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LIOUVILLE TYPE CONDITION AND THE INTERIOR REGULARITY
OF QUASILINEAR PARABOLIC SYSTEM
(THE CASE OF BMO-SOLUTIONS)
1. STARA, J. DANECEK, O. JOHN

Abstract: The Liouville property of quasilinear parabolic
system Implies the regularity of this system also in case that
both the Liouville condition and the regularity of the system
are formulated for the weak solutions with finite BMO-seminorms.
On the other hand (again in the framework of BMO) from the
slightly modified condition of the regularity of the system it
follows that this system has the Liouville property.
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1. Introduction. The aim of this note is to extend the stu-
dy of the connection between the Liouville type condition and
the interior regularity of the weak solutions of quasilinear pa-
rabolic systems. Meanwhile in the papers [1),0[2] we dealt with
the bounded solutions, hers we are concerned in the case of the
solutions belonging to the space BMO. In contrast with the papers
just mentioned, also the equivalence of the Liouville type condi-
tion with the regularity is studied more in details.

In general, it is not known +ow to prove the boundedness of
the solutions of the initial-boundary value problems for quasi-
linear systems. On the other hand, Danéfek [3] gave (in elliptic
case) an example of the class of quasilinear systems for which
each weak solution of the Dirichlet problem belongs to the space
BMO. This fact stimulated our interest in the theme described
above. (In the elliptic case it was proved by Dan&éek in his The-
sis that the Liouville type condition implies the regularity in
the framework of BMO.)

In the bibliography, we restrict ourselves just to the
items we need for references. For the more representative list
of articles see [2]. :
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2. Preliminaries.Let Q=Q > R where £ be a domain in R", nZ 2.
Oenote z=[x,t], x=[xl,...,xn], u=[u1,...,umJ, mZ1. Let us consi-
der the system

%f— a—(alJ(z u) %—)- w3 Y(z,u,D u) L,3=0;..09M; o, 321, ...,

which we rewrite as

(1) uy - div(A(z,u)Dxu)= - f(z,u,Dx u).
Together with (1) we deal with the systems

(1%) ug - div(A(zo,u)D u)=0, z e Q.

Let the following assumptions on the coefficients A= falJ}
and the right hand side functions f-= {fllbe satisfied:

(2) A is uniformly continuous and bounded on Q x R™.
(3) There exists A > 0 such that
(Az,w§, Pz Algl?, VEe R™, [z,ulea=<R".
(4) 1lim A(z,u)=d(z) uniformly in Q (with respect to z).
W=
(5) f£(z,u,p) is continuous on AxR™<xRM™
L4
(6) |f(z,u,p)|£c|p|¥ where ¥ < 2.

The functionlxew% ?ac(u) is said t& be a weak solution of

(1) in Q if for each g€ C:(Q) holds
(1) [, Lugy-ACz,u)D,u0, @l dz= Jo £(z,u,0,u) pdz.
For zD=[x°,t0] and R> 0 define Q(ZO,R)=B(X0,R)X (to-Rz,t°+R2),

i.e., the open ball iann+l with the centre z, and radius R with
respect to the parabolic metric. Denote further

_ 1
(8) UZD,R— FDTZ—D—,RT j;.(zmk)u(z)dz

o ol 2
(9) U(ZO,R)- KTZ fa(zo,R)'U('Z)-uZO;Rl dz.

Define now BMO( Rn*l) as the class of all measurable functi-
ons u on R™! for which the set U=§U(20,R); Zy eIRn+1,R:>0§ is
bounded, putting

(10) Mul u.
BMO

@
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In a similar way the class BMO(Q) can be introduced. In this
case we take for U the set of all U(zo,R) with z e Q and
R<dist(zo, 3Q).

3. Main results

Definition 1. The system (1) is said to be (L) (to have
Liouville property) if for each z € Q and each weak solution u of
(1*) in R™! holds the following: ueBMO( R™1) implies that u
is a constant vector function.

Definition 2. The system (1) is said to be (R) (regular) if
each weak solution of this system which belongs to BMO(Q) is lo-
cally Holder continuous (i.e., ue Cgéz’“/z(ﬂ), « & (0,1)).

Definition 3. The system (1) is said to be (UR)(uniformly
regular) if for each s> 0 and each KcQ, K compact, there exists
C(K, @) >0 such that for each weak solution u of (1), ue BMO(Q),
we have

Wl puocgy & & = Wull Co,a,a/z(K)éC(K""‘)'
(Here Wull =sup lu(z)-u(@)| i z2,Ze K, z#Z()
c®» %/ 2(k) Ix-x [+ [-F |7

Definition 4. The system (1) is said to be (SUR)(strongly
uniformly regular) if for each z € Q the system (1*%) is (UR)
with respect to the domain Q(0,2).

Theorem 1. Let (1) be (SUR); then it is (L).
Theorem 2. Let (1) be (L); then it is (UR).

Remarks. It follows from Definition 1 that if the system
(1) is (L), then each of systems (1*¥) is (L). Thus Theorem 2
yields: (L) => (SUR). So we obtained the equivalence of (L) and
(SUR). On the other hand, from Theorems 1, 2 and Definitions we
get (SUR) => (UR) => (R).

Does (UR) => (SUR) take place?

4. Proofs

Proof of Theorem 1. Let for some z_€ Q the function u be a
weak solution of the system (1¥) in R™* which belongs to
BMO(R"™*1). Denote = Wull

BMO(R™ 1)
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For R>0 put §$ =€ ,v]= [ —2-] and define up(§)=u(Rg,R %),
As the functions up are apgain the solutions of (1*) in Rn*l
they are also the solutions of (1*) in Q(0,2). Obviously,
qu“‘BMD(Q(0,2»‘ & and so (according to Definition 4) there
is a constant C such that

mu ] £C
R>D =%/ 2(g(0,1))

Let now z ¢ R™1, We have |u(z)- u(O)I-IuR R’ -7) uR(O)l

: x/2
sc -L-L—*-Lt-L— it only R >|x|+|t|1/2.

Pass1ng to the limit with R — + co we obtain that u(z)=u(0)
and so u is a constant vector function.

Proof of Theorem 2. Let K<€ Q be 8 given compact set and let
& > 0. According to tﬁe partial regularity theory for parabolic
systems (see e.g. [ 4]) it is sufficient to prove that

(11) lim U(z R)=0 uniformly with respect to K and U= {u, u is

a weak solution of (1) in 0 with Wulguocq) & @l X
Suppose that (11) is false, i.e. that:

(12) There exist some compact Kc Q, two positive numbers @ and
€ and the sequences {zh}c K, {Rh}c R, R,¥ 0 and {uh}(uh
is a weak solution of (1) in Q for which l"“h“'BMD(Q) < @),
such that U, (z,,R,) & & , h=1,2,

In what follows we shall prove that (12) leads to the contra-
diction with (L).
Put X=Xp t-th
'=[' 1']:
£etg.e - [ )
(13) S
= . 2
vh(g )-uh(xh+Rh§ » th*Ry f)-(uh)zh’Rh.

From (12) and (13) we obtain (for an arbitrary constant function
Q)

-n-2
(18) € & U (z,,R)=(R)™"" f“‘u* y lup (2)-Cup) 20 Ry, |2
2
fa(on"’h(?)l d§ < fmo,,lvh(g) -q|“ d§.

x) It is not difficult to prove that the crucial lemma 8 of the
paper [ 4] is valid - under our assumptions on the coeffici-
ents A - even in case when the boundedness of u R be substi-
tuted by the condition that u e BMO(D). 2,
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The functions Vh solve the systems
2
(15) j;R Ly, @p -AC*RLE oty RET, v (©)+(up) 28, 30 vy, ngﬂdfa
S

= 2 2 -1
- IOR;hf(xh+Rh§’ th* R Va(§)r )y g R D)@ Of
where OR is the image of Q in the mapping § defined by (13).
h

For each T>0 there exists h(T) &N such that for hZ h(T)
the 1nc1u51on Q(o,T)cc DR holds. So each vh(thﬂT)) solves (15)

in Q(0,T). It tollows from (2) (3) that the coefficients A (S)'

=A(xh+Rh§ ty +R v, Vv (§)+(u ’Rh) are measurable and equiboun-

h’z
ded with respect to h on Q(0,T) and satisfy the ellipticity con-
dition with the same constant A.

The essumptions (5) and (6) yield

RZ|£Cxp Ry § o b, +RET, v, () (up)z g, Rt By ()] £
&5 R2 T|o€vh<s>|

so the right hand sides of (15) have a controllable growth, uni-
form with respect to h.

From these facts we can conclude that there exists a const-
ant C(T) >0 for which

(16) Iy \\ &c(T) v W12 , h2 h(T)
h'L,(ac0,T))

" wl/2ac0,1/2)

Further we need to show that the right hand side in (16) can
be estimated by some absolute constant, depending only on T. For
this purpose we give the estimate of “vhﬂ LZ(Q(O,T)) by

|"uh“lBMU(Q)‘ This fact can be derived as a particular case of
Lemma 3.III in [5). For the convenience of the reader we give
here the proof. Omitting index h, we have

i 2 .y12 3 -n-2 =
(17) “v“LZ(U(O,T)f fa(O,T)|V($)‘ d} =R n fﬂ(Z,RT)lu(z)-

2=/ 2 -n-2 - 2 .-
‘uz,Rl dz62 {T™4(R)" fa(;,RrﬂU(Z)'Uz’m\ dZ+

-n-2 2 n+2 2
+R fq(z,,k'r)mz,RT'uz,Rl dz} £ 271 i BMo(Q)*

2
*'cluz,RT'uz,R| 5o
where a¢._is the volume of Q(0,1).
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To estimate |u -u |2 we restrict ourselves to the case
z,RT "z,R

that T=21.x) Putting @ =TR we estimate at first |u

£2 4|y, -u(i)|2+lu
0(2,39/25 we get

2 =12, =
z,y_uz,SD/ZI £2 {fﬂ(z,se)luz,?—uu)l dz

- 2
fa(z,p/z)|”(2)'“z,§o/z| dz} ’

2
z,g'uz,go/zl

, p/z—u(i)|2}. After the integration over
»

(@ /2)"?|u

and from here

2 n+2
% (2 +1) Wu

2 2 .
luz o7Y2,0/21 % BMO(Q)

Iterating this estimate, we have

2_ 3 2 ‘ 2
lu, r=Yy gyl “luZ,@/Zl'uZ,?l £i [qu’?-uz’@/zl P

24 o2 n+2
Uy 67,1172 07,1 1214 3¢ Wil g gy (2771

Substituting to (17) we obtain finally:
(18) uvhufz(o(om)é o (T) Muy W 30 0y €M) @

which together with (16) gives

2
(19) My g c(M, (han(M).
w1200, 1/2))

The estimate (19) together with the compactness of imbedding
of w;’l/z(Q(O,T/Z)) into L2(Q(U,T/2)) enable us to assert (using
the diagonal process) that there exists a subsequence (we use the
same notation for it) such that

(20) 7, —> z €K,
(21) vp— v in LZ(Q(O,T)) for each T>0,
(22) ngh-—> D§v weakly in LZ(Q(O,T)) for each T >0,
(23) v, — v almost everywhere in R"+1,
\
(24) either (u.) —> 5 e R™ or lim |(u.) |=+00 -
h'z R, P oo NZ4Ry

Further, it is easy to check that
n+l )& .
(25) v € BMO( R {, UlvhlBMU(Rn+1 (el

x) The case of general T can be easily derived from here using
the standard technique.
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Taking in (15) the fixed test-function ¢ we pass to the
limit with h —> o and (using (20) - (24)) we obtain that v is a
weak solution either of the system

(26) f,Rmn[V‘!’fu'A(zo:“(?)*p)DgV ngp,] d§ =0

or of the system

(27) Jpmet L vy -d(2)0¢v gl ag =0

In case of (26), v is a constant vector-function because of
(25) and the assumption (L). In case of (27), v is a constant
function again because it is a weak solution of the system with
constant coefficients which belongs to BMD((R“+1).

Coming back to (14) and putting v for g we obtain

e s fmo,“lvh(g )-v|%d8 .

But the last integral tends to the zero as h —>co and so we get
the contradiction.
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