

Werk

Label: Article Jahr: 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0028 | log18

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 28.1 (1987)

LINEAR FUNCTIONALS IN SLM-SPACES J. MICHÁLEK

Abstract: This article deals with linear functionals defined on statistical linear spaces in Menger's sense (SLM-spaces). The main aim is to describe all continuous linear functionals defined on a SLM-space (S,7,T) as a SLM-space, too. For these purposes we shall define a statistical norm of a linear functional which in a simple way characterizes continuous linear functionals.

Key words: Statistical metric space, statistical linear space, t- η -topology, t-norm.

Classification: 60899

Let a SLM-space (S, \mathcal{J}, T) be given. Let S^* be a vector space

of all linear functionals defined on (S, \jmath ,T), let S´ be a linear subset S'c S* of all linear functionals continuous in the arepsilon - η topology. The basic properties of the ϵ - η -topology are given in [1], [2]. A special case of the dual space to a SLM-space is studied in [3].

Definition 1. Let a SLM-space (S, γ, T) be given, let $f \in S^*$, $f \neq 0$. A function $F_f(\cdot)$ defined by

$$F_{\mathbf{f}}(\mathbf{u}) = 1 - \sup_{\mathbf{f} \mathbf{x}: \mathbf{f}(\mathbf{x}) \neq \mathbf{0}} \{F_{\mathbf{x}}(\frac{|\mathbf{f}(\mathbf{x})|}{\mathbf{u}} + \omega F_{\mathbf{x}}(\frac{|\mathbf{f}(\mathbf{x})|}{\mathbf{u}})\} \text{ for } \mathbf{u} > 0$$

 $F_e(u)=0$ for $u \le 0$,

 $(\omega F_\chi(u)$ is the jump of $F_\chi({\:\raisebox{3.5pt}{\text{\circle*{1.5}}}})$ at u), will be called a statistical norm of the functional f. For f = 0 on S we put $F_0(u) = H(u)$ where H(u)=0 for $u \le 0$ and H(u)=1 otherwise.

Properties of the statistical norm:

1. Let $0 < u_1 \le u_2$ then $\frac{|f(x)|}{u_1} \ge \frac{|f(x)|}{u_2}$ for every $x \in S$. It implies that for every x with $f(x) \neq 0$ 1- $\{F_x(\frac{|f(x)|}{u_1}) + \omega F_x(\frac{|f(x)|}{u_2})\} \le 1$ - $\{F_x(\frac{|f(x)|}{u_2}) + \omega F_x(\frac{|f(x)|}{u_2})\}$

$$1 - \{F_{x}(\frac{|f(x)|}{u_{1}}) + \omega F_{x}(\frac{|f(x)|}{u_{1}})\} \le 1 - \{F_{x}(\frac{|f(x)|}{u_{2}}) + \omega F_{x}(\frac{|f(x)|}{u_{2}})\}$$

and hence $F_f(u_1) \neq F_f(u_2)$. The statistical norm of $f \in S^*$ is a non-decreasing function in reals. Further, it is evident that $0 \neq F_f(u) \neq 0$ for every $u \in \mathcal{R}_1$.

- 2. The function $F_f(\cdot)$ has at most a countable number of discontinuity points and at every point the limits at the left and at the right exist.
- 3. In general, it is not true that $\lim_{u\to\infty} F_f(u)=1$. In every case, of course, $\lim_{u\to\infty} F_f(u)$ exists and $\lim_{u\to\infty} F_f(u) \leq 1$.
- 4. If $F_f(u)=H(u)$ for every $u\in \Re_1$, then f(x)=0 for every $x\in S$.
- 5. In case of such a SLM-space (S, \mathcal{J} ,T) where $\omega F_{\chi}(0)$ =0 for every x ± 0 the statistical norm F_f can be expressed in the form

$$F_{\mathbf{f}}(\mathbf{u}) = 1 - \sup_{\mathbf{x} \neq \mathbf{0}} \left\{ F_{\mathbf{x}}(\frac{|\mathbf{f}(\mathbf{x})|}{\mathbf{u}}) + \omega F_{\mathbf{x}}(\frac{|\mathbf{f}(\mathbf{x})|}{\mathbf{u}}) \right\}, \text{ too.}$$

Definition 2. A functional $f \in S^*$ is said to be bounded with respect to the statistical norm if

$$\lim_{u\to\infty} F_{\mathbf{f}}(u) > 0.$$

Theorem 1. A functional $f \in S^*$ is bounded with respect to the statistical norm if and only if f is continuous in the ϵ - η -topology.

Proof. Let $f \in S^*$ and let f be bounded with respect to the statistical norm. As f is linear it is sufficient to prove its continuity at the null vector in S. Assuming $\lim_{u \to \infty} F_f(u) = \varepsilon_0 > 0$ then

 $\lim_{u\to\infty}\sup_{\{x:\,f(x)\to 0\}}\sup_{x}(\frac{|f(x)|}{u})+\omega F_{x}(\frac{|f(x)|}{u})\}=1-\varepsilon_{0} \text{ and hence for every } x,|f(x)|>0, \lim_{u\to\infty}\{F_{x}(\frac{|f(x)|}{u})+\omega F_{x}(\frac{|f(x)|}{u})\}\not=1-\varepsilon_{0}. \text{ Let } \{x_{n}\}_{n=1}^{\infty}\text{ be any sequence in S, } x_{n}\neq 0\text{ for every n } \varepsilon\text{ n and } x_{n}\to 0\text{ in the } \varepsilon-\eta\text{-topology}. \text{ It is clear that for every n } \varepsilon\text{ n}$

$$\lim_{\substack{u\to\infty}}\big\{\mathsf{F}_{\mathsf{X}_{\mathsf{D}}}(\frac{\left|\mathsf{f}(\mathsf{X}_{\mathsf{D}})\right|}{\mathsf{u}})+\omega\mathsf{F}_{\mathsf{X}_{\mathsf{D}}}(\frac{\left|\mathsf{f}(\mathsf{X}_{\mathsf{D}})\right|}{\mathsf{u}})\big\}=\omega\mathsf{F}_{\mathsf{X}_{\mathsf{D}}}(0) \not\leq 1-\varepsilon_{0}.$$

Let us suppose that $|f(x_n)| \not\longrightarrow 0$. Then there exist such an $\epsilon_1 > 0$ and such a subsequence $\{x_n\}_{k=1}^\infty \subset \{x_n\}_{n=1}^\infty$ that

$$|f(x_{n_k})| \ge \varepsilon_1$$
 for every $k \in \mathcal{N}$.

Hence
$$F_{x_{n_k}}(\frac{|f(x_{n_k})|}{u}) + \omega F_{x_{n_k}}(\frac{|f(x_{n_k})|}{u}) \ge F_{x_{n_k}}(\frac{\varepsilon_1}{u}) + \omega F_{x_{n_k}}(\frac{\varepsilon_1}{u})$$

also for every $k \in \mathcal{N}$ and it implies that for every u > 0

for every
$$k \in \mathcal{H}$$
 and it implies that for every $k \in \mathcal{H}$ and it implies that for every $k \in \mathcal{H}$ and it implies that for every $k \in \mathcal{H}$ and it implies that for every $k \in \mathcal{H}$ and it implies that for every $k \in \mathcal{H}$ and it implies that for every $k \in \mathcal{H}$ and it implies that for every $k \in \mathcal{H}$ and it implies that for every $k \in \mathcal{H}$ and it implies that for every $k \in \mathcal{H}$ and it implies that for every $k \in \mathcal{H}$ and it implies that $k \in \mathcal{H}$ an

But as follows from the properties of the supremum

But as follows from the properties of the separate
$$\{f(x_{n_k}) | \{f(x_{n_k}) | \{f(x_n) |$$

for every $k \in \mathcal{N}$ and therefore

 $\sup_{\{x:f(x)\neq 0\}} f_{X}(\frac{|f(x)|}{u}) + \omega F_{X}(\frac{|f(x)|}{u}) = 1 \text{ for every } u > 0.$

$$\sup_{\{x:f(x)\neq 0\}} f(x) = 0$$
 This last equality is contrary to the assumption that
$$\lim_{u\to\infty} \sup_{\{x:f(x)\neq 0\}} \{F_x(\frac{|f(x)|}{u}) + \omega F_x(\frac{|f(x)|}{u})\} = 1 - \epsilon_0 < 1.$$

This result implies that fe S* must be continuous in the $\epsilon\text{-}\, \gamma\,\text{-to-}$ pology.

Let us suppose, on the contrary, that fe S' is not bounded with respect to the statistical norm, i.e. for every u>0

$$\sup_{\{x:f(x)\neq 0\}} \{F_{\chi}(\frac{|f(x)|}{u}) + \omega F_{\chi}(\frac{|f(x)|}{u})\} = 1.$$

As f is a linear functional, Definition 1 implies that for arbitrarily chosen k > 0

$$F_{\mathbf{f}}(\mathbf{u}) = 1 - \sup_{\{x \in \mathbf{f}(\mathbf{x})\} = \mathbf{k}_{\mathbf{x}}} \{F_{\mathbf{x}}(\frac{\mathbf{k}}{\mathbf{u}}) + \omega F_{\mathbf{x}}(\frac{\mathbf{k}}{\mathbf{u}})\}, \text{ too.}$$

 $F_{\mathbf{f}}(\mathbf{u})=1-\sup_{\{\mathbf{x}:\mathbf{t}(\mathbf{f}(\mathbf{x}))=\mathbf{k}\}}\{F_{\mathbf{x}}(\frac{\mathbf{k}}{\mathbf{u}})+\omega F_{\mathbf{x}}(\frac{\mathbf{k}}{\mathbf{u}})\}, \text{ too.}$ Further, \mathbf{f} is continuous and hence $|\mathbf{f}(\mathbf{x})| \leq \mathbf{k}_0$ in an $\epsilon-\eta$ -neighborhood $\mathcal{O}(\epsilon_0,\eta_0)$. Now, let $\mathbf{u}_n \not\to +\infty$, $\epsilon_n \searrow 0$. Then for every $\mathbf{n} \in \mathcal{N}$ there exists $\mathbf{y}_n \in S$ where $|\mathbf{f}(\mathbf{y}_n)| = \mathbf{k}$ and therefore $\mathbf{y}_n \not\to 0$ in the $\epsilon-\eta$ -topology but

topology but
$$1-\varepsilon < \sup_{\{x:f(x)\neq 0\}} \{F_{x}(\frac{|f(x)|}{u_{n}}) + \omega F_{x}(\frac{|f(x)|}{u_{n}})\} \leq F_{y_{n}}(\frac{|f(y_{n})|}{u_{n}}) +$$

$$+\omega F_{y_{n}^{\star}}(\frac{\left|f(y_{n})\right|}{u_{n}^{\star}})^{+} \epsilon_{n} \leq \epsilon_{n}^{+}F_{y_{n}^{\star}}(\frac{k}{u_{n}^{\star}})^{+} \omega F_{y_{n}^{\star}}(\frac{k}{u_{n}^{\star}}) \leq$$

$$\leq \varepsilon_n + F_{y_n} (\frac{k}{u_n} + \sigma'_n)$$
 where $\sigma'_n \geq 0$.

It implies that $1-(\varepsilon+\varepsilon_n) < F_{y_n}(\frac{k}{u_n} + \sigma_n')$, i.e. $y_n \in O'(\varepsilon+\varepsilon_n, \frac{k}{u_n} + \sigma_n')$ (for every $n \in \mathcal{N}$) and we have proved that $y_n \longrightarrow 0$ in the $\mathfrak{t}-\eta$ -topology. This result, of course, is in contradiction to the continuity of the functional f at the null vector in S. Q.E.D.

Let a SLM-space (S, \(\mathcal{J}, \) be given. Let a \(\epsilon \) (0,1) and let us define $n_a(x) = \inf\{ \lambda > 0 : F_\chi(\lambda) > a \}$. If x=0 then $n_a(0) = 0$ for every a \(\epsilon \) (0,1). On the contrary, if $n_a(x) = 0$ for every a \(\epsilon \) (0,1) then x=0 in S because x=0 if and only if $F_\chi(u) = H(u)$ for every $u \in \mathcal{R}_1$. At the first sight it is clear that $n_a(\lambda x) = |\lambda| n_a(x)$ for every $\lambda \in \mathcal{R}_1$ and x \(\epsilon S \). Unfortunately, it is not true that $n_a(x+y) \not = n_a(x) + n_a(y)$ for every pair x,y \(\epsilon S \) in (S,\(\mathcal{J}, \mathcal{J}) besides the strongest t-norm T(a,b) = \min(a,b). Nevertheless, we can define for every f \(\epsilon S^* \) and every a \(\epsilon \) (0,1)

$$\|f\|_{a} = \sup \{|f(x)| : n_{a}(x) \le 1\}.$$

Let us denote $\mathcal{O}_a = \{x \in S : n_a(x) \leq 1\}$. From the definition of $n_a(\cdot)$ it follows that when $a \leq b$, then $n_a(x) \leq n_b(x)$ for every $x \in S$ and hence $\mathcal{O}_a \supset \mathcal{O}_b$. Further, we immediately obtain that $\|f\|_a \geq \|f\|_b$ if $a \leq b$. We also see that for every real λ

 $\|\lambda f\|_a = |\lambda| \|f\|_a$ for every $a \in (0,1)$ and

every $f \in S^{\textstyle *}.$ We can prove, in an easy way, the triangular inequality

for every f,g \in S* and every a \in $\{0,1\}$ because we know that $\sup_{\mathbf{x}} \{|\mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})|\} \leq \sup_{\mathbf{x}} \{|\mathbf{f}(\mathbf{x})|\} + \sup_{\mathbf{x}} \{|\mathbf{g}(\mathbf{x})|\}$. If $\mathbf{\sigma} \in$ S* is the null functional in S ($\mathbf{O}'(\mathbf{x}) = 0$ for every $\mathbf{x} \in S$), then surely $\|\mathbf{\sigma}\|_a = 0$ for every a \in $\{0,1\}$. On the contrary, let us suppose that $\|\mathbf{f}\|_a = 0$ for every a \in $\{0,1\}$. This assumption implies that $\mathbf{f}(\mathbf{x}) = 0$ for every $\mathbf{x} \in \mathbf{O}_0 = \{\mathbf{x} \in S : \mathbf{n}_0(\mathbf{x}) \leq 1\}$. Since for every $\mathbf{x} \in S$ there exists such a vector $\mathbf{y} \in \mathbf{O}_a$, $\mathbf{y} = \lambda \mathbf{x}$, we obtain that $\mathbf{f}(\mathbf{x}) = 0$ for every $\mathbf{x} \in S$. We can prove a stronger statement even that $\|\mathbf{f}\|_a = 0$ implies $\mathbf{f}(\mathbf{x}) = 0$ for every $\mathbf{x} \in S$. The assumption $\|\mathbf{f}\|_a = 0$ gives that $\mathbf{f}(\mathbf{x}) = 0$ for every $\mathbf{x} \in \mathbf{O}_a = \{\mathbf{x} \in S : \mathbf{n}_a(\mathbf{x}) \leq 1\}$. Let $\mathbf{x}_0 \in S$, $\mathbf{n}_a(\mathbf{x}_0) \geq 1$.

So, $y_0 = \frac{x_0}{n_a(x_0)} \in O_a$ and hence $f(y_0) = 0$. It implies that also $f(x_0) = 0$

=0 and it yields together that f(x)=0 for every $x \in S$. The proved results lead us to the formulation of the following definition.

Definition 3. Let a SLM-space (S, \mathfrak{F} ,T) be given. Let f be a linear functional in (S, \mathfrak{F} ,T), let a \in $\{0,1\}$. Then the number $\|f\|_{a} = \sup \{|f(x)|: n_{a}(x) \neq 1\}$

where $n_a(x)=\inf\{\lambda>0:F_{\chi}(\lambda)>a\}$ will be called a conjugate norm to $n_a(\cdot)$.

The conjugate norm $\|f\|_a$ can assign the infinite value, too. $\|f\|_a$ is defined in $\{0,1\}$, is nonincreasing and we put $\|f\|_1 = \inf \{\|f\|_a : a < 1\}$. As for every x \in S the corresponding probability distribution function F_x is left continuous, then for every x \in S $n_a(x)$ as a function in the argument a in $\{0,1\}$ is right continuous.

Theorem 2. Let f be a linear functional defined in a SLM-space (S, \mathcal{J}, T) . f is continuous in the ε - η -topology if and only if there exists a $\varepsilon < 0$, 1) such that

Proof. Let us suppose that $\|f\|_a < +\infty$ for $a_0 \in (0,1)$. As $\|f\|_a$ is nonincreasing in (0,1), then $\|f\|_a < +\infty$ for every $a \in (a_0,1)$, $\|f\|_1 = \inf_{a < 1} \|f\|_a$. From the definition of the conjugate norm $\|f\|_a$ it follows that for every $x \in \mathcal{O}_{a_0} = \{x : n_{a_0}(x) \neq 1\}$ $|f(x)| \leq \|f\|_{a_0}$. Since $n_{a_0}(x) < 1$ iff $F_x(1) > a_0$, we see that the functional $f(\bullet)$ is bounded in the $\epsilon - \eta$ -neighborhood $\mathcal{O}(a_0,1)$ and hence f is continuous in the $\epsilon - \eta$ -topology.

On the contrary, let us suppose that f is a continuous linear functional in the ε - η -topology. Let us suppose that $\|f\|_a = +\infty$ for every a ε <0,1). This assumption implies that for every n ε $\mathcal N$ there exists $x_n \in S$ such that $|f(x_n)| > n$ and $x_n \in \mathcal O_{a_n}$, $a_n \nearrow 1$. If we put $y_n = \frac{x_n}{n}$, then $|f(y_n)| = \frac{|f(x_n)|}{n} > 1$ for every n and $y_n \in \frac{1}{n}$ $\mathcal O_{a_n} = \frac{1}{n} \{x \in S: n_{a_n}(x) \le 1\} = \{x \in S: n_{a_n}(x) \le \frac{1}{n} \}$ and hence $y_n \longrightarrow 0$ in the ε - η -topology although $|f(y_n)| > 1$. It is impossible because we assumed continuity of the functional f at the null vector in S. Q.E.D.

At the beginning of our considerations we defined the statistical norm of a linear functional defined in a SLM-space (S,J,T). At this situation a natural question arises about the relation between the statistical norm F_f and the conjugate norm $\|f\|_a$ in case of a continuous linear functional defined in S. For this purpose let us put $a_0 = \inf \{a: \|f\|_a < +\infty \}$ in case of a continuous functional f and $\|f\|_1 = \inf_{a < 1} \|f\|_a$. By these relations we

defined a nonincreasing function $\|f\|_a$ in the interval $\langle a_0, 1 \rangle$ with finite values in $(a_0, 1 \rangle$. It is clear that $\|\|f\|\|_a = \|f\|_{1-a}$, a $\in \langle 0, 1-a_0 \rangle$ is a nondecreasing function in $\langle 0, 1-a_0 \rangle$.

Now, let $\lambda \ge 0$ and let us define

$$\begin{split} \widetilde{\mathsf{F}}_{\mathbf{f}}(\lambda) &= \inf \left\{ a > 0 \colon |||\mathbf{f}|||_{a} \geq \lambda \right\} & \text{if } \left\{ a > 0 \colon |||\mathbf{f}|||_{a} \geq \lambda \right\} \neq \emptyset \\ \widetilde{\mathsf{F}}_{\mathbf{f}}(\lambda) &= 1 & \text{if } \left\{ a > 0 \colon |||\mathbf{f}|||_{a} \geq \lambda \right\} = \emptyset. \end{split}$$

In this way we obtain a nondecreasing function defined in $(0,+\infty)$ which is left continuous, $\lim_{\lambda \to \infty} \widetilde{F}_f(\lambda) = 1 - a_0$. Let us put $\mathfrak{E}_f = \lim_{\lambda \to \infty} \widetilde{F}_f(\lambda)$.

Theorem 3. For every continuous linear functional f defined in a SLM-space (S, \mathfrak{J} ,T) the function $\widetilde{\mathsf{F}}_{\mathbf{f}}$ defined above is a nondecreasing left continuous real valued function in $(0,\infty)$ with $\lim_{\Delta\to\infty}\widetilde{\mathsf{F}}_{\mathbf{f}}(\lambda)=1-\mathsf{a}_0\leq 1$ and $\widetilde{\mathsf{F}}_{\mathbf{f}}(0)=0$.

Proof. As $\|f\|_a = \|f\|_{1-a}$ in $\langle 0, 1-a_0 \rangle$ is a nondecreasing function then $\{a>0: \|\|f\|\|_a \ge \lambda_1^{\frac{1}{2}} \Rightarrow \{a>0: \|\|f\|\|_a \ge \lambda_2^{\frac{1}{2}}$ for every pair $\lambda_1 \le \lambda_2$ and hence $\widetilde{F}_f(\lambda_1) \le \widetilde{F}_f(\lambda_2)$. Let $\lambda > 0$ be fixed and let us consider $\lambda_n \nearrow \lambda_i$ surely $\sup_n \widetilde{f}_f(\lambda_n) \ne \widetilde{f}_f(\lambda)$. From the definition of $\widetilde{f}_f(\lambda)$ we know that for every $\varepsilon > 0$ there exists $a_n > 0$ $\lambda_n \leq \lambda_{n+1}$ for every n 6 $\mathcal N$ we can choose $\mathbf a_n$ in the same way, $\mathbf a_n \leq \mathbf a_n$ The function $\|\|f\|\|_a$ is nondecreasing, hence $\lim_{n\to\infty} \widetilde{\mathbb{F}}_f(\lambda_n) \geq a_+ - \varepsilon$. then $\|\|f\|\|_a \ge \lambda$ which implies that $\widetilde{F}_f(\lambda) \ne a_+$. In this way we have proved that $\lim_{n \to \infty} \widetilde{F}_f(\lambda_n) = \widetilde{F}_f(\lambda)$ and hence $\widetilde{F}_f(\cdot)$ is left contin uous in $(0,+\infty)$ at those points $\lambda \in (0,+\infty)$ where {a: $\|\|f\|\|_a$ ≥ λ } \neq \emptyset . It lasts to prove the left continuity at that $\lambda \in (0, +\infty)$ where $\{a: \|\|f\|\|_a \ge \lambda\} = \emptyset$. Let $\lambda_n \nearrow \lambda$ and $\{a: \|\|f\|\|_a \ge \lambda\} = \emptyset$. If, at least for one $n_0 \in \mathcal{N} \{a: \|\|f\|\|_a \ge \lambda_{n_0} \}$ is empty, too, then by the definition of $\tilde{F}_f(\cdot)$ $\tilde{F}_f(\lambda_n)=1$ and hence $\widetilde{F}_{f}(\cdot)$ is left continuous at λ . Let us suppose that for every $n \in \mathcal{N}$ $\{a : |||f|||_a \ge \lambda_n\}$ is nonempty, i.e. for every λ_n there exists $a_n \in (0,1-a_0)$ such that $\|\|f\|\|_{a_{\underline{a}}} \ge \lambda_n$. Since $\|\|f\|\|_{a}$ is nondecreasing in $(0,1-a_0)$ we can choose {an} as a nondecreasing sequence, too; lim an=a. Hence $\lim_{m\to\infty}$ $\|\|f\|\|_{a_{+}}$ and $\|\|f\|\|_{a_{+}} \ge \lambda$ but it means that the set $\{a: \|\|f\|\|_a \geq \lambda\}$ is nonempty which is contrary to the assumption. So, a number $n_0 \in \mathcal{N}$ must exist such that $\{a : \|\|f\|\|_a \ge \lambda_0\} = \emptyset$

and $\widetilde{F}_{\mathfrak{s}}(\cdot)$ is left continuous at λ .

Theorem 4. Let f be a linear continuous functional defined in a SLM-space (S, γ ,T). Then the statistical norm F $_{\mathbf{f}}(\cdot)$ and $\widetilde{\mathsf{F}}_{\mathbf{f}}(\cdot)$ are equal at all points.

Proof. First we shall prove the implication $F_f(u) < a \implies \|\|f\|\|_a \ge u$.

Let a ϵ (0,1) and u > 0 be such that F $_{\mathbf{f}}$ (u) \prec a. By the definition $F_f(u) < a$ implies

$$\sup_{\{x: \|f(x)\| \neq 0\}} \{F_{X}(\frac{|f(x)|}{u}) + \omega F_{X}(\frac{|f(x)|}{u})\} > 1 - a.$$

It means there exists $x_0 \in S$ with $f(x_0) \neq 0$ such that,

$$F_{X_0}(\frac{|f(x_0)|}{u}) + \omega F_{X_0}(\frac{|f(x_0)|}{u}) > 1-a.$$

Then we can state by means of $n_{1-a}(x_0)=\inf\{\lambda>0:F_{x_0}(\lambda)>1-a\}$

$$\alpha_{1-a}(x_0) \leq \frac{|f(x_0)|}{u}$$

 $\mathfrak{m}_{1-a}(x_0) \leq \frac{|f(x_0)|}{u}$ Now if we put $z_0 = \frac{ux_0}{|f(x_0)|}$ then $\mathfrak{m}_{1-a}(z_0) \leq 1$, $|f(z_0)| = u$ and hence

$$\|f\|_{1-a} = \sup \{|f(z)| : a_{1-a}(z) \le 1\} \ge u$$
.

It proves: if $F_f(u) < a$ then $\|\|f\|\|_a \ge u$. This implication can be expressed in the following form

Now, let us prove the opposite implication

$$F_f(u) \ge a \Rightarrow \|\|f\|\|_a \le u$$
.

Let a $\epsilon \langle 0,1 \rangle$ and u > 0 be such that $F_{\hat{I}}(u) \geq a$, i.e.

$$\sup_{\{x: f(x)\neq 0\}} \{F_{\chi}(\frac{|f(x)|}{u}) + \omega F_{\chi}(\frac{|f(x)|}{u})\} \neq 1-a.$$

This implies that $F_{x}(\frac{|f(x)|}{u}) \le 1-a$ if $f(x) \ne 0$.

The definition of $\mathbf{n}_{1-\mathbf{a}}(\cdot)$ and the monotony of $\mathbf{F}_{\mathbf{X}}$ give

$$\frac{|f(x)|}{u} \angle u_{1-a}(x).$$

The last inequality holds for f(x)=0 of course, too. It means the inequality $|f(x)| \le u$ must hold for every $x \in S$ satisfying $n_{1-a}(x) \le u$ \leq 1. The definition of $\|f\|_{1-a}$ gives immediately that

We proved the implications

{a: $|||f|||_a > u$ } c {a: $F_f(u) < a$ } c {a: $|||f|||_a \ge u$ }.

Further, if ε is any positive number, then $\{a:F_f(u)< a\}\subset \{a:\|f\|\|_a\geq u\}\subset \{a:\|f\|\|_a>u-\varepsilon\}\subset \{a:F_f(u-\varepsilon)< a\}$.

Now, by means of the definition of $\widetilde{\mathbf{F}}_{\mathbf{f}}$ we obtain

$$F_f(u-\varepsilon) \leq \widetilde{F}_f(u) \leq F_f(u)$$

and the left semicontinuity of $\mathbf{F}_{\mathbf{f}}$ gives that

$$F_f(u) = \widetilde{F}_f(u)$$
.

In case {a: $|||f|||_a \ge u$ } =0 we have also {a: $F_f(u) < a$ } =0 and thus $F_f(u) = \widetilde{F}_f(u) = 1$. Q.E.D.

We have not so far mentioned the existence of a nontrivial continuous linear functional in a SLM-space (S, γ ,T). In every SLM-space (S, γ ,T) the trivial continuous linear functional 0 exists, 0(x)=0 for every x ϵ S. The existence of a nontrivial continuous functional is closely connected with the strongest locally convex topology which is weaker than the ϵ - γ -topology. The collection of all convex circled neighborhoods of 0 in the ϵ - γ -topology forms a base for such a locally convex topology. In case of a SLM-space (S, γ ,T) with t-norm M(a,b)=min(a,b) every ϵ - γ -neighborhood is convex and circled and hence the topological dual space S´ is sufficiently rich in continuous linear functionals. In case of the space (S, γ ,M) we know, further, that for every a ϵ (0,1) the number

$$n_a(x)=\inf\{\lambda>0:F_{\chi}(\lambda)>a\}$$

is a seminorm in S and in case of continuity at 0 of F_x for every $x \neq 0$ $n_a(\cdot)$ is a norm even for every a $\epsilon(0,1)$. But without any assumption about a form of t-norm T in a SLM-space (S,γ,T) we can prove that the conjugate norm

$$\|f\|_{a} = \sup \{|f(x)|; n_{a}(x) \le 1\}, a \in (0,1)$$

has properties similar to a norm because $\|0\|_a = 0$ for every $a \in (0,1)$, if $\|f\|_a = 0$ then f = 0 in S, $\|\lambda f\|_a = |\lambda| \|f\|_a$ for any $\lambda \in \mathcal{R}_1$ if $\|f\|_a < +\infty$ and $\|f+g\|_a < \|f\|_a + \|g\|_a$ for every $a \in (0,1)$ if $\|f\|_a < +\infty$, $\|g\|_a < +\infty$. Using the conjugate norm we constructed the function \widehat{f}_f for every continuous linear functional f in

S where $\widetilde{F}_f(\cdot)$ is defined in $(0,+\infty)$, nondecreasing and left continuous with $\lim_{M\to\infty} \widetilde{F}_f(u) = \epsilon_f$, $\epsilon_f \in (0,1)$. Let us construct a mapping

 $\mathfrak{J}':S' \to \mathfrak{F}'$, $\mathfrak{J}'(f)(u)=F'_f(u)=\begin{cases} 0 & u \neq 0 \\ \widetilde{F}_f(u) & \text{for } u > 0 \end{cases}$

where S´ is the topological dual space of S, ${m {\mathcal G}}'$ is the set of all left continuous condecreasing functions defined in ${\mathcal R}_{i}$ with nonnegative values less or equal to 1.

If f=0, then NfNa=0 for every a 6 <0,1) and WfMa=0 for (0,1), too, which implies that $F_0'(u)=H(u)$ for every u. If $\tilde{F}_{f}(u)=1$ for every u>0, $\|f\|_{a}<+\infty$ for $a\in\{0,1-a_{0}\}$, and therefore $\tilde{f}_{f}(u) < 1-a_{0}$ but it is impossible. It implies that $Hif M_{a} < +\infty$ in (0,1). Let us suppose that for every u>0 there exists $a_0 \in (0,1)$ such that $\| \| f \|_{a_0} \ge u$. As follows from the definition of $\tilde{F}_{f}(u)$ in this case $\widetilde{\mathsf{f}}_{\mathbf{f}}(\mathsf{u}) \not= \mathsf{a}_{\mathsf{o}} < \mathsf{l}$, and it is also impossible. It means that $\{a: \|\|f\|\|_a \ge u > 0\}$ is empty and the only possibility is that $\|\|f\|\|_a = u$ =0. This fact implies that f=0 in S. Let λ be any real number and f any continuous linear functional in S. Then for every a & ϵ (0,1) with $\|\|f\|\|_a < +\infty$ $\|\|\lambda f\|\|_a = |\lambda| \|\|f\|\|_a$ and for $\lambda \neq 0$

 $\{a: \||\lambda f|\|_{a} \ge u\} = \{a: \||f||_{a} \ge \frac{u}{|\lambda|}\}$ and hence $F_{\lambda f}(u) = F_{f}(\frac{u}{|\lambda|})$. In case $\lambda=0$ we have $\lambda f=0$ and $F_{\lambda f}(u)=H(u)$ and if we put $F_{f}(\frac{u}{0})=$ =H(u) for every u>0 then $F_f(\frac{u}{|0|})$ =H(u) for every u>0. Let us prove the generalized triangular inequality given by the t-norm T(a,b)=min(a,b), i.e.

$$F'_{f+g}(u+v) \ge \min(F'_{f}(u),F'_{g}(v)).$$

Surely, it is possible to consider the case u > 0, v > 0 only. The functionals f, g are continuous and for f there exists such a number $\varepsilon_f > 0$ that $\|\|f\|\|_a < +\infty$ in $(0, \varepsilon_f)$, similarly for g, $\|\|g\|\|_a < \infty$ $<+\infty$ in <0, ε_0). It follows that for every

a
$$\epsilon \langle 0, \min(\epsilon_f, \epsilon_g) \rangle$$

 $\|\|f + g\|\|_a \leq \|\|f\|\|_a + \|\|g\|\|_a .$

{a: Mf ||| a ≥ u } ≠ Ø ≠ {a: ||| g ||| a ≥ v }

and $\{a: \|\|f+g\|\|_a \ge u+v \} c \{a: \|\|f\|\|_a + \|\|g\|\|_a \ge u+v \}$ as well. Now, let us suppose that

$$F_{f+g}(u+v) < \min(F_f(u), F_g(v)).$$

It means that there exists such a number $a_{\epsilon} \ge 0$ that $a_{\epsilon} \in \{a: \|\|f+g\|\|_a \ge u+v\} \quad a_{\epsilon} - \varepsilon < F_{f+g}(u+v) < a_{\epsilon} < \min(F_f(u),F_g(v)).$ Then for every $a \ge \min(\inf \{a: \|\|f\|\|_a \ge u\}, \inf \{a: \|\|g\|\|_a \ge v\})$

It means that $\|\|f\|\|_{a_{\epsilon}} < u$, $\|\|g\|\|_{a_{\epsilon}} < v$, which together gives

$$\|\|f\|\|_{a_{\varepsilon}} + \|\|g\|\|_{a_{\varepsilon}} < u+v.$$

As for $a_{\epsilon} = \|\|f + g\|\|_{a_{\epsilon}} \ge u + v$, then this fact is contrary to the conclusion that

This proves the inequality

$$F_{f+g}(u+v) \ge \min(F_{f}(u), F_{g}(v))$$

must hold.

Now, we must consider the case $F_f(u)=1$, $F_g(v)=\inf\{a:\|\|g\|\|_a\geq v\}$. It means that $\{a:\|\|f\|\|_a\geq u\}=\emptyset$ and $\{a:\|\|g\|\|_a\geq v\}\neq\emptyset$. In case if $\{a:\|f+g\|_a\geq u+v\}\neq\emptyset$ $F_{f+g}(u+v)=\inf\{a:\|f+g\|_a\geq u+v\}$. Now, let us suppose the contrary again, i.e.

 $F_{f+g}^{'}(u+v) < \min(F_{f}^{'}(u),F_{g}^{'}(v)); \text{ then for some } a_{\epsilon} \in \{a\colon |||f+g|||_{a}^{\succeq} u+v\}$

 $a_{\varepsilon} - \varepsilon < F_{f+g}(u+v) < a_{\varepsilon} < \min \{F_g'(v), l\}. \text{ It means, of course,}$ that $\|g\|\|_{a_{\varepsilon}} < v$, $\|\|f\|\|_{a} < u$ for every $a \in (0,1)$ and hence $\|\|g\|\|_{a_{\varepsilon}} + \|\|f\|\|_{a_{\varepsilon}} < u+v$. As $\|\|f+g\|\|_{a_{\varepsilon}} \ge u+v$ then $\|\|f\|\|_{a_{\varepsilon}} + \|\|g\|\|_{a_{\varepsilon}} \ge u+v$, which is impossible and the generalized inequality must hold. Now, suppose that $\{a: \|f+g\|_{a} \ge u+v\} = \emptyset$. Then, by the definition $F_{f+g}(u+v) = 1$ and the generalized triangular inequality holds in a trivial way.

The last possibility is the case {a: $\|f+g\|_a \ge u+v\} \neq \emptyset$ but {a: $\|f\|_a \ge u\} = \{a: \|g\|_a \ge v\} = \emptyset$. Then $F_f(u)=1$, $F_f(v)=1$, too. Let us suppose $F_{f+g}(u+v) < 1$. Then there exists $a_e < 1$ such that $F_{f+g}(u+v) < a_e < 1$. As we suppose $f_a: \|f+g\|_a \ge u+v\}$ is nonempty then $\|f+g\|_{a_e} \ge u+v$ which implies either $\|f\|_{a_e} \ge u$ or $\|g\|_{a_e} \ge v$. This conclusion is of course impossible and the generalized triangular inequality holds in this case, too.

We have proved that to every $f\in S^{'}$ it is possible to assign a function $F_f^{'}$ such that f=0 iff $F_f^{'}\text{=}H,$

 $\textbf{F}_{\lambda f}^{'}(\textbf{u}) = \textbf{F}_{f}^{'}(\frac{\textbf{u}}{|\lambda|}) \text{ for every } \textbf{u} \in \mathfrak{R}_{1} \text{ and every } \lambda \in \mathfrak{R}_{1}$ and the generalized triangular inequality

$$F'_{f+g}(u+v) \ge \min(F'_{f}(u), F'_{g}(v))$$

holds for every f,g \in S´ and u,v \in \Re .

In general, F $_f^{'}$ need not be a probability distribution function because $\lim_{n\to\infty}$ F $_f(u)$ = e $_f$ need not be equal to one. This fact leads us to the following definition.

Definition 4. Let S be a linear space, let T be a t-norm, let \mathcal{F}' be the set of all real valued nondecreasing functions defined in reals which are left continuous and $\lim_{n\to\infty} F(u)=0$, $\lim_{n\to\infty} F(u) \leq 1$ for every $F \in \mathcal{F}'$. If \mathcal{J}' is a mapping $\mathcal{J}': S \to \mathcal{F}'$ such that

- 1. $(x=0) \iff (\mathcal{J}'(x)=H)$ where H(0)=0, H(u)=1 for every u>0 $\mathcal{J}'(x)[0]=0$
- 2. $\gamma'(\lambda x)[u] = \gamma'(x)[\frac{u}{|\lambda|}]$ for every $x \in S$ and every $\lambda \in \mathcal{R}_1$
- 3. $\gamma'(x+y)[u+v] \ge T(\gamma'(x)[u], \gamma'(y)[v])$ for every $x,y \in S$ and $u,v \in \mathcal{R}_1$

then the triple (S, \jmath' , T) is called a generalized statistical linear space in the sense of Menger (GSLM-space).

The definition 4 is nonempty because every SLM-space is a GSLM-space, of course, and the dual space (S', γ', \min) to every SLM-space (S, γ, T) is a GSLM-space, too.

Theorem 5. Let a SLM-space (S, γ ,T) be given. Then its topological dual space S´ can be understood as a GSLM-space (S´, γ ',min) where

$$\gamma'(f)=F_f(.)$$
 for $f \in S'$.

The proof of this Theorem 5 was given before. We shall try to use the mapping \mathfrak{F}' in the dual space S´ to introduce an analogical topology to the \mathfrak{e} - η -topology. Similarly, as for the \mathfrak{e} - η -topology, we shall define a family of neighborhoods which forms a base of a topology. Let \mathfrak{e} \mathfrak{e} (0,1), $\eta>0$, then the subset in S´

$$\sigma'(f_0,\epsilon,\eta) = \{f \in S' : F_{f-f_0}(\eta) > 1 - \epsilon\}$$

will be called an ε - η -neighborhood of f_0 in S´. It is clear that the family $\{\mathcal{U} = \{\sigma'(f_0, \widetilde{\varepsilon}, \eta), \varepsilon \in (0, 1), \eta > 0\}, f_0 \in S`\}$ forms a -121 -

base for a topology which we shall call the ε - η -topology, too. It is clear that for every $\sigma'(f_0, \varepsilon, \eta)$ $f_0 \varepsilon \sigma'(f_0, \varepsilon, \eta)$ because $f_0^f_0(u)=H(u)=1$ for u>0. For any pair $\sigma'(f_0,e_i,\eta_i)$, i=1,2there exists such an $\sigma'(\mathbf{f}_0,\,\mathbf{\epsilon}_0,\,\eta_0)$ that

 $\sigma'(\mathbf{f}_0,\ \mathbf{e}_0,\ \eta_0)\,c\,\sigma'(\mathbf{f}_0,\ \mathbf{e}_1,\ \eta_1)\cap\sigma'(\mathbf{f}_0,\ \mathbf{e}_2,\ \eta_2)\,.$

It is sufficient to put ϵ_0 =min(ϵ_1 , ϵ_2), η_0 =min(η_1 , η_2). Further, if $\sigma'(f_0, e_0, \eta_0)$ is given then for every $\varepsilon \leq \varepsilon_0$,
$$\begin{split} & \eta \geq \eta_0 \ \sigma'(f_0, \, \epsilon, \eta \,) \in \sigma'(f_0, \, \epsilon_0, \, \eta_0); \text{ similarly, for every} \\ & \epsilon \geq \epsilon_0, \, \eta \leq \eta_0 \ \sigma'(f_0, \, \epsilon, \, \eta \,) \supset \sigma'(f_0, \, \epsilon_0, \, \eta_0). \end{split}$$
 $f_1 \in \sigma'(f_0, \epsilon_0, \eta_0)$, i.e. $F_{f_1-f_0}(\eta_0) > 1 - \epsilon_0$, then there exists $\sigma'(\mathbf{f}_1,\,\mathbf{\epsilon^*}\,,\,\boldsymbol{\eta^*})$ such that

 $\sigma'(f_1,\;\epsilon^*,\;\gamma^*)\,c\,\sigma'(f_0,\;\epsilon_0,\;\gamma_n)\,.$

As the function $F_{f_1-f_0}'(\gamma_0)$ is left continuous at γ_0 there exist $\varepsilon < \varepsilon_0, \eta < \eta_0$ such that

$$\begin{split} & \text{Ff}_{1}^{-1}_{0}(\eta) > 1 \text{-} \epsilon > 1 \text{-} \epsilon_{0}. \\ \text{Let } 0 < \dot{\eta}^{*} < \eta_{0} \text{-} \eta \text{, } \epsilon^{*} \text{=} \epsilon \text{ and consider the } \epsilon \text{-} \eta \text{-neighborhood} \end{split}$$
 $\sigma'(\mathbf{f}_1, \boldsymbol{\epsilon^*}, \boldsymbol{\eta^*}) = \{\mathbf{f} \in \mathbf{S'} : \mathbf{F'}_{\mathbf{f} - \mathbf{f}_1}(\boldsymbol{\eta^*}) > 1 - \boldsymbol{\epsilon^*}\}. \text{ Let } \mathbf{f} \in \sigma'(\mathbf{f}_1, \boldsymbol{\epsilon^*}, \boldsymbol{\eta^*})$ then $F_{f-f_0}(\gamma_0) = F_{f-f_0}(\gamma_0 - \gamma + \gamma) \ge \min(F_{f-f_1}(\gamma^*), F_{f_1-f_0}(\gamma)) \ge \sum_{i=1}^{n} (i - \gamma_i) = F_{f_0}(\gamma_0) = F_$ $\geq \min(1-\varepsilon^*,1-\varepsilon)>1-\varepsilon_0 \text{ hence } f\in\sigma'(f_0,\varepsilon_0,\eta_0).$

We have proved that the system of the ϵ - η -neighborhoods in S, defines a topology. This topology will be called also the בּק ק-topology and thanks to the generalized triangular inequality $F'_{f+q}(u+v) \ge \min(F'_f(u), F'_q(v))$ it is no problem to prove that every net $\{f_{\mathbf{g}}\}_{\mathbf{g}}$ in S´ has at most one limit point because F´f =H if and only if f=0 in S . This fact proves that the ϵ - γ -topology is a Hausdorffian topology. The generalized triangular inequality enables us to prove also that

if $f_{\alpha} \rightarrow f$ and $g_{\alpha} \rightarrow g$ then $f_{\alpha} + g_{\alpha} \rightarrow f + g$.

Unfortunately, it is not true that $\lambda_{\mathcal{L}} f \longrightarrow 0$, in general, in this ϵ - η -topology if $\lambda_{\rm ac} o 0$ in reals because if $\epsilon_{\rm f} < 1$ then

 $\lim_{\Delta_{\mathbf{x}} \searrow 0} \ \ \widetilde{\lambda}_{\mathbf{x}} \mathbf{f} (\mathbf{u}) = \lim_{\Delta_{\mathbf{x}} \searrow 0} \ \ \mathbf{F}_{\mathbf{f}} (\frac{\mathbf{u}}{|\lambda_{\mathbf{x}}|}) = \mathbf{s}_{\mathbf{f}} < 1 \ \ \text{for every } \mathbf{u} > 0 \,.$

This fact says that the ε - η -topology in S´ is not a linear topology, i.e. the operation of $A \cdot f$ need not be continuous in $\mathcal{R} \times S$. Theorem 6. The ε - η -topology in the dual space (S´, \mathcal{J}' ,min) of a SLM-space (S, \mathcal{J} ,T) is a linear topology if and only if ε_f =1 for every $f \in S$ ´.

Proof. The proof is very simple. If ϵ_f =1 for every $f \in S$, then for every $A_{\infty} \rightarrow 0$ of reals and every $f \in S$

$$\lim_{\lambda_{\alpha} \searrow 0} F_{\lambda_{\alpha} f}(u) = \lim_{\lambda_{\alpha} \searrow 0} F_{f}(\frac{u}{|\lambda_{\alpha}|}) = \varepsilon_{f} = 1$$

for every u>0 and hence $\mathfrak{A}_{\alpha} f \longrightarrow 0$ in the ϵ - γ -topology.

If there exists, at least, one $f_0 \in S'$ with $\epsilon_f < 1$ then $\lambda_{c}f_0 \not\longrightarrow 0$ in the ϵ - γ -topology which cannot be a linear topology in such a case. Q.E.D.

Theorem 7. The ϵ - η -topology in the dual space (S´, γ ',min) of a SLM-space (S, γ ,T) is metrizable.

Proof. The mapping $\mathcal{F}'(f)$ is constructed using the conjugate norm $\|f\|_a = \sup \{|f(x)|: n_a(x) \neq 1\}$, $a \in (0,1)$, $f \in S'$. For our purposes we have put $\|\|f\|\|_a = \|\|f\|\|_{1-a}$ for $a \in (0,1)$ and $\epsilon_f = \sup \{a: \|\|f\|\|_a < +\infty \}$. Now, we use $\|\|f\|\|_a$ for the definition of a metric in the dual space S'. Let us define for every $f,g \in S'$

$$\begin{split} & \mathcal{N}_{a}(\mathbf{f} - \mathbf{g}) = \frac{\left\| \left\| \mathbf{f} - \mathbf{g} \right\| \right\|_{a}}{1 + \left\| \left\| \mathbf{f} - \mathbf{g} \right\| \right\|_{a}} \text{ for } \mathbf{a} \in \langle \mathbf{0}, \, \varepsilon_{\mathbf{f} - \mathbf{g}} \rangle \\ & \mathcal{N}_{a}(\mathbf{f} - \mathbf{g}) = 1 & \text{for } \mathbf{a} \in \langle \varepsilon_{\mathbf{f} - \mathbf{g}}, 1 \rangle. \end{split}$$

Using the inequality $\epsilon_{f+g} \ge \min(\epsilon_f, \epsilon_g)$ we can immediately prove that for every $a \in (0,1)$ $\mathcal{N}_a(\cdot)$ is a metric defined in S´. Since $\mathcal{N}_a(\cdot) \le 1$ for every $a \in (0,1)$ then the integral

$$\rho(f;g) = \int_0^1 \eta_a(f-g) da$$

exists and $\wp(f;g)$ is also a metric in S´. Let $\{f_n\}$ be a sequence in S´ such that $\wp(0;f_n) \xrightarrow[m \to \infty]{0}$. As

$$\mathfrak{S}(0,\mathbf{f}_{\mathbf{n}}) = \int_0^1 \mathcal{N}_{\mathbf{a}}(\mathbf{f}) \, \mathrm{d} \mathbf{a} = \int_0^{\epsilon_{\mathbf{f}}} \frac{\|\|\mathbf{f}_{\mathbf{n}}\|\|_{\mathbf{a}}}{1 + \|\|\mathbf{f}_{\mathbf{n}}\|\|_{\mathbf{a}}} \, \mathrm{d} \mathbf{a} + (1 - \epsilon_{\mathbf{f}_{\mathbf{n}}}) \text{ for every } \mathbf{n} \in \mathcal{N},$$
 it is clear that $\epsilon_{\mathbf{f}_{\mathbf{n}}} \to 1$ and $\int_0^{\epsilon_{\mathbf{f}_{\mathbf{n}}}} \frac{\|\|\mathbf{f}_{\mathbf{n}}\|\|_{\mathbf{a}}}{\|\|\mathbf{f}_{\mathbf{n}}\|\|_{\mathbf{a}} + 1} \, \mathrm{d} \mathbf{a} \to 0 \text{ if } \mathbf{n} \to \infty.$

it is clear that $\mathfrak{t}_{\mathbf{f}_{\mathbf{n}}} \to 1$ and $\int_{0}^{\mathfrak{t}_{\mathbf{f}_{\mathbf{n}}}} \frac{\mathbf{m}^{2}\mathbf{n}^{-1}\mathbf{a}}{\|\|\mathbf{f}_{\mathbf{n}}\|\|_{a}+1} \, \mathrm{d}\mathbf{a} \to 0$ if $\mathbf{n} \to \infty$. Wif $\|\|_{a}$ is a nondecreasing function in $\langle 0,1\rangle$ hence $\mathcal{N}_{\mathbf{a}}(\mathbf{f})$ is also a nondecreasing function in $\langle 0,1\rangle$ and the convergence $\mathfrak{p}(0,\mathbf{f}_{\mathbf{n}}) \to 0$ implies that $\mathcal{N}_{\mathbf{a}}(\mathbf{f}_{\mathbf{n}}) \to 0$ for every $\mathbf{a} \in \langle 0,1\rangle$ hence

 $\|f_n\|_a \to 0 \text{ if } n \to \infty \text{ for every } a \in (0,1).$

Now, let u be any positive real number, then according to

the definition of
$$F_f(u)$$

$$F_{f_n}(u) = \inf \{a : \|\|f_n\|\|_a \ge u \}$$
 or

$$F_{f_n}(u)=1 \text{ if } \{a: |||f_n|||_{a} \ge u^2 = \emptyset.$$

We proved that $\|\|\mathbf{f}_n\|\|_{\mathbf{a}_0} \longrightarrow 0$ for $\mathbf{a}_0 \in (0,1)$, i.e. for every $a_0 \in \langle 0,1 \rangle$ and every $u_0 > 0$ there exists a natural n_0 such that for every n≥n_o

||| f_n ||| a_o < u_o.

It means that $F'_{f_{-}}(u_{0}) \ge a_{0}$ for every $n \ge n_{0}$. The arbitrariness of u_0 and of a_0 implies immediately that

$$\lim_{m\to\infty} F_{\mathbf{n}}^{'}(\mathbf{u}_{\mathbf{0}})=1.$$

This fact proves the convergence of $\{f_n\}_{n=1}^{\infty}$ to the null functional in S' with respect to the ϵ - η -topology.

Now, on the contrary, let a sequence $\{f_n\}_{n=1}^{\infty}$ converge to 0 in S´ with respect to the ε - η -topology, i.e.

$$\lim_{n\to\infty} F_{\mathbf{n}}^{'}(\mathbf{u})=1$$

for every u>0. We have for every $\epsilon>0$ and every u>0 there exists a natural n_0 such that for every $n \ge n_0$

As follows from the definition of $F_f(\cdot)$ either $\{a: \|f_n\|_a \ge u\} = \emptyset$ or inf {a: Wfn Wa≥u}>1-€ . It implies that

Then $\lambda \{a: \||f_n\||_a < u\} \ge 1-\varepsilon$ (λ is the Lebesgue measure) for every u>0 and this proves that $\|\|f_n\|\|_a \to 0$ if $n \to \infty$ for every a ϵ (0,1). As $n_a(f_n) \neq 1$ for every $n \in n$, thus

$$\rho(0,f_n) = \int_0^1 n_a(f_n) da \rightarrow 0$$

where n $\longrightarrow \infty$ and Theorem 7 is proved. Q.E.D.

Theorem 8. Let a SLM-space (S,2,min) be given. Let (S´, γ ',min) be its dual space. Then the ϵ - η -topology in (S,γ,\min) is normable if and only if

Proof. Let (S, γ ,min) be given and let the ϵ - η -topology in

S be normable. Then there exists such a convex neighborhood K which is ε - η -bounded. It means that the set K must be bounded with respect to every seminorm $\mathbf{n}_a(\cdot)$, a ε <0,1); in other words, for every a ε <0,1) there exists \mathbf{K}_a such that for every x ε K, $\mathbf{n}_a(\mathbf{x}) \leq \mathbf{K}_a < +\infty$. Let f be any continuous linear functional defined in S. The continuity of f implies that $\sup_{\mathbf{x} \in \mathbf{K}} |f(\mathbf{x})| \leq \mathbf{K}_f < +\infty$. Further, since K forms a neighborhood in the ε - η -topology in S, there exists σ (ε 0, η 0) in S such that σ (ε 0, η 0) c K, ε 0>0, η 0>0. It means that for every x ε σ (ε 0, σ 0) |f(x)| ε K, too.

As $\sigma(\epsilon_0, \eta_0) = \{x: n_{1-\epsilon_0}(x) < \eta_0\} = \eta_0 \{x: n_{1-\epsilon_0}(x) < 1\}$ then for every $x \in \{x: n_{1-\epsilon_0}(x) < 1\}$ and $f \in S$

$$\sup \{|f(x)| : x \in \{x : n_{1-\epsilon_0}(x) < 1\}\} \le \frac{K_f}{\eta_0} < +\infty.$$

$$\|f\|_{1-\varepsilon_0} = \sup \{|f(x)| : x \in \sigma_{1-\varepsilon_0}\} = \sup \{|f(x)| : n_{1-\varepsilon_0}(x) \le 1\} \le \frac{\kappa_f}{\gamma_0}$$

which implies that $\|\|f\|\|_{\mathcal{E}_0} < +\infty$ for every $f \in S'$. It says that $\epsilon_f \geq \epsilon_0 > 0$ for every $f \in S'$, i.e. $\inf \{ e_f : f \in S' \} > 0$.

Let us suppose, vice versa, that $\inf_{f \in S}$, $\epsilon_f = \epsilon_0 > 0$. It means that for every a $\epsilon < 0$, ϵ_0) and every f ϵS ' ||| f ||| a < + ∞ and ||| f ||| a is a norm in S. As for any a $\epsilon < 0$, ϵ_0)

$$\|\|f\|\|_{a} = \|f\|_{1-a} = \sup \{|f(x)|: n_{1-a}(x) \le 1\} < +\infty$$

then $\{x:n_{1-a}(x) \leq 1\}$ must be $\epsilon-\eta$ -bounded. Further, $\{x:n_{1-a}(x) \leq 1\}$ is an absolutely convex neighborhood of 0 in the $\epsilon-\eta$ -topology as was shown in [1].

This ϵ - η -boundedness proves that the ϵ - η -topology is normable by a norm

$$\|x\| = \inf\{x > 0: n_{1-a}(x) \le x = n_{1-a}(x).$$
 Q.E.D.

Theorem 9. Let B be a Banach space and B´ its topological dual space. Then $B=(B,\gamma,\min)$ where $\gamma(x)[u]=H(u-\|x\|)$ and B´ = (B',γ',\min) where $\gamma'(f)[u]=H(u-\|f\|)$.

Proof. First, we must verify all the requirements which are put on \mathcal{F} , \mathcal{F}' . If x=0 in B, then $\|x\| = 0$ and $\mathcal{F}(0)[u] = H(u)$. As $\|x\| = \|A\| \|x\|$, then $H(u - \|Ax\|) = H(u - |A| \|x\|) = H(\frac{u}{|A|} - \|x\|)$ and therefore $\mathcal{F}(Ax)[u] = \mathcal{F}(x)[\frac{u}{|A|}]$. If $H(u - \|x\|) = H(u)$ for every

u>0 then it is possible only if x=0 because $\|x\|$ is a norm. Thanks to the triangular inequality $\|x+y\| \neq \|x\| + \|y\|$ it holds that

$$H(u+v-1x+y1) \ge \min[H(u-1x1),H(v-1y1)]$$
.

The same properties can be proved for the mapping \mathcal{J}' . The mapping \mathcal{J}' can be defined using the statistical norm of feS´, i.e.

$$\begin{split} \mathcal{J}'(f)[u] = & 1 - \sup_{x \neq 0} \left\{ F_{x}(\frac{|f(x)|}{u}) + \omega F_{x}(\frac{|f(x)|}{u}) \right\} = \\ = & 1 - \sup_{x \neq 0} \left\{ H(\frac{|f(x)|}{u} - \|x\|) + \omega H(\frac{|f(x)|}{u} - \|x\|) \right\} = \\ = & H(u - \|f\|) \text{ because for every } x \in B \mid f(x)| \leq \|x\| \mid \|f\|. \end{split}$$

Q.E.D.

References

- [1] J. MICHÁLEK: Statistical linear spaces. Part I. Properties of ε-η-topology. Kybernetika, Vol.20(1984) No 1, 58-72.
- [2] J. MICHÁLEK: Statistical linear spaces. Part II. Strongest t-norm. Kybernetika, Vol.20(1984), No 2, 135-146.
- [3] J. MICHÁLEK: Random seminormed spaces. Comment.Math.Univ. Carolinae 27(1986), 775-789.

The author of the paper is indebted to Dr. J. Jelínek for his comments and advice.

Ústav teorie informace a automatizace ČSAV, Pod vodárenskou věží 4, 182 00 Praha 8-Libeň, Czechoslovakia

(Oblatum 28.5. 1985, revisum 10.12. 1986)