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Abstract: The notion of a dimension stable poset is introdu-.
ced and the minimal members of this class are jnvestigated. The
minimal stable posets of dimension 2 are completely described and
the general crowns which are minimal stablg are determined. In
particular, there are an infinite number' of minimal stable posets
for each dimension greater than L.
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1. Introduction. Throughout we assume that P is a finite po-
set. The underlying set of a poset P will also be denoted by P
while the order relation is written as £ (or, as £ if there
is no confusion). A collection € of linear extensions of P whose
intersection is the order relation on P is called a realizer of
P. The dimension of P, introduced by Dushnik and Miller [1] and
written as dim(P), is defined as the minimum size of a realizer
of P.

The class of general crowns S: was introduced in Trotter [3].
These posets will be considered in section &. For n,k 20 the crown
Sk is defined as a poset of height 1 with n+k maximal elements

az,...,an+k and n+k minimal elements hl""'bn+k',The ordering in
s, is defined by b;< a4 iff 3 ¢{i,i+1,...,i+k}. (Subscripts are
added modulo n+k.) The set of maximal elements is denoted by A
and the set of all minimal elements is denoted by B. For bg.B,
let I(b) denote the set of all a ¢ A incomparable to b. for ae A

the set I(a) is defined dually. Note that |I(a)|=]I(b)|=k+1 for

1 Research supported by a grant from The Citadel Development
Foundation.
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all ae A and be B.

A point x in a poset P is unstable if dim(P-ix})< dim(P).
A poset is called irreducible if every point in it is unstable.
Irreducible posets have been extensively studied; in particular,
the crowns that are irreducible are described in [3]. Posets with
a "small" amount of unstability seem to have been neglected. We
call a poset P (dimension) stable if it has no unstable points.

A stable poset is d-stable if it has dimension d. The class of
d-stable posets is large. Section 2 contains some simple observa-
tions about the class of d-stable posets. In particular, the

class is determined by its minimal mesbers, that is, d-stable po-
sets for which the removal of some element produces a poset that
is not d-stable. We say that a poset is minimal stable if it is

a stable poset such that removing some pair of elements lowers

the dimension. In sections 3 and 4 we describe the minimal 2-stab-
le posets and determine the. crowns Sﬁ that are minimal stable.

2. Stable posets. In this section we initiate a study of
d-stable posets. The first result follows immediately from the
definitions. It says that the class of stable posets ‘is a filter
(that is an upward closed subset) in the poset of all isomorphism °
types of dimension d posets and that this filter is generated by
the minimal stable posets. -

Proposition 1. (1) A poset of dimension d that extends a
d-stable poset is d-stable.
(2) Every d-stable poset contains a minimal d-stable poset.

The next goal is to show that every poset is embeddable in
a stable poset. The following notation is needed for the const-
ruction. For xeP, let L(x) denote the set of all elements in P
covered by x and let U(x) denote the set of elements in P which
cover x. The lemma below gives properties of an extension of P
obtained by adding a new element to act like an old one.

Lemma 1. Suppdse x is a point in a poset P and x  is a new
symbol not in P. Form a poset P(x) with universe PU{x 't and order
relation generated by éPU(L(x)x{x’})U({'x’}xU(x)). Then

(1) P(x) is-a "conservative" extension of P, i.e., for a,beP,
a ép(x)b iff a épb.
(2) if dim(P) =2, dim P=dim P(x).
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Proof.* (1) is clear. (2) Removing the new element x from
each linear extemsion in a realizer for P(x) produces a realizer
for P by (1). Thus, dim P£dim P(x). Now, suppose {Ll,...,Ldi is
a minimal realizer for P where d=dim(P)> 2. Form Li from L; by
replaping x in Li by either x, x  or x , X making sure that each
pair is used at least once. (This is possible since dZ2.) Cle-
arly each L{ is a linear extension of.ép(x). Now suppose a,b & P(x)
and (a,b) & £P(x)' If a,beP, then a is over b in some Lis hence
in some L1 If fa,b¥=ix,x % then, by the definition of the exten-
sions, a is over b in\some L{. I1f a=x and x%beP, it follows
that (x,b)¢.éF,. So, x is over b in"some L;. Hence, X and x  are
over b in @i. The case of b=x is similar, so {Li,...,Lél is a
realizer for P(x) and dim P=dim P(x). O

Lemma 2. If x is an unstable element in P, dim(P)> 2 and y

is unstable in P(x), then y is unstable in P and y#x.

Proof. By Lemma 1, if y is unstable in P(x), y#*x and y4x;
so y is unstable in P. O

Proposition 2. If a poset is nos stable, it is embeddable
in a minimal stable poset.

Proof. The result is clear for P with dim(P)=1 since such
a poset is stable if |P|Zz 2. For dim(P)>2 and P not stable, the
result follows by iterating the construction in Lemma 1. Inducti-
on on the number of unstable elements in P is justified by Lemma
2. 0O

Note that the construction in Lemma 1 can also be used to
show that every finite poset has an infinite number of stable
extensions. '

3. Minimal 2-stable posets. In this section we describe the

minimal stable posets of dimension 2. We begin the classification
by identifying special posets. A poset is called absolute minimal
stable if it is minimal stable and no proper subposet is stable.

For example, all of the posets in Fig. 1 are minimal 2-stable;
however, Q and R are not absolute 'since they contain P3 as a pro-
per subposet. '

.

The next result implies that Pl’ P2, P3 and Pahare the only
absolute minimal 2-stable posets.
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Proposition 3. Every minima} 2-stable poset contains ane
of Pl’ P2, P3 or PA'

Proof. Suppose P is a minimal 2-stable poset. If P contains
an antichain of size Z 3, then P contains Pl' Otherwise, every
antichain in P has size 2. If P contains only one antichain, de-

. leting one of its elements reduces the dimension. So P must have -
at least 2 antichains (of size 2), call one A and another B. A
Every element in A is comparable with some element in B. (Other-
wise, adding it to B creates an antichain of size 3.) If each
element in A is comparable with exactly one element of B, then P
contains P2. If some element of A is compagable with both ele-
ments of B, then P contains P3 or PA‘ [m}

The classificatiqn of all minimal 2-stable posets is obtain-
ed by combining -an absolute minimal stable poset with a chain in
various ways. Six infinite families result. They can be defined
using the notion of an ordinal sum of posets (see [2]). In parti-
cular, let n denote an n-element chain, A® B denote the linear
sum of A and B, and.A+B denote the disjoint sum of A and B. Thus,
for example, (k & (n+1) ® m)-rl@(which is A(0,k,n,m,0) below) is
the poset Q; in Fig. 2. The posets Q,, Q,, and 03 are ordinal
sums of Q, P3 and R, respectively.

We now define several infinite families of posets:

(i) A(r,k,n,m,s)=r ®'(1<_ @ (n+l)® m)+1) @ s where nZ1 and
r,s,m,k Z0.

(ii) 8(r,k,n,m,s)=r ® Q;(k,n,m)@® s where k,mz1 and n,r,s20

(iii) C(k,n,m)=k ®(n+2) ® m where n22 and k,m20.

(iv) 0(r,n,m,s)=r & Dz(n,mjeg where n,m z1 and r,s20

(v) E(r,k,n,m,s)=r & (k+1)®n & (m+1)® s where k,n,mz1 and
r,sz0

(vi) F(r,k,n,m,s)=p @ 05(k,n,m) ® s where n,r,s20 and k,m21.’

Notice that each class of posets, except D, is closed under
duals. The posets of type A, B, C, D, E and F listed above are
all minimal 2-stable. The main result of this section is that the
list above is complete.

!

Proposition 4. Suppose P is a minimal 2-stable poset.
(1) If P contains Pl' it is isomorphic to a poset of type A
or type B with n>0.

(2) I)! P contains Pz, but not Pj, it is isomorphic to a poset
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of type C.

(3) 1If P contains P}, but neither Pl nor P,, it is isomorphic to
a poset of type D (or its dual),
type B with n=0.

(4) 1f P contains P,, it is isomorphic to a poset of type F.

Proof. (1)
of size 3,

a poset of type E, or a poset of

If P is minimal stable and contains an antichain
two elements from this antichain must be removed to
The result will be a chain. Thus, P can be
constructed from a chain L by adjoining a two element antichain

drop the dimension.

{x,y} in such a way that both x and y are incomparable to some
element in L.  There are various possibilities depending upon whe-
ther or not each of x and y is incomparable from all elements in °
L, below some element in L, above some element in L, or both

The table below enumerates the joint possibilities where the ent~
ry corresponding to a row and column is the type of poset speci—
fied by the conditions. We write x Il L to mean that x is incompa—

rable with all elements of L, X<L to mean that x<c for some

cel, etc. In all cases n>0.

1 x N L x< L x> L L< x <L
yh L A(0,0,n,0,0) A(0,0,n,m,0) A(8,k,n,0,0) A(0O,k,n,m,0)
y<L A(0,0,n,m,0) A(0,0,n,m,s) B(0,k,n,0,0) Q%g t e :;
L<y AC0,k,n,0,0) B(0,k,n,m,0) A(r,k,n,0,0) gg;;t;g;m;g;
Ley<t] a@ponmo  AGHonE S HEELE Rk

The proof of parts (2), (3) and (4) is similar. a

4. Minimal stable crowns. In [3] conditions on n and k are
given which determine when the crown Sﬁ is irreducible. If Sz is
not irreducible, it is stable! (This follows from the observation

that d1m(8 -fx})= d1m(S ) for all x whenever it holds for some Xx;

a result which is a consequence of the fact that the automorphism
group of Sh is transitive on the minimal (maximal) elements.) In

this section we determine which crowns are minimal stable.

Proposition 5. A crown Sg is a minimal d-stable poset if and
) only if n and k satisfy one of the following conditions:
(1) k=1 and n+l=3q (so d=2q),
" (2) n+k=q(k+2)+2 (so d=2q+1),
' - 131 -



(3) n+k=q(k+2)+[(k+2)/21+1 where k is an even positive integer
(so d=2qg+2). ‘

Proof. The arguments are only sketched since the techniques
are very similar to those used in [3) to characterize the irredu-
cible crowns

If S is a minimal d-stable poset, dlm(S - {x,y¥)= dlm(S )-1
for some x, y. Using ‘the observation that, for cCrowns, stable is
the same as not irreducible, and comparing the weights of the po-
sets involved with the weights of linear extensions (as in Theo-
rem 5.8 of [3]) it follows that one of the following four condi-
tions must hold:

(i) n+k=q(k+2) where k=1 or k=2,

(1ii) n+k=q(k+2)+2,

(iii) n+k=q(k+2)+[(k+2)/2]+1 where k is a positive even

integer,

(iv) n+k=q(k+2)+1(k+2)/23+2

We next observe that in case (i) k=2 is impossible and case
(iv) is also impossible. The argument for k=2 in (i) and for k
even and positive in (iv) is similar to the proof of Theorem 5.6
of £3) in the k even and positive case. This works because if
5 - 1x,y} lowers the dimension in these cases, each linear exten-
510n in a minimal realizer must have maximal possible weight.
This is not the case when k is odd and positive in (iv), but a
modification of the argument still works. There are four cases
to be consldered depending dpon whether x, y are both minimal
(maximal) in S or one of each and whether |I(x)nI(y)| is 0 or
1. For sake of this sketch we assume x,y € B. Assuming that
S - 4x,y} has a realizer {Ly,...,L, +1} it is possible to show
(along the lines of the argument in Theorem 5.6 of [3D)there exists
snother realizer Ll"‘ qu L2q+1 where each Li has maximal
possible weight and L2 +1 must place t+1=1[(k+2)/2) elements of B
over k+1 elements of A. This is impossible since each be B is in-
comparable with a different subset of A pf size k+l.

It remains to see that S is minimal stable in case (i)
with k=1 and in cases (ii) and (iii). Crowns S in (i) with k=1
have the form 5%q+2 where qZ 1. Since S3q g is (2q+2) -stable it

suffices to see that the poset P obtained by removing as and

q+2

83q+3 has dimension 2q+1. If iL,,L,,.. 3 is the realizer
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for S3q+2 constructed on pp. 90-91 df [3] and if L extends

La),b30.1:93q:23g+1:P3g-17
(remember, in §31, larger elements are listed before smaller ones),
the chains {Ll’LB'LA’""L2q'L’L2q+23 restrict to a realizer of P

with size 2g+1. It follows that S§q+2 is minimal stable.

Case (ii) is similar. It suffices to construct a realizer of
size 2q for the poset obtained from Sﬁ by removing 80ik-1 and
an4k” Again, using the notation from pp. 90-91 of 3], such a rea-
lizer is ALI,L3,L4,...,qu,L2q+2§.

To show that Sh is a minimal (2g+2)-stable poset where n, k
are given in case (iii) the construction in Theorem 4.8 of [3] is
employed. It suffices to construct 2q+1 linear extensions that
realize S:-{a

n+k'bn+t} where k=2t. Th is is done in the following
way. Partition A into sets Aj and Ij as in the argument cited

and form linear extensio?s L2,...,L2q+1 corresponding to
12""’12q+1' Now form L by ordering I1 by increasing subscripts,
placing the last t+1 elements of Aq+1 above these elements in

decreasing subscript order, and finally inserting the elements

of I(al) in the list as high as allowed by the ordering on Sgt.
The collection SL’,LZ,...,L2q+1§ is the desired realizer. This

completes the proof of Proposition She

From the number-theoretic conditions in Proposition 5 we ob-
tain
Corollary. There exist an infinite number of minimal d-

stable posets for each d Z3.

Other infinite families of minimal stable posets can be ob-
tained from non-minimal stable SE ‘s by removing one, two,...
elements. It may be worth classifying these clipped crowns.
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