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ON THE DIRICHLET PROBLEM FOR A DEGENERATE ELLIPTIC
EQUATION
J. H. CHABROWSKI 4

Abstract: We study the Dirichlet problem for an elliptic
equation in a bounded domain QC:Rn with the boundary data in Lz(aﬁ).

It is assumed that the ellipticity degenerates at every point of
the boundary &0Q. We prove the existence of a solution in a weigh-

ted Sobolev space wl2(q).

Key words: Degenerate elliptic equation, the Dirichlet pro-
blem.

1. Introduction. In this paper we investigate the Dirichlet
problem for a degenerate elliptic equation

(1) (L+Dus '4;,;224 0y (p(x)ay;000,u+ . 5, 8400060, (3P0
in Q,

(2) u=d on 30.

In a bounded domain Qc Rn with a smooth boundary 3Q, where
A is a real parameter, a boundary data $ is in LZ(GQ) and @©(x)
is a c2-tunction on T equivalent to the distance d(x,20Q) for xe@
and its properties are described in Section 2.

Throughout this paper we make the following assumptions
(A) The coefficients a5, @ and a_ (i,j=1,...,n) are in C(R)
3y 47844 Ciy3=1y . o st) '

i
(B) There exists a positive constant 7 such that

g2 e 3 a0 8,6, «gll?
¥ It i1 013 i§y = ¥I§ !
for all xeQ and f € Rn. Moreover there exists a constant ﬁ‘> 0

such that a (x) z 5 on q.

(c) fel?(a).
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‘8ince the elliptic equation (1) degenerates on 9dQ, - the theo-
ty of second-order equations with non-negative characteristic
form asserts that the boundary condition is to be imposed on a
certain subset of 90, which can be described with the aid of the
80 called Fichera function (see p. 17 in [;P]). In our situation
the Fichera function is reduced to z(x):ig;1ai(x)ni@(x). Conse-
Quently following the terminolegy of [107, the boundary condition
(2) should be imposed on

'z2= ix € 9Q: 434 ai(x)Di@(x)> 03.

Throughout this work it is assumed that
"
(D) &2‘.1 a;(x)D;¢(x) >0 on 30,

therefore Z2= an.

The main difficulty enceuntered in constructing a solution
of the Dirichlet problem with Lz-boqndary data arises from the
fact that functions in Lz(aﬂ) are not, in general, traces of func-
tions from the Sobolev space NI'Z(D). Consequently the Dirichlet
problem (1),(2) cannot be reduced to the problem in W2, 1t
{8 also clear that the boundary condition (2) requires a proper
formulation.

The purpose of this note is to establish the existence of so-
lutions to the problam (1),(2). We construct a solution by appro-
ximating ¢ and f in L2(80) and LZ(Q), respectively, by sequences
of smooth functions. Then we can use the recent results of [7) in
which the existence of solutions in C(Q)n cz(u) has been establish-
ed a8 well as some estimates near the boundary of the gradient of
@ sblution. In Section 2 we find the uniform bound for this appro-
ximating seguence of solutions in a Sobolev space ﬁz’z(o). The
sp#te wz’z(o), defined in Section 2, appears to be the right So-
bolev spece to study the Dirichlet problem (1),(2) with d e L2(a0) .
Section 3 i8 devoted to the main existence result. In the final
Section 4 we make some comments on the existence of solutions in
the case when (D) is replaced by a weaker condition
b%il(x)nigo(x)zo on 9. ~

The methods employed in this paper are not new and have ap-
peared in [1),12) and [9). The degenerate Dirichlet problem has
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an extensive literature (see for example [41,[5],07],110] and the
references given there). The case where .Zla.(x)D @(x)‘:ﬂ on 9Q

is more complex and in general the boundary condit1on is irrele-
vant (see [4])). Finally we point out that the case, Iia (x)D, @(x)>

~
>é-l251 aij(x)Uiy(x)Djy(x) on 30 has been considered in (5] but

by o

with zero boundary data.

2. Preliminaries. Let r(x)=dist(x,0Q) for xe€Q. It follows
from the regularity of Ghe boundary oQ that there is a number d;
such that for d’e (0,d_) the domain Gy=0nix: min |x-y| > o}

o N edL

with the boundary aq; possesses the following property: to each
Xy € 9Q there is a unique point %J(Xo)e 30y such that &;(x°)=x0-

- d'v(xo), where v(xo) is the outward normal to 8Q at x . The
above relation gives a one-to-one mapping at least of class CZ,
of 9Q onto aﬂd-. The inverse mapping of xo——>xd-(x0) is given
by the formula x =x, +d%y (x;), where v;(x,) is the outward nor-
mal to 806 at Xy )

Now let x € 3Q, 0 < d'<d and let X} be given by x =Xy (x )=

=X, - Jb(xo). Let

Ag =,606.r\{xd,;|x5—70,|< el, : -
Be = {x; ?(':xd, +of'vd-(§d.), %oe A3,
and )
s, IAel
Tt - i, TET '

where |A| denotes the n-1 dimensional- Hausdorff measure of a set
A. Mikhailov [9) proved that there is a positive number Yo such
that

’ ds
(3) 7;2535f£1§
and
ds
4 1i d .
W v 5
uniformly on ©9Q, and moreover "is at least Cl-function on
o

aq xlO,db] (eee formula (16) in L[9].
According to Lemma 1 in 13) p. 382, the distance r(x) belongs
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to c2(a- D ) if d' is sufficiently small. Denote by So(x) the
9o :
extension of the function r(x) into @ sat1sfying the following
3
properties @(x)=r(x) for x € Q- Q,,r rpeC (D) go(x)>-—4— in Qd"’
')’1 r(x)‘go(x) & ’a’r(x) in Q for some positive constant % aq,.
= {x;9(x)= =d%for d'e (0,6,) and 'finally 80= {x;@(x)=0}.
The following result is an immediate consequence of Theorem
2.3 in [7).

Theorem 1. Let fe Wl“’(Q) with £21. Then there exists
0<d¥<1 with 98< 5nf £4 a.(x)D, @(x) such that any solution u in

c2(@)n (@ of (1),(2) with $=0 on 90 satisfies the estimate

(5) ||9> ' nu]le(Q)é ce) ||l

we(q)’

where C(£) is a constant.

To construct a solution of (1), (2) in wloc(u) we need

respectively, such that
Zie - : _ 2, _

REVY Lo L8, )-20x)) “ds =0 and Lim Ja 00 -£0x)1 “dx=0.

Let u, be a solution of (1) _with f=f in c2(Q) n C(M satisfying
the boundary tondition

(2m) u=d, on 3a.

Lemma 1. Let §_ ~and f be sequences in c2@q)_and c1(@),

Then there exist positive constants ao and C, independent of m,
such that

(6) I IDzu Iz den fa I’Dum |2 pdx+ jﬂ uf‘dx <
&C (fa fodx+ [ ;dsx),
for all m=1,2,... and A > AO. ~

Proof. According to Theorem 1 and Theorem 2.3 in [7) for
each m there exists a solution u, of (1), (2 ) in Cz(u)nc(q)
with pl uDu eL”(O) provided A z: 0. Multlplying (1) by u  and
integrating by parts we obtain

(n ‘/‘;QJ LE 481j01"m'” Djpds +‘GJ§> 421 913 1uijumdx +

+ ﬁ% 840 u cu dx+ qu aoumdx+.ﬂ fad'u dx= /;lor’fm'umdx'
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The first integral can be estimated using Young ‘s inequality

m
27 oy 12 2
(8) I fana” ,-_,52;1""1j'31“m“m”j ds| £ C,6 [m;, |Duy t¥ds+ Lo upds,

where C, is independent of of . Integrating by parts the third in-
tegral we get

~v
_ 1 g 2 oy B
(9) fad' 1',§1 a;Djup-u dx= 7 f%;’§1 a;D; (up)dx=

1 g 2.0 1 L
= - 7'596' E‘,aioi@umds- 7 ’&J ..E.{Diaiumdx.

Combining (7),(8) and (9) with the ellipticity condition we arri-
ve at the estimate

-1 2 1 1 & 2
g jﬂd‘ §>|Dum| dx+ fad_(l\- 7+ag- g &, Dja Judx £
) 2 1 =
£ Clé ‘,éad‘ IDUml dS+ -};QJ (7 11 aiDie+1)u:dS+ éfad'fl?ldx'
. 1-% o0 i w2 2 n
Since Dug & L (Q),aagg é J;aJlDumI ds,=0.
Consequently taking A sufficiently large, say A 2 Ao’ and let-
ting & —> 0, we get
2 2

(10) fa p|Dum| dx+ f& updx £C, (jaﬂ Q,?,ds*fﬂ fgdx)
for all m, where 02 is independent of m. To estimate

falﬂzum|2@9dx, we first observe that, if v is a Nz’z-function

with compact support in Q, then
m 2 Lsid
f& [ 4,%1 a3 50;upD vdx+f“z .~§4 a;D;u D, vdx+ fa (ag+A)u D, vdx=
=g mekvdx.
Integrating by parts the first integral we get

jﬂ nkp‘:‘%1 aijDiuijv dx+ j; 9;’,?:1 DkaijDiuijv dx+
. + _/; gb‘{‘g‘-4 aijnlziumojv dx—_/a a,Z""'," aiDiukav dx-
; -]& (ag+Au D, v dx= —j; £ D, v dx.
Letting v=0kum(¢-632 in QJ and v=0 on Q-Qy we deduce from the
last equation )
CEPI A kaa‘?g_,' 85 103UpDiun@-9)% +

+ 2 Jg, 00 :.,,guuaij“ifaﬁks“m“j?(?")d" +



+£{94’%4Dkaij01um0§ku (p—J)zdx«»Z fq;go % DkaijDiukaum((o-d')Ddem
*fad.f’ 151 213061908 yun (-0 d”zfﬂ 1,,- 121301 UnDictn @ -370 x-
'fa;agq 830 u O un @22 fo 2 sy Dy unDkun P -8)0,Q0x-

- oy (ag+ AU 0B, 0, o - 2x-2 Joy oM ugD i (o-0)0, @ ox=

=-fQJf DZ U (@ -0 Pdx-2 Joy T Ouplp-d2D, o ox.

Let us denote the integrals on the left side of (11) by J
Estimation of these integrals can be obtained as follows

-1 2
(12) 3 2 fa 52 ||JJk 12 @(p-a)%dx.
Using the Young inequahty we get

TETIETEY.

(13) 13,+3,+35+3,| £C5(e) faJlDumlz(e—J)dx+

+ & g |D, .u |2(§b-d')3dx
Qp #=1 " "kj'm ’

Similarly we have

(18) IJS+J7|£CA[I so|Dum|2dx+j;l IOum12(@-J)dx] o
velfo, = >, 102 0,1 %0(p-0) ax+[ﬂ D2t (o-8) ux]
(1s) g1+l Jo 202, up(g-0) x| ecs(f%uf‘ah Jag £10x) +

m
R F'j;‘; o Ioﬁjulzgo-é)%x

and finally

2 2
a6)  13ge3gl €cq [ o 10uy | (o-daxs o ulax],
where t:i are independent of d" and ¢ > 0 is to be determined. We
deduce from (11) - (16) that .
- 2 o 2 2 -
Jo L 1-5);0(3-5) -3elp-0)’1 , Z 10,0, %ax <

«Cy (I&J|Dum|2(§’-d'):1x+ fa‘rlﬂumlzgadu f&,}'dex+ f&J u:dx),
where C7>0, Since

(- 0pe-6)2-36(0-0)3=(0-5)2 [ (" 1-£)p-3elp-)] =
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s @O L - E-8)+da ™ -£)-3e(-0)) =

2p-0)2 Ly lae)@-0)+dr -] > @-6)° 7 -ee)

-1
for ¢ sufficiently small, say e= xS_' the last two inequalities

yield .
2 2 3 2
(17) f% 521 105up 12 -0) ax 2 5yC; [Jg 10ug 12 G@-aDaxs
2 r 2 2
+ fQJ|Dum| @ dx+ _)&J £° dx+ j;la‘ umdx]-
Letting J°—>0 in (17) and combining the resulting inequality

with (10) we easily arrive at (6).

Lemma 1 shows that a possible solution to the problem (1),(2)
lies in the space %2:2(Q) defined by

ﬁ2‘2(0)= {u;ueN (IJ) andf |D u(x)lzgo(x) dx+

loc
2
+ fq [Du(x) | $°(><)d><+fﬁ1 u(x) Zax foo}
and equipped with the norm

[lu] |.§2,2= ja |l32u(><)|2 gD(x)3dx+ fﬁl IDu(x)Izgo (x)dx+ ja u(x)zdx.

The proof that u, converges weakly in WZ’Z(Q) to a solution

of (1),(2) will be given in Section 4.

3. Traces in 'ﬁz’z(u). To proceed further we need some pro-
perties of the space WZ’Z(D)

- Lemma 2. If ue W2 2() then g2 .L& |ou|2ds is continuous
on (o, d] and moreover

2
lim 6 Du|“dS_=0.
550 ]éawl | X
Proof. Let 0 < d‘<d' , then

fq R @IDuI dxf Md(u.f [Du(x )] ds =

2
f (Ldp.fag[n u(x (x ))] 3-5& ds,= i!" 5al 04 u(xd.. (x D) a-s—QdS -

- D,ulx (x )2 d‘as-
Tf[uxx Ci
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dJ m ax  dS
2 2 :
= J;«- faa[’;‘-E"Djlu(x“(xo))Diu(xﬁ(xo))gfase .
ds !
2 3
+ [ oyutx (x0) E(H‘o‘f)] as, .
From this identity we can compute
ds
2 2
S J;a [Di"(";(xo))] asfdso

and express this integral in terms of other integrals which are

~2,2 d%;
continuous on [0,6;], since ueW (Q). on the other hand = —~ 1,
)

as 63—>0, uniformly on 9Q, therefore the continuity of the inte-
gral g2 j;a |Du|2dS easily follows. Assuming that 3

. 2 2
lim ¢ |Du|“dS >0, we would have
d->0 jsai ' '
d'zf‘ |Du|2d5>a on (0,d1]
aa€ g |
for some positive constants a and d} and this would imply that
d
Ja-a, gloulaxs [5* waw Lo 10u2ss=co
1

and we get a contradiction.

Lemma 3. Lettjeﬁz’z(n) be a solution of (1), then
J%ad.uzds is bounded on (O,d;J.

Proof. Multiplying (1) by u and integrating over QJ,we obt-
ain ’

1 2 & __ir . > 2 -
’z'faad,u 'aniniwsx' - -Zfad_hquiaiu dx+/{:,;;o£,?Z=1aijDiuDju dx+

v =

3 2
+J£0‘d‘ i‘Z’.‘"aijﬁiu-ungorjsxaf j&d_(aoﬂ;\)u dx- fa,-f“d"-
We may assume that

144

a= Q_ia}o .§4 a; (x)0;0(x) >0

-

taking d; sufficiently small, if necessary. Since by Young’'s in-
equality .

d‘j;ad. 3354 %1301u-uD;5005, £ C5" [og |Dulas + Yfaaa,” as, ,

where C is a positive constant depending on n, a and Hai

the result follows easily from Lemma 2.
: - 148 -
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In order to prove the existence of a trace of a solution
ueﬁz’z(ﬂ) of (1) we introduce an auxiliary function xf:'ﬁ - 'ﬁf
defined in the following way. /2

d, = s
For oe (0, —] we define the mapping xJ:Q —>10Q by
4 9

x"r(x)= x for er‘,
x+yJ(x) , _
. S——p—— for XEQ—QJ:
where yd.(x) denotes the closest point on aua. to xeﬁ-ﬂd. . Thus
xJ(x)=xd; (x) for each\xe 2Q, moreover x? is Lipschitz.
2

We are now in a position to prove the main result of this
section.

Theorem 2. Let ucW2'2(Q) be a solution of (1), Then there
exists a function de L2(80) such that

' 2
Ain [elulxs(x))- §()1° ds, -0.

Proof. Since by Lemma 3 , faqu(xd.(x))zdsx is bounded, .there

exists a sequence d‘m —> 0, and a function de Lz(aﬂ) such that
lim fmu(xd.m(,x))g(x)de= faa ® (x)g(x)ds,

for each geLz(aQ). We prove that the above relation remains va-
lid if the sequence {d"n} is replaced by the parameter d’.

Since fénu(xd.(x))g(x)dsx is continuous on (D,d;] it suffices

to prove the existence of the limit at 0 and with g replaced by
¥Ye cl(T). Integration by parts yields

v ' .
fa(%%?:1 8010 Y u dS,= - Jo T, 0;(a;Nu dxe Jo, (ag* M) Yu dxe

m m
+ fﬂd’ P¢'§1 aijDiu'Dijx+J-éad. ‘_";'4 aijDiuDj@Y dS-_};‘ fY¥Ydx.

Using Lemma 2, the continuity of the left side easily follows.
Letting J —+ 0, we deduce from the last identity that
L m 5
(18) foq# ¥ Z,0,0;0d5,= - [ .= 0;(a;Nu dxs
¢ Jog (g* W Y u dxs Jo 94’?" a;40ub; ¥ ox- [ £¥dx= [ F(Wax.
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(

It is clear that this relation continues to hold for ¥Ye Hl'z(p).
Now taking ¥ (x)=u(x%(x)) we get
(19) [yq@ 0outx¥00) 1 Z, 8, 000,00)dS, = fo FluCx))axs
+jh_q;F(u(xd(x))dx.
-We now prove that

-1 2
(20) 2im I%F(u(x))dx-}lmo Jaq ulxg O =, a; (0D e(x)dS,

and

; o -
(21) © Lim L'QJ F(u(x¥(x))dx=0.

since x%(x)=x_(x) on 3Q, (19), (20) and (21) yield that

2 2
Jrq200%8,= dim Lo utes(x)? (£, 0, (00,0000,
and the Lz—convergence follows from the uniform convexity of Lz(au).

To show (20), observe that using the fact that u is a soluti-
on to (1) we get

nv m
Ja FlaGsx= - Jo .2, 0;(ayudu dx - Jo 53, a,0,u-u dx -

mv 2 m
-d faa€ 134213034+ D gas- oy v h{qainlpas-j;aﬁ_z,‘ 2, 30;0-uD,gds
and this claim follows from Lemma 2. Finally
F(u(x?))dx| & Const |d
|fq-% (u(x?)) xll ons M’-% J£(x) | Ju(x ‘)I X+
4.x$al(x)lnu(x)||0u(x‘3|d1+‘£p“J|u(x)||u(xdﬁldx+
+ Jo PN uGoax] -

Now Lemma 2 from [1) implies that the first and third integrals
converge to 0 as 5f-—a 0. The convergence to 0 of the second and
fourth integral follows from Lemmas 5 and 3 of [2) respectively.

' 4, Existence of solution to the problem (1) - (2). Theorem
2 of Section 3 suggests the following approach to the Dirichlet
problem (1), (2).

, let de L2(30). A solution u of (1) in W2*2(Q) is a solution
of the Dirichlet problem with the boundary condition (2) if
- 150 -



(22)  pam [ LuCxe(x))- 9(00) as, =0.

Theorem 3. Let A 2 .’Ao (where ), is 2 constant from Lemma

1). Then for every e LZ(GD) there exists a unigue solution
ue W2 4(Q) of the problem (1), (2).

Proof. Let un be a sequence of solutions of the problem (1),

(2m) constructed in the proof of Lemma 1. By the estimate (6)
there exists a subsequence, which we. relabel as Un» converging
weakly to a function u in WI’Z(Q). According to Theorem 4.11 in
rej, ¥H2(0) is compactly embedded in LZ(Q). therefore we may as-
sume that u_ tend§ to u in LZ(Q) and a.e. on Q. It is evident
that u satisfies (1). By virtue of Theorem 2 there exists a trace

€ Lz(aﬂ) of u.in the sense of Lz-cunvergencei We have to show
that § = a.e. on &0Q. As in the.proof of Theorem 1, for every
¥ e cl(Q) we derive the following identities

faa 1,’?4 a;D;Pf Y dS = f“ P,;,)%») aijniuDijxwfa (s°+a)u Ydx-
- -/c;.a,g4 Di(ai‘i’)u dx- fO. f Y dx= fa F(¥)dx
and similarly for u, we have

foa & 3

ag 324100 P, ¥ S, - fa © 5 Foq 23405upDy Yxs

+ fa(ao+a)umfdx-j;‘ &g,’ Di(ai‘.")umd)t-j;l f ¥dx= _& Fa(¥)dx.
Since lim fa Fa(dx= [, F(¥)dx, we have that

fea‘l’ ¥ .-,.gq a;0;pdS, = /;Qf y—:‘-ﬂ:»l 9;0,pd5,

for any Ye Cl(ﬁ) and consequently &=§ a.e. on 8Q. The unigue-
ness of solution of (1), (2) can be deduced from the following
energy estimate

falﬂzu(x)lzgo(x)jdw f“ IDu(x)|2;D(x)dx+j;u(x)zdx &
“c[f100%xs [ ()25, ]

which is valid for any ueﬁz'z(u) satisfying (1), (2) with-A 2 .'Ao
and the proof of which is a slight modification of the proof of
(6). We only use Lemma 2 in place of Theorem 1.

Remark 1. If ® e L®(80Q), we may assume that A =0. Indead,
- 151 -



we approximate ¢ by a sequence of Cl-functions ® on 30, which
is .uniformly bounded in m. The corresponding estimate (6) from
Lemma 1 takes the form

falnzumlzp:‘dn Jo 10u,1? @ dx 2const [f61 f,ﬁdh
+ Jog 92d5,+ [y ulax].

It follows from [7]) p. 283 that the sequence u, is uniformly boun-
ded in m and our claim easily follows.

v >
5. Case ag1aiui?z 0 on 3Q.
In this section we assume that 1.’_§4 aiDi§’ Z 0 on 3Q. For

each & > 0 we consider the Dirichlet problem
€ € - i -
(1%)  (L*+A)u= -L,gﬂ Di(goaiiju%_&g,,(ai+eDip)Di1+(ao+7\)u-f on Q,

with the boundary condition (2), where d e Lz(aﬂ).

Inspection of the proof of Theorem 2 shows that there exists
3‘0 such that for each 0 < &< 1 there exists a solution
U e 'ﬁz’z(n) of the problem (1%), (2).

The‘orem 4. Let e LZ(GQ) and suppose that igq ai(x)Di@(x)i

# 0 on 30. Then there exists a solution u in W2 2() of (1) such
that

Jl_iné J:md_u(x)‘f(x) ;’:L,‘ai(x)oigb(x)dsx: faaQ(x)‘I(x) ig‘, ai(x)DiQ(x)de

for each we C1(D). )
Proof. Observe that L_iﬂ 31(")019(")+ e|Dp(x)|2>0 on 3Q.

Hence multiplying (1%®) by u® and integrating by parts over Qg
and then letting J"—>0, we obtain that

m
1 & . 2 gx=
fa ;Di";{_-:,,aijniugﬂju&dx+ JoIA +a - 7 12,(D;a,+ 80255 ] ug dx
_ 1 < . 2 2 _
=5 LQ['%—‘I a;0; 0+ €(D;@) ]Q ds, = fﬂ f ug dx.
As in the final part of the proof of Theorem 1 we get

famzuelz,,’dx'acl Ua |Dug | 2pdx+ fa uZdx+ fa fzdx),
- 152 -



where Cl> 0 is a constant independent of ¢ . Combining these two
relations we obtain

2. 12,3 2 2 2 2
Jo 10%ug12p%axs [ Jou_ | Fpaxs [, vZaxec, (fef dxs [ @ ¢s,),

for each € > 0 and A 2 AO, where ﬂo can be chosen independent-
ly of € . It is clear that there exists ey —> 0 such that

ug —>u weakly in ﬁz’z(ﬂ), strongly in LZ(Q) and a.e. on Q and
m .

that u is a solution of (1). Taking Ye cl(@) we find out by inte-
gration by parts that

f%_ 9&§‘1aijﬂiunj‘l’dx-d'j;%_i‘g'q ay 40, uDyE ¥dS +
m
+ fﬂd’ (9«-»30-&}_'_1 Di(ai‘f))ud).(:j;af %g»i a;D,pu¥ds + fﬂ( fudx.
Lemma 2 and the Holder inequality yield
ind[ 3 ¥
5% % Jans 13m0 21014 790
and consequently

m

. m
(23) al_i»mon:?&; 224 9;0;u¥ds, = o £ 3.4 21305u05¥dxe
”y
+ fq[1+ao— 124 0;(a;N] udx—fe fudx.

Similarly, using the fact that ug (x;) converges to ® in LZ(BQ),
m
we get that

v
fa @ ,gqaijﬂiusmnj‘{dm fa [A+a,- .2, D;(a;+ .00 Y] uE"idx=

i3
> 2
= faaQI-Lg‘l a;0;p@+ emlnpl )Yd.sx* fa fusmdx.
Letting T, —> 0, we deduce from the last identity that
4 my
(28) .fo. P,-,;,,aijniunj'fd“fq[ﬁ*"n' 324 03 (8] u dx=
v
= Ju®¥;Z 8,0, 005+ Jitu ox.
Comparing (23) and (24)we obtain that
(25) g [ (E s,0,0)uvas,- | T  a,0,9d5
£2% aa S 21018/ T ¥ 2, 2;0;995,.
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Remark 2. Assume thatii£1ai(x)ﬂi@(x)=0 on Q0. Inspection

of the proot of Theorem 3 shows that there exists a solution
ueiz’z(ﬂ) of (1) such that

m ) -
(26)  lin jan(;g,, a;0,0) u ¥ds =0

for each y e CI(Q). The relaﬁion (26) shows that the boundary da-
ta ¢ is irrelevant. A natural question arises whether a solution
u, understood as a limit of a sequence ueg from Theorem 3, is in-
dependent of the choice of ¢ . We are only able to give an affir-
mative answer provided ¢ e L1( Q). -~

Indeed, let bl and @2 belong to (®(8Q). Let us denote the
corresponding sequences of solutions by ué and uz,, respective-
ly. Since ué-ug satisfies the homogeneous equation (1), by Theo-
rem 2.1 in (7], we may assume that ui-u
ly of & . Set

2 is bounded independent-

2

’

£ 1_.1 A 2_
9’l__1>n"|J ug=u" and tlimo u; =u .
where the limits are understood weakly in NZ’Z(Q), strongly in

t2(g) and a.e. on Q. It is clear that ul-y? belongs to W2:2(0) n

A L®(Q). As in Theorem 3 we arrive at the following identity

U 1 2 1 2 1 & 1 2y2. .
fa?i,§'=4 aijDi(u u )Dj(u -u“)dx+ fa (Ag*a,- ’Z_;f—,,Diai)(u -u“)“dx=0
for A > 20, and consequently ul=y? a.e. on Q, provided AO is
sufficiently large. To establish this identity we have used a re-
lation

1i d'f f. a; .0, (ul-u?)n.@(ul-u?)ds_ -0
g% %8, 1,5:1%130 3% %t

which follows from Lemma 2 -provided ul-uze *°(a).
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