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LINEAR FUNCTIONALS IN SLM-SPACES
J. MICHALEK

Abstract: This article deals with linear functionals
defined on statistical linear spaces in Menger ‘s sense (SLM-spa-
ces). The main aim is to describe all continuous linear functio-
nals defined on a SLM-space (5,%,T) as a SLM-space, too. For the-
se purposes we shall define a s atistical norm of a linear func-
tional which in a simple way characterizes continuous linear
functionals.

Key words: Statistical metric space statistical linear
space, ¢€-7 -topology, t-norm. ’

Classification: 60B99

Let a SLM-space (S,%},T) be given. Let 5* be a vector space
of all linear functionals defined on (S5,%,T), let S’ be a linear
subset S'c S¥ of all linear functionals continuous in the e-71 -
topology. The basic properties of the g-7 -topology are given in
(11, £2). A special case of the dual space to a SLM-space is stu-
died in [31.

Definition 1. Let a SLM-space (S,},T) be given, let fe S*,
£f40. A function Ff(-) defined by

Ff(")=¥t;?&lf£\*;':x( lft(JX)l "“’Fx(lfﬁx“)} tor u>0
Ff(u)=0 for u<0,

(wF (u) is the jump of F o (+) at u), will be called a statistical
norm of the functional f. For f = 0 on S we put Fo(u)=H(u) where
H(u)=0 for u&0 and H(u)=1 otherwise. /

Properties of the statistical 'ncrm:

1. Let 0<u %4, then fl(‘x) z-]—f-l(l—x—)l for every x€S. It implies

that for every x with f(x)rtlo 2 \

1- 4r, diguly. of (ALY 41 {r b, o (L1}
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and hence Ff(ul)é-Ff(uz). The statistical norm of fe S™ is a non-
decreasing function in reals. Further, it is evident that OéFf(u)é
£ 1 for every v e Ti

2. The function F ( ) has at most a countable number of disconti-
nuity points and at every point the limits at the left and at the
right exist.

3. In general, it is not true that 11m F (u) 1. In every case,

of course, lim F, (u) exists and 1lim F (u)‘ 1.
pYRES. ] AL-» 0O

4. If Ff(u)=H(u) for every u e ﬁj, then f(x)=0 for every xé€S.
5. 1In case of such a ‘SLM-space (S,},T) where a)Fx(0)=0 for eve-
ry x+0 the statistical norm F, can be expressed in the form

Fecu=1- sup {F, (LD or, LAY, oo,

Definition 2. A functional fe S* is said to be bounded with
respect to the statistical norm if

lim Ff(u) >0.
u-»©

Theorem 1. A functional f e S* is bounded with respect to the
statistical norm if and only if f is continuous in the €-m -topo-
logy.

Proof. Let fe S* and let £ be bounded with respect to the
statistical norm. As f is linear it is sufficient to prove its
continuity at the null vector in S. Assuming ligw Ff(u)= e°>'0
then

JLim  sup éf (l££121)+<aF (lﬁﬁlll)} =1- ¢_ and hence for
oo {x:F(x¥40} X
every x,[£(x)|>0, lin_{F (.l_f.(_"ﬂ.)+wF (Lf-(-ﬁl)}q g, Let

{xni‘::l be any sequence in S, x_ #0 for every n & N and xo => 0
in the e¢-m -topology. It is clear that for every n.e M

l£(x )| (If(xn)l

EE“{F -T—)+qun —1 =why (0)41- €.

Let us suppose that If(x )| #> 0. Then there exist such an
€,>0 and such a subsequence ix, % k=1€ ix 'i ) that

|£(x, )| = &, for every k € 71.
k

Hence

‘f(xn ) lf(xnk)l El 51
)"wa ( m )ZFX (u—)‘*QFx (n—)

nk nk nk l'lk



also for every K eMN and it implies that for every u>0
1£(x, )1 |£0x, )|
My
Y+ @F,  (———)} =1 because x, —> 0
X u n
un k

1 F
kl-'v“w{ X, (

in the ¢-m - topology.
But as follows from the properties of the supremum

o0 (o0 IF Gx ) 1§ x|

X X

;?%&)#DFX(-L——LU yroof, (1281532 Fo {—g 0 9 (— =)
K k

for every ke L and therefore :

PRI (M%odef_(’&)_‘.)}:l fux evEty uD;

This last equality is contrary to the assumption that

1im _sup (MHwF (li(i)—l-)} =1- g < 1.

T {x-f(xh-ol
This result implies that fe S* must be continuous in the g-n -to-
pology.
Let us suppose, on the contrary, that fe 5’ is not bounded
with respect to the statistical norm, i.e. for every u>0

{Fx(lf;(_:)_L)J,wa(_\_fL’&)_L)} -1,

10§60# 03

As f is a linear functional, Definition 1 implies that for
arbitrarily chosen k>0

" K K

P71 8 @ 0P @S o0

Further, f is continuous and hence [£(x)| £ k, ip an ¢-m -neigh-
borhood 0'(e, M) Now, let u S+, € aN 0. Then for every ne Tl

there exists yneS where |f(y )l k and therefore yn-/->0 in the
€-71-topology but

1- g< su {F_(
e i0s0r X

L 1 Lo +F, (Erwf, (G 2
+wF_ - + < + —_— —_) £
yI'l ul"l- ) n sn yn un te yn un

~

1£Cy DI
_l._f_l(JﬂL)+ wpx(lf_s."_)_l.)}_e Fy (——=0)«
n n n

u
n

K
& e“+FYn(q + d"n) where d’ N 0.

It implies that 1-(e+sn)<F (— +d‘ ), L.e. vy e0(e+e ——+d")

(for every neM) and we have proved that y, —> 0 in the €- ’q_—topo-
logy. This result, of course, is in cuntradmtwn to the continuity
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of the functional f at the null vector in S. Q.E.D.

Let a SLM-space (S,7},T) be given. Let ae<0,1) and let us de-
fine na(x)=inf{9\> O:Fx(a)>a}. If x=0 then na(D)=U for every
ae<0,1). On the contrary, if na(x)=0 for every a e<0,1) then
x=0 in S because x=0 if and only if Fx(u)=H(u) for every u e :Rl'
At the first sight it is clear that na(J\x)=|?«|n8(x) for every
Ne :R'l and xe€S. Unfortunately, it is not true that na(x+y) <
éna(x)ma(y) for every pair x,ye S in (5,},7) besides the stron-
gest t-norm T(a,b)=min(a,b). Nevertheless, we can define for eve-
ry fe S* and every a e<0,1)

NN, =sup {1£(x) | ing(x) £1%.

Let us denote Oa= {xeS:na(x)l.- 11. From the definition of na(-)
it follows that when a<b, then na(x)énb(x) for every x €5 and
hence 0, > 0. Further, we immediately obtain that lltllaz\lfllb
if a<b. We also see that for every real A

H.?«flla=|9«| "flla for every ae<0,1) and

every feS*. We can prove, in an easy way, the triangular inequ-
ality
||f+g|\a £ |kf|la+ llgua

for every f,ge S* and every a ¢<0,1) because we know that
sup {If(x)+g(x)|}$s;.|p 11£(x) |} +sup fle(x)|¥. If Oe S* is the

null function-él in § (0(x)=0 for every xe€S), then surely
IIUI|a=0 for every ae<0,1). On_the contrary, let us suppose that
llflia=0 for every a €<0,1). This assumption implies that f(x)=0
for every x & 0= {xeS‘:no(x)é 13. Since for every x& S there
exists such a vector y ¢ 0., y=Ax, we obtain that £(x)=0 for
every x €S. We can prove a stronger statement even that \lfl\a=0
implies f(x)=0 for every x&S. The assumption llfl\a=0 gives that
f(x)=0 for every x & 0’a= {sz:na(x)él}. Let x €5, na(xo)z 1.

X
= o = " -
So, yo-w € Ua and hence f(y )=0. It implies that also f(xo)-
=0 and it yields together that £(x)=0 for every xeS. The proved
results lead us to the formulation of the following definition.

Definition 3. Let a SLM-space (S,%,T) be given. Let f be a
linear functional in (S,3,T), let ae<0,1). Then the number
el =sup {It(x)l:na(x)él}
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where na(x)=inf{ A> 0:F (A )>a} will be called a conjugate norm
to n ().

The conjugate norm “fla can assign the infinite value, too.
ﬁfﬂa is defined in <0,1), is nonincreasing and we put hfﬂ1=
=inf &“fﬂa:a-<l}. As for every x €S the corresponding probability
distribution function Fx is left continuous, then for every x eS$§
na(x) as a function in the argument a in <0,1) is right continu-
ous.

Theorem 2. Let f be a linear functional defined in a SLM-
space (S,#,T). f is continuous in the €-7 -topology if and only
if there exists a €{0, 1) such that

Wil < o0
8

Proof. Let us suppose that hf“a < +o for aoe.<0,1). As .

Iif“a is nonincreasing in {0,1), then “f“a< + 00 for every
a e(ao,l) . “f“1=infa<1hf“a. From the definition of the conjuga-
te norm “f“a it follows that for every x e 0, = {x:na (x)£1t%
) o

[£GOl e, . Since n, (x)<1 ift F (1)>a , we see that the
o o

functional f(s) is bounded in the €¢-7 -neighborhood U(ao,l) and
hence f is continuous in the €-7 -topology.

On the contrary, let us suppose that f is a continuous line-
ar functional in the €-7 -topology. Let us suppose that “fﬂa=+00
for every a €<0,1). This assumption implies that for every ne 7N
there exists x €S such that [f(x )|>n and x_ e OBn, a, A1. It
(x| y
—— >1 for every n and y € = 0, =

n a
n

=1 . - . 1
= = ixe S.nan(x)_L_l'Q = {xeS.na (x)= -ﬁ-l and hence Yo —> 0 in the

x
we put y = —%, then |£(y )|= o

n
¢-n-topology although If(yn)|>-1. It is impossible because we as-
sumed continuity of the functional f at the null vector in S. Q.E.D.

At the beginning of our considerations we defined the statis-
tical norm of a linear functional defined in a SLM-space (S,},T).
At this situation a natural question arises about the relation
between the statistical norm Ff and the conjugate norm lf“a in
case of a continuous linear functional defined in S.

For this purpose let us put aD=inf {a:nf“a< +co} in case of a con-

tinuous functional f and “f“1=inf “f“a‘ By these relations we

a<l
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defined a nonincreasing function l\f\\a in the interval {a_,1) with
finite values in (a ,1> . It is clear that lee 2" i\fl\l_a,
a e(D,l-ao) is a nondecreasing function in (0,1—a0> ‘

Now, let A2 0 and let us define

Fo(A)=inf £a>0: Wl 2 AY if €a>0: Wl 22k + 9

Fe(ad=1 it {a>0: Nfll > A}= @
In this way we obtain a nondecreasing function defined in <0,+)
which is left continuous, lim 'I?f(J\ )=1-a_. Let us put g.=lim F,.(1).
Ao 0 f 55w f

Theorem 3. For every continuous linear functional f defined in
a SLM-space (S s s T) the function ’l:"f defined above is a nondecrea-
sing left continuous real valued function in <0,w ) with
lim F(A)la landF(O)O
A=>0©

Proof. As U]fl\\ = \\f\l _g in {0,1-a ) is a nondecreasing func-
tion then {a>0: Il|f|l\ 2 A }3{a>0 lllfll\a A,t for every pair
?‘1522 and hence F. (?\ )‘F (A 2). Let 7\>0be fixed and let

us consider A /"?\ ; surely sup ’Fv ( J\ )AF (A). From the defini-

tion of F (?\) we know that for every a> 0 there exists a >0

such that F (An)+ ¢>a_ and \Ilfma z A, for every ne n Since
n

:}‘n < 7\n+1 for every neé 7L we can choose a, in the same way, a <
<a_ ,, and hence lﬂﬂn)w a =a, exists. Surely },ﬂ"w ?f( Adza -e.
The function Illfl\\ is nondecreasing, hence lim lllfllla % lllfllla,

n
then WEW_ =X which 1mplies that ¥ (7\)‘3 In this way we

have proved *that 11m F (?\ ) F (.7\) and hence F ( ) is left con-
tin uous in (0, +OD) at those points Ae<0,+m) where

{a: lIlfll\a.. AY+@. It lasts to prove the left continuity at that
e (0,+c0) where {a: Il az?\} =@. Let A /'/\ and {a: ll\f\llazﬁhﬂ.
If, at least for one noe’n{a: Illfllla § is empty, too, then by

the definition of T"f(-) f—"f( A =1 and hence F. ( ) is left con-.
tinuous at A . Let us suppose that for every n e ’Yl {a: |Ilf\\\a>9\n§
is nonempty, i.e. for every 'ﬂn there exists ane(o,l-ao) such

that Illflll > ?‘n' Since lllfl\\ is nondecreasing in (U,I—ao) we
an
can choose {a } as a nondecreasmg sequence, too; 11_;11 a,=a,.
Hence }n}_;n lllfl\\ |IIfI\\ and l||f|\| 2 A but it means that the
oo

an

set da: N a2 A% is nonempty which is contrary to the assumpti-

on. So, a number ng € N must exist such that {a: Ulf\“a zA, 3 =8
o
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and Ff(-) is left continuous at A . Q.E.D.

Theorem 4. Let f be a linear continuous functional defined
in a SLM-space (S,%,T). Then the statistical norm Ff(.) and ?}(-)
are equal at all points. g

Proof. First we shall prove the implication
Ff(u)<a = it aZ U
Let ae<0,1) and u>0 be such that Ff(u)Aia. By the definition
Ff(u)<a implies

£0x) £(x)
{u:?gpx)lto';FX(J_TL)* wa(‘L—EL)} >1l-a.

It means there exists x €S with f(xo)#=0 such that

(If(xo)|) i (If(x0)|

P, (T 0t OFy () 7 e
Then we can state by means of nl_a(xo)zinf{7\> 0:F, (A)>1-at
that [£Cx )| ’
L"1-3(’(0)5—&0—
ux ’
Now if we put z = TTTY§7T then a;_.(z ) £1, |f(zo)|=u and hence

"fnl-a=5”p {If(z)l:ul_a(z)é la%lL
It proves: if Ff(u)< a then |lf"|aZ u. This implication can be
expressed in the following form
{aff00<a}c(a:l"fm82u}.
Now, let us prove the opposite implication
Feu)za = Mem £wu.
Let a €<0,1) and u>0 be such that Ff(u) za, i.e.

[£(x)] [£(x)]| _
1 Bpoil T R L
This implies that Fx(lisﬁll)él-a if £(x)#0.

The definition of ul_a(o) and the monotony of F_ give
£(x)]|
-I—U—Léﬂl_a(x) .

The last inequality holds for f(x)=0 of course, too. It means the
inequality |£(x)|£ u must hold for every x €S satisfying nl_a(x)é
<1. The definition of nfhl_a gives immediately that
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l\flll_a= mew aé-.u.
We proved the implications
{a:Mfma>u§c{aﬁfm)<a}ch:me32u§-

Further, if € is any positive number, then :
{a:Fe(u)< alcia: WEM 2 ulc{a: Wew , >u-e} c{a:Ff(u-e)< al.

Now, by means of the definition of ?} we obtain
Felu-e) £ Fp(u)£F (u)
and the left semicontinuity of Ff gives that
N ~,
Ff(u)=Ff(u).

In case {a: thIaZ ut =@ we have also {é:Ff(u)< at =@ and thus
Felu)=F (u)=1. Q:E.D,

We have not so far mentioned the existence of a nontrivial
continuous linedr functional in a SLM-space (5,3,7). In every SLM-
space (S,%,T) the trivial continuous linear functional 0 exists,
0(x)=0 for every x€ S. The existence of a nontrivial continuous
functional is closely connected with the strongest locally convex
topology which is weaker than the €-7m -topology. The collection
of all convex circled neighborhoods of 0 in the e-mn-topology
forms a base for such a locally convex topology. In case of a
SLM-space (S,},T) with t-norm M(a,b)=min(a,b) every ¢- 7 -neigh-
borhood is convex and circled and hence the topological dual
space S’ is sufficiently rich in continuous linear functionals.
In case of the space (S,%,M) we know, further, that for every
a €<0,1) the number

ng(x)=inf {4 > 0:F (A)>at}

is a seminorm in S and in case of continuity at 0 of F_ for eve-
ry x+0 na(-) is a norm even for every a €(0,1). But without any
assumption about a form of t-norm T in a SLM-space (5,73T) we
can prove that the conjugate norm

WE =sup ilf(x)l;na(x)i 1%, ae<0,1)
has properties similar to a norm because “0“a=0 for every
ae<0,1), if Nfl_=0 then =0 in §, “““f'-" | WEN, for any
Ae 42,1 if Wl < +o and f+gh, < £l + Wglly for every ae<0,1)
it Ml < + o0, Hg“a< +00 . Using the conjugate norm we construc-

ted the function ?f for every continuous linear functional f in
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S where F"f(-) is defined in €0,+c0), nondecreasing and left con-

tinuous with lim F,(u)= ¢ , €¢€ (0,12 . Let us construct a map-
wreo I £ i

ping 0 u€0

s’ &, 3 (W=Fiw=L
¢ ¢ f N\ Ff(u) for u>0

where S  is the topological dual space of S, §' is the set of all
left continuous condecreasing functions defined in 53.1 with non-
negative values less or equal to 1.

If £=0, then llfla=0 for every és(U,l) and lﬂfll!a=0 for
(0,1> , too, which implies that F;(u)=H(u) for every u. If
Ff(u)=1 for every u> 0, llflla< +oo for ae(ﬂ,l-ao), and therefore
'F"f(u)< l-a, but it is impossible. It implies that llifl\ax + @@
in €0,1). Let us suppose that for every u>0 there existi 8 € <0,1)
such that W£fH aoz u. As follows from the definition of Ft(u) in

this case T’lf(u)é a <1, and it is also impossible. It means that
{a: wemw  z u>0% is empty and the only possibility is that (HfH =
=0. This fact implies that £f=0 in S. Let A be any real number
and f any continuous linear functional in S.' Then for every a €
6<0,1) with UWEl < +o0 mama=|m | lellla and for A #* 0

{a: WAl = ul =da: it ot T?A!T} and hence F,;f(u)=Ff'(13"lr).
In case A=0 we have Af=0 and Fa'f(u)=H(u) and if we put Ft',(%)a

=H(u) for every u>0 then Ff'(-rg-r)ﬂi(u) for every u>0. Let us
prove the generalized triangular inequality given by the t-norm
T(a,b)=min(a,b), i.e. ]
F£+g(u+v)2 min(th(u),Fg'(v)).

Surely, it is possible to consider the case u>0, v>0 only. The
functionals f, g are continuous and for f there exists such a num-
ber €.>0 that lllfllla< +00 in <0, ef), similarly for g, lllgl\.(
< +00 in<0, _eg). It follows that for every

a e<0,min( €4, eg))

f+g Illa < em at g Illa.

By the definition .

F;(u)=inf {a: MeW > ul
i' Fé(v):inf {a:Wgh 2 vi

{a: MEM = uiHgH{a: Mgl 2 vl
- 119 -



and ia:l"f+gl“az u+v}c{a:|HfHIa+ngH|aZ u+vi as well. Now, let
us suppose that

-

Fé+g(u+v)< min(Fé(u),Fé(v)).
It means that there exists such a number aez 0 that
ageda: llif+g Illaz u+v ag-e< Ff'+g(u+v)<ae< min(Ff'(u),Fg;(v)).
Then for every ax min(inf La:£W 2w}, in {a:lﬂglﬂaz vi)

a. < a.

£
It means that MM <u, lIgh_ < v, which together gives
. ag ag

l“f“la£+|“g’"ae< u+v,

As for a, Nf+gh\a Zz u+v, then this fact is contrary to the conclu-
e

sion that ,
lel"aa+ mglﬂa£< u+v.

This proves the inequality

F£+g(u+v)2 min(Fé(u),Fé(v))
must hold.
Now, we must consider the case Ff(u)zl, F (v)=inf a: g > vi.
It means that Sa:l”fﬂlaz ut =¢ and {a:l”glnaz vi%@. In case if
{a:i\f+gﬂaz u+vi+ g F£+g(u+v)=inf {a: "f+g"az u+v}. Now, let us
suppose the conirary again, i.e.

F£+ (u+v) < min(Ff(u),Fé(v)); then for some
age {a:l”f+g“|az u+v
a-e< F£+ (u+v)< a, < min XFé(v),l}. It means, of course,
that mglua£< v, le\Ha< u for every a€<0,1) and hé&nce Iﬂglﬂae+

+ MEW < usv. As lif+g W 2 usv then MEN  + g _ = u+v, which
ag a; ag ag

is impossible and the generalized inequality ‘must hold. Now, sup-
pose that {a: Ilf+glla 2u+vt =@. Then, by the definition F£+g(u+v)=
=1 and the generalized triangular inequality holds in a trivial
way. - .

The last possibility is the case {a:llf+g"az u+vi+ @ but

{a: £z u} = {a:llg"az v} =@. Then F£(U)=1, Fé(v)=1, too. Let
us suppose F£+ (u+v) < 1. Then thete exists a, <1 such that
F£+g(u+v)< ag<1l. As we suppose 4azllf+gHaZ u+v} is nonempty then
If+gll, 2 u+v which implies either Hf“a 2 u or “g“a Z v. This con-
clusion is of course impossible and the generalized triangular
inequality holds in this case,lggo.



We have proved that to every fe¢ S’ it is possible to assign
a function F£ such that £=0 iff F£=H,

- - . u ’
Faf(u)'Ff(m) for every u € ?1 and every Ae Rl
and the generalized triangular inequality
F£+g(u+v)z min(Fé(u),Fé(v))
holds for every f,g€S and u,v e R.
In general, F£ need not be a probability distribution func-

tion because %320 Ff(u)= e; need not be equal to one. This fact
leads us to the following definition.

Definition 4. Let S be a linear space, let T be a t-norm,
let §' be the set of all real valued nondecreasing functions defi-
ned in reals which are left continuous and ALL}QO F(u)=0,

113-5":» F(u) 21 for every Fe &', If g' is a mapping g':5—>4" such
that y
1. (x=0) <> (F'(x)=H) where H(0)=0, H(u)=1 for every u>0
F/(x)l01=0

2.;‘(Ax)[u]=;’(x)[-'Tur] for every x<S and every Ae R,

’ 3. (x+y)Lu+vl 2 T(}’(x)[u],)’(y)[vl) for every x,y €5 and
u,v €£R1

.

then the triple (S,;’,T) is called a generalized statistical line-
ar space in the sense of Menger (CSLM-space).

The definition 4 is nonempty because every SLM-space is a GSLM-
space, of course, and the dual space‘(s',?',min) to every SLM-spa-
ce (S,#,T) is a GSLM-space, too.

Theorem 5. ‘Let a SUM-space (S,%,T) be given. Then its topo-
logical dual space S  can be understood as a GSLM-space (S',J’,min)
where

}'(f)=F£(.) for feS’.

The proof of this Theorem 5 was given before. We shall try
to use the mapping ;’ in the dual space S° to introduce an analo-
gical topology to the ¢-+7 -topology. Similarly, as for the E-7 -
topology, we shall define a family of neighborhoods which forms
a base of a topology. Let & e (0,17 » >0, then the subset in s’

o'(fy, 8,7 )= {te s’:Fff_fD(q )>1-¢1

will be called an £- 7 -neighborhood of f  in §°. It is clear that

the family {U= {¢'(fo, ¢,9 ), ve (0,17 ,7 >0}, £,€5% forms a
- 121 -



base for a topology which we shall call the € -7 -topology, too.
It is clear that for every o'(f ,e,7) f e o’(f , €,7) becau-
se Fto'fo(U)=H(U):1 for u>0. For any pair o'(fo, egr 1), i=1,2

there exists such an d'(fo, € ‘qo) that

0,
'} ’, .
o'(f,, &g, ) co(f,, e, 1))Nno(f, &, 7,).

It is sufficient to put eo=min( €1, 82), 720=min( 9y 112). Fur-
ther, if c'(fn, ey 710) is given then for every ¢ = €4

nz 1, 0'(f°, t,7)c U'(fo, L ‘Qo); similarly, for every
€22y MENg q'(fo, €,7)> ér'(fot € ’lo). If
f) e o't g qo),~i.e. Ff'l_fo(‘rlo)> 1- ¢, then there exists
a"(fl, e¥,7*) such that

o’(t,, e*, pMcolt,, Bo1 By
As the function Ff'l_fa( 7o) is left continuous at 7, there ex-
ist e< €, < 1, such that
Ffl_fo('pl )>1-¢ >1- €q-

Let 0 < v’L“< Mo~ "M, €¥=€ and consider the g-7 -neighborhood

/ . 4 ’
d(fl, e* ,m*)= {feS :Ff_fl('rl*)>1- £*¥}. Let feo (f,,e%, 7%)

then F, . (m )=F. . (n -n+n)zmin(F, . (n*),F. . (5)) =
_ S ST & A A £-£,° 7% -1,
> min(l- ¢¥,1-¢) > 1- ¢, hence f ea'(to, a;, 1,0

We have proved that the system of the €-7 -neighborhoods in
S defines a topology. This topology will be called also the
e+ 7 -topology and thanks to the generalized triangular inequali-
ty Ft'+g(u+v)z,min(Ff'(u),Fg'(v)) it is no problem to prove that
every net {f .}  in s’ has at most one limit point because Fff =H
it and only if £f=0 in S . This fact proves that the € - n -topolo-
gy is a Hausdorffian topology. The generalized triangular inequ-
ality enables us to prove also that

if t‘-’ f and g .— g then f“_ *g —> f+g.

Unfortunately, it is not true that J\‘f—-» 0, in general, in this

a-n—topology if Aa-—’ 0 in reals because if ef<1 then
Aitmolla;f(ubai}’mo Fi(TT:,,—T)z €,< 1 for every u> 0.

This fact says that the e-n_—topoloﬁy in S° is not a linear topo-

logy, i.e. the operation of A.f need not be continuous in B < S"

- 122 -



Theorem 6. The £- 7-topology in the dual space (s”, ¥ min)
of a SLM-space (S,),T) is a linear topology if and only if €,=1
for every feS .

Proof. The proof is very simple. If ef=1 for every feS’,
then for every 9Ag—> 0 of reals and every £6S’

r plim, Fa t (W) aLim, Ff(TK%T)= £,=1 ,
for every u>0 and hence A f— 0 in the € -7 -topology.
If there exists, at least, one foc. S° with sf< 1 then
ad-‘fo-/-»o in the €-% -topology which cannot be a linear topology -
in such a case. Q.E.D.

Theorem 7. The ¢-7 -topology in the dual space (S',}’,min)
of a SLM-space (S,},T)_ is metrizable.

Proof. The mapping 7%f(f) is constructed using the conjuga- '
te norm “fla=sup ilf(x)l:na(x)él?, ae<0,1), fe€S . For our '
purposes we have put U fR = Il!“l_a for ae(0,1> and €.=
=sup {a: Ul < +}t . Now, we use INfll  for.the definition of
a metric in the dual space S . Let us define for every f,ge S’

Mg-ghl a
N, (f-g)= T*—m'f——g_ﬂ_a for ae<0, ef_g)
N, (f-g)=1 for a e(ef_g,l).

Using the inequality e;, . min( eg, eg) we can immediately
prove that for every ae<0,1) 'na(.) is a metric defined in S°.
Since ’na(-)él for every a&<0,1) then the integral

4
p(f;0)= jo N, (f-g) da 1T

exists and @©(f;g) is also a metric in S'. Let {f_ } be a sequence
in 8" such that @(0;f ) —> 0. As
n° m-~»oo

4’71 34. I)lfnllla
@(0,f )= fo a(f)da= fo anm:m—; da+(1- efn) for every ne N,
) £ Illfnllla
it is clear that Ep —> 1 and fa‘m = da—> 0 if n —> c0.
n na

(1F 4] g is @ nondecreasing function in <0,1) hence 'na(:) is also
a nondecreasing function in <0,1) and the convergence p(o.tn)_,
—> 0 implies that 'na(fn)-—> 0 for every a €<0,1) hence
e Ml ,—> 0 if n —>oco for every ae<0,1).

Now, let u be any positive real number, then according to
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the definition of Fg(u) <
Fg (w=inf fa: g M =zu}
- _
or

Fén(u)=1 if fa:We N 2 ut =p.

We proved that lllfnlll:_l —> 0 for aue<0,1), i.e. for every
)
a°e<0,l) and every u, >0 there exists a natural nj such that for

every nZ ng

e, W, < ug.

a o
0
It means that Fé (um)Za‘J for every nzn . The arbitrariness of

ug and of a, impTies immediately that

‘}‘i_:nw an(uo)=1.
This fact proves the convergence of {fn}:ﬂ to the null functi-
onal in S  with respect to the e-7 -topology.

Now, on the*contrary, let a sequence {fn}:=1 converge to O
in S° with respect to the €-7 -topology, i.e.

lim Fé (u)=1
n

m—» 00
for every u>0. We have for every ¢ > 0 and every u>0 there ex-
ists a natural o such that for every nzng
Ft (w>1-¢.
As follows from the definition of Ff'(~) either {a: Illfnlllaz ut-g
or inf 48:|"fn“|aZl1}>]f ¢ . It implies that
{a: Ulfnﬂla<ula<0,l-5) .

Then A{a: I"fnllla< u}>1-e (A is'the Lebesgue measure) for eve-
ry u>0 and this proves that Illfnllla ~—> 0 if n — o for every
ae<0,1). As M_(f )£1 for every n & M, thus
' 1
@ (0,f )= fa N (£ )da —0

where n —» oo and Theorem 7 is proved. Q.E.D.

Theorem B. Let a SLM-space (S,%,min) be given. Let
(S',‘;',min) be its dual space. Then the a-n-topology in
(5,7%,min) is normable if and only if

inf ey > 0.
feS’

Proof. Let (S,%,min) be given and let the e -7 -topology in
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S be normable. Then there exists such a convex neighborhood K
which is €-7 -bounded. It means that the set K must be bounded
with respect to every seminorm na(-), ae<0,1); in other words,
for every ae<0,1) there exists K, such that for every x €K,
na(x)éKa< +00 . Let £ be any continuous linear functional defi-
ned in S. The continuity of f implies that sup, [£(x)| £ Kp<+ -
Further, since K -forms a neighborhood in the ¢- 1 -topology in S,
there exists o (e, 'qo) in § such that o (¥, ‘QD)CK, £,2,0,
m,>0. It means that for every x 6 &( ¢, 75) [£(x)| £Kg, too.

As o (&g, M= {x:nl_eo(x) <n t = no{x:nl_so(x)< 1% then
for every x e{x:n; (x)<1% and feS’
o

K
sup §1f(x)]:xe {x:nl_io(x)< 133 = ,'f

<+ O
0

Further, f is continuous and by the aid-ef pefinition 3 we ob-
tain

K
e, . =sup {1£(x)|:x e 07y _ t=sup {|£(x)]:n (x)213« L
1 € } 1 €g l—ab 7o
which implies that IllfIHe < +00 for every fe S . It says that
o
€ Z €,> 0 for every fes’, i.e. 1nf{ef;fes'}>o.'

Let us suppose, vice versa, that inffeS’ Eg= 60>0. It means
that for every a €<0, €,) and every fes NNl <+ and lllfllla
is a norm in S . As for any ae<0, eo)

e = il _,=sup {|f(x)\| :nl_a(x) £l < + @

then {x:n;__(x)£ 1% must be € -7 -bounded. Further, §x:n; . (x)£1%
is an absolutely convex neighborhood of 0 in the £-7 -topology as
was shown in [11.
This € - m -boundedness proves that the g¢-7 -topology is norm-
able by a norm
lxll =inf{A > 0:n;_ (x)£ A3} =n;_o(x).  0Q.E.D.

Theorem 9. Let B be a Banach space and B~ its topological
dual space. Then B=(B,7f,min) where % (x)[u) =H(u- Il x]I) and B =
=(B,%',min) where %(£)ful =H(u- NEW) .

Proof. First, we must verify all the requirements which are
put on ¥, %' . If x=0 in B, then Ix) =0 and % (0)[ul =H(u). As
Uaxh =] A | Uxh, then H(u- WA xI)=H(u-|A| l|xll)=H(T%r ~ %)
and therefore ’}(.’7\x)[u]='}(x)[-‘—§-r]. 1f H(u- I xID=H(u) for every
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u>0 then it is possible only if x=0 hecause Ixll is a norm.
Thanks to the triangular inequality Ix+y h&lixlh + Uyl it holds that

H u+v-lx+yl) 2 min[HCu-UIx¥#) ,H(v-Ryl)].

The ssme properties can be proved for the mapping 3’. The mapping
4’ can be defined using the statistical norm of fe s’, i.e.

¥ (DOE1-3up, tr L0y, oF (295 -

c1-sup, CHOEOOL C iy wn OO i -
x3 0 U a

=H(u- I £1) because for every xe€B |t (x)|<Ux IIfh.
Q.E.D.
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