} |Du|^2 ds$ is continuous on $[0,\sigma_0]$ and moreover

$$\lim_{\delta \to 0} \delta^2 \int_{\partial Q_{\delta'}} |Du|^2 dS_x = 0.$$

Proof. Let $0 < \sigma < \sigma_0$, then

$$\int_{Q_{\sigma}-Q_{\sigma_{0}}} |D_{i}u|^{2} dx = \int_{\sigma}^{\sigma_{0}} |\mu d \mu \int_{\partial Q_{\mu}} [D_{i}u(x)]^{2} ds =$$

$$= \int_{\sigma}^{\sigma_{0}} |\mu d \mu \int_{\partial Q} [D_{i}u(x(x_{0}))]^{2} \frac{ds_{\mu}}{ds_{0}} ds_{0} = \frac{\delta^{2}_{0}}{2} \int_{\partial Q} [D_{i}u(x_{\sigma_{0}}(x_{0}))]^{2} \frac{ds_{\sigma}}{ds_{0}} ds_{0} -$$

$$- \frac{\delta^{2}}{2} \int_{\partial Q} [D_{i}u(x(x_{0}))]^{2} \frac{ds_{\sigma}}{ds_{0}} ds_{0} -$$

$$-\int_{\sigma}^{\sigma} \mu^{2} \int_{\partial Q} \left[\frac{\pi}{3} \sum_{i=1}^{m} D_{ji}^{2} u(x_{\mu}(x_{0})) D_{i} u(x_{\mu}(x_{0})) \frac{\partial x_{\mu}}{\partial \mu} \frac{dS_{\mu}}{dS} + \left[D_{i} u(x_{0}(x_{0})) \right]^{2} \frac{\partial}{\partial \mu} \left(\frac{dS_{\mu}}{dS_{0}} \right) \right] dS_{0}.$$

From this identity we can compute

$$\delta^2 \int_{\partial Q} \left[D_i u(x_{\sigma}(x_0)) \right]^2 \frac{dS_{\sigma}}{dS_0} dS_0$$

and express this integral in terms of other integrals which are continuous on $[0,\sigma_0]$, since $u\in\widetilde{W}^{2,2}(\Omega)$. On the other hand $\frac{dS}{dS_0}\to 1$,

as $\delta \to 0$, uniformly on ∂Q , therefore the continuity of the integral $\sigma^2 \int_{\partial Q_{\sigma}} |Du|^2 dS$ easily follows. Assuming that $\lim_{\delta \to 0} \delta^2 \int_{\partial Q_{\delta'}} |Du|^2 dS > 0, \text{ we would have}$

$$\sigma^2 \int_{\partial Q_{\sigma'}} |\mathrm{Du}|^2 \mathrm{dS} > a \text{ on } (0, \sigma_1)$$

$$\int_{\Omega-\Omega_{\delta_1}} |\mathcal{O}| |Du|^2 dx = \int_0^{\delta_1} |\mu d\mu| \int_{\partial\Omega_{\mu}} |Du|^2 dS = \infty$$

and we get a contradiction.

Lemma 3. Let
$$u \in \widetilde{W}^{2,2}(\mathbb{Q})$$
 be a solution of (1), then $\int_{\partial \mathbb{Q}_{\sigma}} u^2 dS$ is bounded on $(0, \sigma_0^{\sigma}]$.

Proof. Multiplying (1) by u and integrating over $Q_{\mathcal{F}}$ we obt-

$$\begin{split} &\frac{1}{2}\int_{\partial Q_{\sigma}}u^{2}\underset{i}{\overset{\mathcal{P}}{\rightleftharpoons}}_{1}a_{i}D_{i}\varphi dS_{x}=-\frac{1}{2}\int_{Q_{\sigma}}\underset{i}{\overset{\mathcal{P}}{\rightleftharpoons}}_{1}D_{i}a_{i}u^{2}dx+\int_{Q_{\sigma}}\varphi\underset{i}{\overset{\mathcal{P}}{\rightleftharpoons}}_{1}a_{i}jD_{i}uD_{j}u\ dx+\\ &+\sigma\int_{\partial Q_{\sigma}}\underset{i}{\overset{\mathcal{P}}{\rightleftharpoons}}_{1}a_{i}j^{D}_{i}u\cdot uD_{j}\varphi dS_{x}+\int_{Q_{\sigma}}(a_{o}+\lambda)u^{2}dx-\int_{Q_{\sigma}}fudx\,. \end{split}$$

We may assume that

 $a = \inf_{Q - Q_{\sigma_o}} \sum_{i=1}^{m} a_i(x) D_i \rho(x) > 0$ taking σ_o' sufficiently small, if necessary. Since by Young's in-

$$\sigma \int_{\partial Q_{\sigma'}} \sum_{i,\frac{2}{d-1}}^{\infty} a_{i,j} D_{i} u \cdot u D_{j} \varphi dS_{x} \leq C \sigma^{2} \int_{\partial Q_{\sigma'}} |Du|^{2} dS_{x} + \frac{a}{2} \int_{\partial Q_{\sigma}} u^{2} dS_{x},$$

where C is a positive constant depending on n, a and $||\mathbf{a_{ij}}||_{L^\infty}$ the result follows easily from Lemma 2. -148 -

In order to prove the existence of a trace of a solution $u \in \widetilde{W}^{2,2}(\mathbb{Q})$ of (1) we introduce an auxiliary function $x^{\sigma}: \overline{\mathbb{Q}} \to \overline{\mathbb{Q}}_{\sigma/2}$ defined in the following way.

For
$$\sigma \in (0, \frac{\sigma_0}{2}]$$
 we define the mapping $x^{\sigma}: \overline{Q} \longrightarrow \overline{Q}_{\sigma/2}$ by

$$x^{\sigma}(x) = \begin{cases} x & \text{for } x \in \mathbb{Q}_{\sigma}, \\ \frac{x + y_{\sigma}(x)}{2} & \text{for } x \in \overline{\mathbb{Q}} - \mathbb{Q}_{\sigma}, \end{cases}$$

where $y_{\sigma}(x)$ denotes the closest point on ∂Q_{σ} to $x \in \overline{Q} - Q_{\sigma}$. Thus $x^{\sigma}(x) = x_{\sigma/2}(x)$ for each $x \in \partial Q$, moreover x^{σ} is Lipschitz.

We are now in a position to prove the main result of this section.

Theorem 2. Let $u \in \widetilde{W}^{2,2}(\mathbb{Q})$ be a solution of (1), Then there exists a function $\Phi \in L^2(\partial \mathbb{Q})$ such that

$$\lim_{\delta \to 0} \int_{\partial R} \left[u(x_{\delta}(x)) - \Phi(x) \right]^{2} dS_{x} = 0.$$

Proof. Since by Lemma 3 , $\int_{\partial Q} u(x_{\sigma}(x))^2 dS_x$ is bounded, there exists a sequence $\sigma_m \to 0$, and a function $\Phi \in L^2(\partial Q)$ such that

$$\lim_{m\to\infty}\int_{\partial Q} u(x_{\sigma_m}(x))g(x)dS_x = \int_{\partial Q} \Phi(x)g(x)dS_x$$

for each $g \in L^2(\partial Q)$. We prove that the above relation remains valid if the sequence $\{\sigma_m'\}$ is replaced by the parameter σ .

Since $\int_{\partial Q} u(x_{\sigma}(x))g(x)dS_{x}$ is continuous on $(0, \sigma_{0})$ it suffices to prove the existence of the limit at 0 and with g replaced by $\Psi \in C^{1}(\overline{Q})$. Integration by parts yields

$$\int_{\partial \mathcal{C}_{\sigma}} \sum_{i=1}^{\infty} a_{i} D_{i} e^{i \Psi} u dS_{x} = -\int_{\mathcal{C}_{\sigma}} \sum_{i=1}^{\infty} D_{i}(a_{i} \Psi) u dx + \int_{\mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u dx + \int_{\partial \mathcal{C}_{\sigma}} (a_{0} + \lambda) \Psi u d$$

Using Lemma 2, the continuity of the left side easily follows. Letting $\delta \longrightarrow 0$, we deduce from the last identity that

(18)
$$\int_{\partial Q} \Phi \Psi \sum_{i=1}^{m} a_i D_i \rho dS_x = - \int_{Q} \sum_{i=1}^{m} D_i (a_i \Psi) u dx +$$

$$+ \int_{\mathcal{Q}} (a_0 + \lambda) \Psi u \ dx + \int_{\mathcal{Q}} \varphi \sum_{i,j=1}^{\infty} a_{ij} D_i u D_j \Psi dx - \int_{\mathcal{Q}} f \Psi dx = \int_{\mathcal{Q}} F(\Psi) dx.$$

It is clear that this relation continues to hold for $\Psi \in W^{1,2}(\Omega)$. Now taking $\Psi(x)=u(x^{\sigma'}(x))$ we get

(19)
$$\int_{\partial Q} \Phi(x) u(x^{\sigma}(x)) \underset{z}{\overset{\infty}{\succeq}}_{1} a_{1}(x) D_{1} \rho(x) dS_{x} = \int_{Q_{\sigma}} F(u(x)) dx + \int_{Q_{\sigma}Q_{\sigma}} F(u(x^{\sigma}(x))) dx .$$

· We now prove that

(20)
$$\lim_{\delta \to 0} \int_{\mathbb{R}_{\delta}} F(u(x)) dx = \lim_{\delta \to 0} \int_{\partial Q} u(x_{\delta}(x))^{2} \lim_{\lambda \to 0} a_{1}(x) D_{1} \varphi(x) dS_{x}$$
and

(21)
$$\lim_{\sigma \to 0} \int_{Q-Q_{\sigma'}} F(u(x^{\sigma'}(x))dx = 0.$$

Since $x^{d}(x)=x_{d}(x)$ on ∂Q , (19), (20) and (21) yield that

$$\int_{\partial Q} \Phi(x)^2 dS_x = \lim_{\delta \to 0} \int_{\partial Q} u(x_{\delta}(x))^2 \lim_{\delta \to 1} a_{\delta}(x) D_{\delta} \varphi(x) dS_x$$

and the L^2 -convergence follows from the uniform convexity of $L^2(\partial Q)$.

To show (20), observe that using the fact that ${\bf u}$ is a solution to (1) we get

$$\int_{\mathcal{Q}_{\sigma}} F(u(x)) sx = -\int_{\mathcal{Q}_{\sigma}} \sum_{i=1}^{\infty} D_{i}(a_{i}u)u \ dx - \int_{\mathcal{Q}_{\sigma}} \sum_{i=1}^{\infty} a_{i}D_{i}u \cdot u \ dx - \int_$$

$$- \text{ d } \int_{\partial Q_{\sigma}} i \sum_{i,j=1}^{m} a_{i,j} D_{i} u \cdot u D_{j} \varphi dS = \int_{\partial Q_{\sigma}} u^{2} i \sum_{i=1}^{m} a_{i} D_{i} \varphi dS - \int_{\partial Q_{\sigma}} i \sum_{i=1}^{m} a_{i,j} D_{i} u \cdot u D_{j} \varphi dS$$

and this claim follows from Lemma 2. Finally

$$\left| \int_{Q-Q_{ar}} F(u(x^{d'})) dx \right| \le \text{Const} \left[\int_{Q-Q_{ar}} |f(x)| |u(x^{d'})| dx + \frac{1}{2} \int_{Q-Q_{ar}} |f(x)| dx + \frac{1}{2}$$

$$+ \int_{Q - Q_{\sigma}} (x) |Du(x)| |Du(x^{\sigma})| dx + \int_{Q - Q_{\sigma}} |u(x)| |u(x^{\sigma})| dx +$$

+
$$\int_{Q_{\vec{\sigma}}} |Du(x^{\vec{\sigma}})| |u(x)| dx$$
.

Now Lemma 2 from [1] implies that the first and third integrals converge to 0 as $0 \longrightarrow 0$. The convergence to 0 of the second and fourth integral follows from Lemmas 5 and 3 of [2] respectively.

4. Existence of solution to the problem (1) - (2). Theorem 2 of Section 3 suggests the following approach to the Dirichlet problem (1), (2).

Let Φ \in L²(∂ Q). A solution u of (1) in $\widetilde{W}^{2,2}(Q)$ is a solution of the Dirichlet problem with the boundary condition (2) if

(22) $\lim_{\sigma \to 0} \int_{\mathbf{Q}} [u(x_{\sigma}(x)) - \Phi(x)]^2 dS_{x} = 0.$

Theorem 3. Let $\lambda \geq \lambda_0$ (where λ_0 is a constant from Lemma 1). Then for every $\Phi \in L^2(\partial \mathbb{Q})$ there exists a unique solution $u \in \widetilde{\mathbb{Q}}^{2,2}(\mathbb{Q})$ of the problem (1), (2).

Proof. Let u_m be a sequence of solutions of the problem (1), (2m) constructed in the proof of Lemma 1. By the estimate (6) there exists a subsequence, which we relabel as u_m , converging weakly to a function u in $\widetilde{W}^{1,2}(Q)$. According to Theorem 4.11 in [8], $\widetilde{W}^{1,2}(Q)$ is compactly embedded in $L^2(Q)$, therefore we may assume that u_m tends to u in $L^2(Q)$ and a.e. on Q. It is evident that u satisfies (1). By virtue of Theorem 2 there exists a trace $g \in L^2(\partial Q)$ of u in the sense of L^2 -convergence. We have to show that $g = \Phi$ a.e. on ∂Q . As in the proof of Theorem 1, for every $g \in C^1(Q)$ we derive the following identities

$$\int_{\partial Q} \sum_{i=1}^{2r} a_i D_i \varphi \in \Psi dS_x = \int_{Q} \varphi \sum_{i,j=1}^{2r} a_{ij} D_i u D_j \Psi dx + \int_{Q} (a_0 + \lambda) u \Psi dx - \int_{Q} \sum_{i=1}^{2r} D_i (a_i \Psi) u dx - \int_{Q} f \Psi dx = \int_{Q} F(\Psi) dx$$

and similarly for um we have

$$\int_{\partial Q} \frac{1}{\lambda_{-1}^{2}} \frac{1}{i} D_{i} \varphi \Phi_{m} \Psi dS_{x} = \int_{Q} \varphi_{i}, \frac{\pi}{\lambda_{-1}^{2}} \frac{1}{a_{ij}} D_{i} u_{m} D_{j} \Psi dx +$$

$$+ \int_{Q} (a_{0} + \lambda) u_{m} \Psi dx - \int_{Q} \frac{\pi}{\lambda_{-1}^{2}} D_{i} (a_{i} \Psi) u_{m} dx - \int_{Q} f \Psi dx = \int_{Q} F_{m} (\Psi) dx.$$
Since $\lim_{m \to \infty} \int_{Q} F_{m} (\Psi) dx = \int_{Q} F (\Psi) dx$, we have that
$$\int_{\partial Q} \Phi \Psi : \sum_{n=1}^{\infty} a_{i} D_{i} \varphi dS_{x} = \int_{\partial Q} F \Psi : \sum_{n=1}^{\infty} a_{i} D_{i} \varphi dS_{x}$$

for any $\Psi \in \mathbb{C}^1(\overline{\mathbb{Q}})$ and consequently $\Phi = \xi$ a.e. on $\partial \mathbb{Q}$. The uniqueness of solution of (1), (2) can be deduced from the following energy estimate

$$\int_{\mathbf{Q}} |D^{2} u(x)|^{2} \varphi(x)^{3} dx + \int_{\mathbf{Q}} |D u(x)|^{2} \varphi(x) dx + \int_{\mathbf{Q}} u(x)^{2} dx \le$$

$$\leq C \left[\int_{\mathbf{Q}} f(x)^{2} dx + \int_{\partial \mathbf{Q}} \Phi(x)^{2} dS_{x} \right]$$

which is valid for any $u \in \widetilde{W}^{2,2}(\mathbb{Q})$ satisfying (1), (2) with $\mathfrak{A} \succeq \mathfrak{A}_{0}$ and the proof of which is a slight modification of the proof of (6). We only use Lemma 2 in place of Theorem 1.

Remark 1. If $\Phi \in L^{\infty}(\partial Q)$, we may assume that A = 0. Indeed,

we approximate Φ by a sequence of C¹-functions Φ on ∂Q , which is uniformly bounded in m. The corresponding estimate (6) from Lemma 1 takes the form

$$\begin{split} &\int_{\mathbf{Q}} |\mathbf{D}^2 \mathbf{u_m}|^2 \, \wp^3 \mathrm{d}\mathbf{x} + \int_{\mathbf{Q}} |\mathbf{D}\mathbf{u_m}|^2 \, \wp \, \mathrm{d}\mathbf{x} \leq \mathrm{Const} \, \Big[\int_{\mathbf{Q}} \, \mathbf{f}_{\mathbf{m}}^2 \mathrm{d}\mathbf{x} + \\ &+ \int_{\partial \mathbf{Q}} \, \Phi_{\mathbf{m}}^2 \mathrm{d}\mathbf{s_x} + \int_{\mathbf{Q}} \, \mathbf{u_m}^2 \mathrm{d}\mathbf{x} \Big]. \end{split}$$

It follows from [7] p. 283 that the sequence \boldsymbol{u}_{m} is uniformly bounded in m and our claim easily follows.

5. Case
$$\sum_{i=1}^{m} a_i D_i \varphi \ge 0$$
 on ∂Q .

In this section we assume that $\sum_{i=1}^\infty a_i D_{i} > 0$ on ∂Q . For each $\epsilon > 0$ we consider the Dirichlet problem

$$(1^{\varepsilon}) \quad (L^{\varepsilon} + \lambda) u = -\sum_{i,j=1}^{\infty} \mathbb{D}_{i} (\mathfrak{p} a_{ij} \mathbb{D}_{j} u) + \sum_{i=1}^{\infty} (a_{i} + \varepsilon \mathbb{D}_{i} \mathfrak{p}) \mathbb{D}_{i} i + (a_{0} + \lambda) u = f \text{ on } \mathbb{Q},$$
 with the boundary condition (2), where $\Phi \in L^{2}(\partial \mathbb{Q})$.

Inspection of the proof of Theorem 2 shows that there exists λ_0 such that for each $0<\epsilon<1$ there exists a solution $u_{\epsilon}\in\widetilde{W}^{2,2}(\mathbb{Q})$ of the problem (1º), (2).

Theorem 4. Let $\Phi \in L^2(\partial \mathbb{Q})$ and suppose that i = 1 and 1 and 2 and

$$\int_{\partial Q} u(x) \Psi(x) \underset{z=1}{\overset{\mathcal{L}}{\longrightarrow}} a_{i}(x) D_{i} \varphi(x) dS_{x} = \int_{\partial Q} \Phi(x) \Psi(x) \underset{z=1}{\overset{\mathcal{L}}{\longrightarrow}} a_{i}(x) D_{i} \varphi(x) dS_{x}$$

$$\underline{\text{for each } } \Psi \in C^{1}(\overline{Q}).$$

Proof. Observe that $\sum_{i=1}^{\infty} a_i(x) D_i \varphi(x) + \varepsilon |D\varphi(x)|^2 > 0$ on ∂Q .

Hence multiplying (1°) by u^{ε} and integrating by parts over $Q_{\sigma'}$ and then letting $\sigma' \longrightarrow 0$, we obtain that

$$\begin{split} &\int_{Q} \rho \sum_{i,\overline{\rho}=1}^{\infty} a_{i,j} D_{i} u_{\varepsilon} D_{j} u_{\varepsilon} dx + \int_{Q} \left[\lambda + a_{0} - \frac{1}{2} \sum_{i=1}^{\infty} (D_{i} a_{i} + \varepsilon D^{2} i i \rho) \right] u_{\varepsilon}^{2} dx = \\ &= \frac{1}{2} \int_{\partial Q} \left[\sum_{i=1}^{\infty} a_{i} D_{i} \rho + \varepsilon (D_{i} \rho)^{2} \right] \Phi^{2} dS_{\chi} = \int_{Q} f u_{\varepsilon} dx. \end{split}$$

As in the final part of the proof of Theorem 1 we get

$$\int_{\mathcal{Q}} |D^2 u_{\varepsilon}|^2 \varphi^3 dx \leq C_1 \left(\int_{\mathcal{Q}} |Du_{\varepsilon}|^2 \varphi dx + \int_{\mathcal{Q}} u_{\varepsilon}^2 dx + \int_{\mathcal{Q}} f^2 dx \right),$$

where $\mathbf{C}_1 > \mathbf{0}$ is a constant independent of $\pmb{\varepsilon}$. Combining these two relations we obtain

$$\int_{\mathbb{Q}} |\mathbb{D}^2 u_{\varepsilon}|^2 \wp^3 dx + \int_{\mathbb{Q}} |\mathbb{D} u_{\varepsilon}|^2 \wp dx + \int_{\mathbb{Q}} u_{\varepsilon}^2 dx \neq C_2 \left(\int_{\mathbb{Q}} f^2 dx + \int_{\partial \mathbb{Q}} \Phi^2 dS_{\chi} \right),$$
 for each $\varepsilon > 0$ and $\lambda \geq \lambda_0$, where λ_0 can be chosen independently of ε . It is clear that there exists $\varepsilon_m \longrightarrow 0$ such that $u_{\varepsilon_m} \longrightarrow u$ weakly in $\widetilde{W}^{2,2}(\mathbb{Q})$, strongly in $L^2(\mathbb{Q})$ and a.e. on \mathbb{Q} and that u is a solution of (1). Taking $\Psi_{\varepsilon} C^1(\overline{\mathbb{Q}})$ we find out by inte

that u is a solution of (1). Taking $\Psi_{\,\varepsilon}\ \mathbb{C}^{1}(\overline{\mathbb{Q}})$ we find out by integration by parts that

$$\int_{Q_{\sigma}} \hat{P}_{i} \int_{3\pi}^{\infty} 1^{a} i j^{D} i^{uD} j^{y} dx - \sigma \int_{\partial Q_{\sigma}} \hat{i} \int_{3\pi}^{\infty} 1^{a} i j^{D} i^{uD} i^{\varphi} Y dS_{x} +$$

$$+ \int_{Q_{\sigma}} (\lambda + a_{0} - \sum_{i=1}^{\infty} D_{i}(a_{i}Y)) u dx = \int_{\partial Q_{\sigma}} \sum_{i=1}^{\infty} 1^{a} i^{D} i^{\varphi} u^{y} dS_{x} + \int_{Q_{\sigma}} f u dx.$$

Lemma 2 and the Hölder inequality yield

$$\lim_{\delta \to 0} \sigma \int_{\partial Q_{\delta}} \sum_{i,j=1}^{m} a_{ij} D_{i} u \cdot Y dS_{x} = 0$$

and consequently

(23)
$$\lim_{d \to 0} d \int_{\partial Q_{d'}} \sum_{i=1}^{m} a_{i} D_{i} \varphi u Y dS_{x} = \int_{Q_{i}} \varphi_{i}, \sum_{j=1}^{m} a_{ij} D_{i} u D_{j} Y dx + \int_{Q_{i}} [\lambda + a_{0} - \sum_{i=1}^{m} D_{i}(a_{i}Y)] u dx - \int_{Q_{i}} f u dx.$$

Similarly, using the fact that $u_{e_m}(x_\sigma)$ converges to Φ in $L^2(\partial Q)$, we get that

$$\begin{split} &\int_{Q} \phi \underset{i}{\overset{\mathcal{H}}{\underset{j=1}{\sum}}} a_{ij} D_{i} u_{\epsilon_{m}} D_{j} Y dx + \int_{Q} \left[\lambda + a_{0} - \underset{i}{\overset{\mathcal{H}}{\underset{j=1}{\sum}}} D_{i} (a_{i} + \varepsilon_{m} D_{i} \phi) Y \right] u_{\epsilon_{m}} dx = \\ &= \int_{\partial Q} \Phi \left[\underset{i=1}{\overset{\mathcal{H}}{\underset{j=1}{\sum}}} a_{i} D_{i} \phi + \varepsilon_{m} |D_{i} \phi|^{2} \right] Y dS_{x} + \int_{Q} f u_{\epsilon_{m}} dx \,. \end{split}$$

Letting $\epsilon_{\rm m} \longrightarrow 0$, we deduce from the last identity that

(24)
$$\int_{\mathcal{A}} \varphi_{i} \sum_{j=1}^{m} a_{ij} D_{i} u D_{j} Y dx + \int_{\mathcal{A}} [\lambda + a_{0} - \sum_{i=1}^{m} D_{i} (a_{i} Y)] u dx =$$

$$= \int_{\partial \mathcal{A}} \Phi_{i} Y_{i} \sum_{j=1}^{m} a_{i} D_{i} \varphi_{j} dS_{x} + \int_{\mathcal{A}} fu dx.$$

Comparing (23) and (24) we obtain that

(25)
$$\lim_{\delta \to 0} \int_{\partial Q_{\sigma}} \left(\sum_{i=1}^{\infty} a_i D_i \varphi \right) u \Psi dS_{\chi} = \int_{\partial Q} \Phi \Psi_i \sum_{i=1}^{\infty} a_i D_i \varphi dS_{\chi}.$$

Remark 2. Assume that $\sum_{i=1}^{n} a_i(x) D_i \rho(x) = 0$ on $\partial 0$. Inspection of the proof of Theorem 3 shows that there exists a solution $u \in \widetilde{W}^{2,2}(\mathbb{Q})$ of (1) such that

(26)
$$\lim_{\delta \to 0} \int_{\partial Q_{\delta}} \left(\sum_{i=1}^{m} a_{i} D_{i} \varphi \right) u \Upsilon dS_{x} = 0$$

for each $\psi \in C^1(\mathbb{Q})$. The relation (26) shows that the boundary data Φ is irrelevant. A natural question arises whether a solution u, understood as a limit of a sequence u_{ε} from Theorem 3, is independent of the choice of Φ . We are only able to give an affirmative answer provided $\Phi \in L^{\infty}(\mathbb{Q})$.

Indeed, let Φ_1 and Φ_2 belong to $L^\infty(\partial Q)$. Let us denote the corresponding sequences of solutions by u_{ϵ}^1 and u_{ϵ}^2 , respectively. Since $u_{\epsilon}^1 - u_{\epsilon}^2$ satisfies the homogeneous equation (1), by Theorem 2.1 in [7], we may assume that $u_{\epsilon}^1 - u_{\epsilon}^2$ is bounded independently of ϵ . Set

$$\lim_{\varepsilon \to 0} u_{\varepsilon}^1 = u^1$$
 and $\lim_{\varepsilon \to 0} u_{\varepsilon}^2 = u^2$,

where the limits are understood weakly in $\widetilde{W}^{2,2}(Q)$, strongly in $L^2(Q)$ and a.e. on Q. It is clear that u^1-u^2 belongs to $\widetilde{W}^{2,2}(Q)\cap L^\infty(Q)$. As in Theorem 3 we arrive at the following identity

$$\int_{\mathcal{Q}} \, \rho \, \underset{\text{i}}{\not} \, \underset{\text{i}}{\not} \, \, a_{ij} D_{i} (u^{1} - u^{2}) D_{j} (u^{1} - u^{2}) dx + \int_{\mathcal{Q}} \, (\lambda_{0} + a_{0} - \, \frac{1}{2} \underset{\text{i}}{\not} \, \sum_{\text{i}} \, D_{i} a_{i}) (u^{1} - u^{2})^{2} dx = 0$$

for $\lambda \geq \lambda_0$, and consequently $u^1=u^2$ a.e. on Q, provided λ_0 is sufficiently large. To establish this identity we have used a relation

$$\int_{0}^{1} \int_{0}^{\infty} d^{3} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} d^{3} \int_{0}^{\infty} d^{3} \int_{0}^{\infty} (u^{1} - u^{2}) D_{j} \varphi(u^{1} - u^{2}) dS_{x} = 0,$$

which follows from Lemma 2 provided $u^1 - u^2 \in L^{\infty}(\mathbb{Q})$.

References

- [1] J. CHABROWSKI and B. THOMPSON: On traces of solutions of a semilinear partial differential equation of elliptic type, Ann. Polon. Math. 42(1982), 45-71.
- [2] J. CHABROWSKI and B. THOMPSON: On the boundary values of the solutions of linear elliptic equations, Bull.
 Austral.Math.Soc. 27(1983), 1-30.
- [3] D. GILBARG, N.S. TRUDINGER: Elliptic partial differential equations of second order, Die Grundlehren der Mathematischen Wissenschaften 223, Springer-Verlag, Berlin, Heidelberg, New York, 1977.

- [4] C. GOULAOUIC, N. SHIMUKURA: Regularité hölderienne de certain problèmes aux limites elliptiques dégénérés, Ann.Sc.Norm.Sup.di Pisa, 10(1),(1983), 79-108.
- [5] J.J. KOHN and L. NIRENBERG: Degenerate elliptic parabolic equations of second order, Comm.Pure Appl.Math. 20 (1967), 797-872.
- [6] A. KUFNER, O. JOHN, S. FUČÍK: Function spaces, Noordhoff, Leyden, Academia, Prague, 1977.
- [7] Michel LANGLAIS: On the continuous solutions of a degenerate elliptic equation, Proc.London Math.Soc. (3)(50) (1985), 282-298.
- [8] R.D. MEYER: Some embedding theorems for generalized Sobolev spaces and applications to degenerate elliptic differential operators, J.Math,Mech. 16(1967), 739-760.
- [9] V.P. MIKHAILOV: Boundary values of the solutions of elliptic equations in domains with smooth boundary, Mat. Sb. 101(143)(1976), 163-188.
- [10] O.A. OLEĬNIK and E.V. RADKEVIČ: Second order equations with non-negative characteristic form, Am.Math.Soc. Pro-vidence, Plenum, New York 1976.

The University of Queensland, Department of Mathematics, St. Lucia 4067, Brisbane, Queensland, Australia

(Oblatum 5.5. 1986)

