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INTERIOR REGULARITY FOR THE QUASILINEAR ELLIPTIC
SYSTEMS WITH NONSMOOTH COEFFICIENTS
lifi KOTTAS

!

Abstract: The interior Cu’“Lregularity for a weak soluti-
on of the quasilinear second order elliptic system is investiga-
ted. The positive answer is obtained for systems which are "not
far" from the Laplace equations. This situation is described by
means of the dispersion of eigenvalues of the coefficients mat-
rix. -

Key words: Quasilinear elliptic systems, interior regula-
rity.
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1. Introduction. The paper deals with Co’“itegularity of
solutions of second order quasilinear elliptic systems with non-
smooth coefficients satisfying certain conditions of the dispersi-
on of eigenvalues.This condition was firstly established by A.T1.
Koshelev.(See [ 3] for references.)Our aim is to obtain a simpler
proof and to this end we use a modification of the method of J.
Netas for smooth coefficients described in [ 2]. We consider a
slightly more general condition of ellipticity than in [3)
(whith does not guarantee unicity of solutions of Dirichlet pro-
blem) and we prove that every weak solution is locally Holder-
continuous.

2. Notations and definitions. We consider the quasilinear
system

m m

< B Iy -
(2.1) "5221 ‘_);1 D‘c(aij (x,u) Dp u )=0 121,004 ym,
where u= [ul,...,um) is a vector .function defined on a bounded

domain ¢ R".
The coefficients a:p :Qx R™"~» R are bounded Carathéodo-
ry functions, symmetric ei.e. axh =af%) and satisfying the fol-
i} 3i-

lowing ellipticity condition:
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(2.2) There are two positive numbers 9\0, 9\1 such that the ine-
qualities

Mg 12 2CAGGRIE 5 Penyl§ 12

hold for all § e R™" peR™and a.e. xe -

A denotes here the matrix of coefficients (aif);’g i

{ ;> is the inner product on the Euclidean space RK (k=mx n),
| | is the norm generated by this inner product.
In what follows, we shall suppose that m2>2, nZ 2.

Definition 2.1. / We say that the function ue,vl2 (_n.) (we
LELIDE A S
shall write w2 1'm(.(').) instead of [w 100(_0. N™ is a weak soluti-
on of the system (2.1) if for each goe 2D (fL) we have
fn <A(x,u) Du;Dg)> dx=0.

Definition 2.2. The systém (2.1) is said to be regular if
each weak solution of (2.1) is locally Holder-continuous on L.

We shall use so called Campanato spaces (denuted by
3£ a(_Q) or Lg 9\(.().) - see [4]) which are for Ae In,n+2] isomor-

phic to the spaces CO%(IL) with o = —2—
Introduce now in R" the polar coordinates with the origin
at the point y:
X1-Y1=T €OS P, Xo=¥p=T sin ¢, cos 92,...,
Xn-1"Yn-17T sin Py sin Pn_p COS Ph-1°
nYoSL sing, ... sing 4 .
and define the symbols alv,..., 3,V as

-

X

0,v= aV, Q,v= 123y s Q,v= 1 y ]

1"~ 3t 2 a;l' 3VC T si_n %1 'ggxz
_ 1 ov

anv' T sin @y ---S1IN P o 769'1_1'

Denote further Dgv= [Bzv,..., bnv],
B(y,R)= ix e R";|x-y|< R},
S(y,R)=4{x e R"; | x-y|=R3.

It is clear that for x e S(y,R), (DBV)(X) is the vector of deriva-
tives of v in tangent directions to the sphere S(y,R). Put

- 1 n
uy RS f u dx ( @ is the Lebesgue measure on R

and finally 8 (y,R) v
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J (n- 2)2
-1
K(n)= AL .
1+ (n-2)
n—

3. Soft theorem. We present here Theorem 3.1 which is weak-
er than Theorem 4.1, because it can be proved in a transparent

AD n-2

Theorem 3.1. Let 7 A Then the system (2.1) is regular
1

way.

Remark 3.2. Each solution of the guasilinear system (2.1)
is also the solution of the linear system with bounded measurable
coefficients (bfﬂ (x)=a;f (x,u(x)), which satisfies the conditi-
ons (2.2) with the same constants Q, 21, hence it is sufficient
to prove the theorem only for linear systems.

Proof: Let'u be a weak solution of the system (2.1) and let
-Qlc c fL. In order to prove that ueCo"(J_ll) we have to show

-r~B " 2
that for some (3> n the function g(x,,R)=R /;.(x,,k) |u uxo,R| dx
is bounded on the set M=, < 10;d[, where d= % dist(£2;,20).
Using Poincaré inequality

2 . o2 2.
'/;(x,,R) Rl dx<c R jt;(%'R)WUI dx

we can see that it suffices for some "> n-2 to show the bounded-
ness of the function

|u-uxo,

o7 2
£(x,,R)=R fa(x R |Du| dx on M.

The function f is bounded on the set Jllx'{d} hence it suffices
to prove that 3R(x ,R)2 0 for all x, € Q, and a.e. Re10,dl.

The derivative 6F exists for all X, € JI and a.e. Re 10,d[ and &

3t _ -y-1 2, o7 2
= - ¥R Dul? dx+R ou|? ds.
|7 fm% |Dul“ dx+ j;“ iy 0¥

For (x, ,R)e M we denote v= vix,x, ,R)
the vector functiun which is a weak solution in W (B(x ,R)) of the
system
Avi=0 3=1,...,m

and satisfies the stable boundary condition u-vc.ﬁ%(B(xo,R)).

Now we shall prove two lemmas to finish the proof of the
theorem.

Lemma 3.3. For all (xo,R)e M the inequality
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' A +A
2, ,"1*7% 2
(3.1) fB(x.,R)‘Du‘ dx_-—m fB%'mIDvl dx
holds.
Lemma 3.4. Let for some ae]l,'-':'.-:-%[and for all (xo,R)eM

2 2
fB(x,,R)loul dx £a fm,,,m‘”"' dx .

Then
ue C%r%( El) with o= %(ﬂil - n+2).

Proof of Lemma 3.3. It is easy to see that

<A Du;D(v-u)) dx=0

fB(x,, R)
and

fp(x,,p,)< Dv;D(v-u)) dx=0; hence
2 . !
fao(,,m |bv|® dx= j;cxo,R)< Dv;Du? dx.
Now using the condition (2.2) and the symmetry of /A we obtain *
2 1 . _
fB(X.,R)IDul dx‘& fg(,,.’R)<A Du,Du) dx =

= %— fB(% gySA Dv;DvY) dx. - %— fB(x, < A 0(v-1),0(v-u)? dx £
o » 0 ? .

A
1 2 2 -
Jx; fBCx,,R) |Dv]|“ dx - fB(x,,R) [D(v-u)|* dx =

= 2 2 )
X fB(x,,R)lnv‘ g, = fBLx.,R)l'JV' dx+2 fB(x,,R\< Dv;Du) dx -

A
2 1 2 2
= fE(x.,R)loul dx =(1+ K) fB(X,,R)“JV‘ dx - fome)'Dul dx.

An esasy calculation gives (3.1).
Proof of Lemma 3.4. For a weak solution ueH%(B(xo,R)) of
the system BAwI=0 j=1,...,m the estimate

2 R 2 dS
S, po! 001 dx 22y J (001 Og¥ |

holds. See [2]. . B
As Dpu=Dgv on S(x4,R) and IDsulzé |Du|2, we get from here

2 2 aR 2 o
fs(a,,m."’“l ax&n fsug,,vo lovi? dx & 7257 f5qp, ml0pY!° 98 =
aR 2 aR 2
= 2B Lo ml0pul” @54 55 Jsi myloul? as.
' It essily follows that ‘

~

R js(xa;k)|0u|2 ds - "—;—i B(".,&)Inul2 dx20.

Put = 9—;-1 Then o8



of -7 2 -7-1 2
g R [ pyl0ul? as-gR7T S, my 1001 0x2 0.

Q.E.D.

A

4., Hard theorem

Theorem 4.1. Let -;'i>K(n) Then the system-(2.1) is regular.

Proof: Let us introduce the function space (see [31)
- . 2 -A
Hy 2 ()= iuewz(ﬂ),x‘stépi fnlnul Ix-x,| ™" dx < oo}

equipped with the norm 1

lulH (.D.)=( fn|u|2 dx+supn fIDul2 Ix-x, I'a dx) 7,

This space is for A > n-2 1mbedded into the space cO'*“(IL) with
o« = 7(7\-n+2).
Let h be a non-zero element of D ( Rn), supp hcB(0,1), hZ0.

Denote hk(x)=ckh(kx), k € N , where c, are constants such
that

f,,, hy (x) dx=1

let f,cc ccfl, 38, is sufficiently smooth.

<t
1j°hk* ‘ij

ka* Brxy=a<R( tisfy (for
Thendin}” aij(x)-aij(x) a.e. on L and matrices /A satisfy

Put R= -5 dist(.ﬂ.z, 20)), aijﬁno on R\ A and ¥

kao) on ‘Q'l the condition (2.2) with the same constants 7\0, ?\1.
The boundary value problem

I (kADuk,Dy) Vgaeﬁlcn ), u-ueW3(A)
has a umquely determined solution u €W, (.Sll) fnr each k> kg

Obviously
,l"k‘ul(.o.)"‘ cgyy) lul 1/2( 24,

The space W (.D.l) is tetlexive and so we can suppose that u_ is
weakly convergent to some veW (.Q ).

The set V= {wsﬂ (.Q. ), w- ucuzl is convex and closed, hence it
is weakly closed and v-u ew (.Q. ). Now we can apply the well
known convergence .lemma (see ll], chapt. 4) to see that v is a
iweak solution of the system (2.1) and hence - because of the uni-
quéness - V=u. .
The function u is the weak limit of the sequence {uk} k>k°
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in H%( .Ql) and hence it is the strong limit in L2( .Q.l) so we can
suppose that

l:,um u (x)=u(x) a.e. on Q.
All functions u, are of the class cloc(‘ni) Choose x & .0-

ne D (B(x,,2R)), M =1 on B(x,,R), ID"”(R' and V=[’f'l"""f'm]6
e D(RM. Then

fIR < AD(uk'rl),D'qr) dx =

f <kAu0m, nw> dx- Jom < XA Du D7 ¥) dx.
Putting ¢ = W we can rewrite the last equality as

(4.1) j;,h D(ukn);nq) dx=‘4m((1-7kA)(D(ukn)+7 Aukuvz ;0D dx -

' -3’_&%{ kADuk,Dn\y> dx.
Now we can apply"
Lemma 4.3. Let v,g,f be from D( R )y % e R™, nz3, and
let for all ¥ & D (R™)
'IR""< Dv,Dy > dx= fk"‘ £,0y> dx+ fkmgtydx-

Then for A e (n-2,n) and &> 0 exist k=k( & ,A)>0 and a=a(A)>0 °
such that 2 5
Sn DV 12 Ixoxg 1" ax £ 1+ € Ya(a ) (1022 Jgn! £1%1x-x |

At
ol 817 1 [T ax

and lim a(A)=1.
A Mt‘)( )

We omit the proof of this lemma. It can be found in a slight-
ly modified form in [2].

Note that we are to prove this theorem oniy for n23. In the
case n=2, every system (2.1) is regular. (It follows e.g. from
Theorem 3.1.)

From (4.1) and from the conclusion of Lemma 4.3 we obtain
for ¢ and & positive

[l DG ) 1265, 1" X dx € (1+ € )alA )(1+ L“—%’—)
o Lol A= 0 )+ Au D |7 Ix-x o
+Ky fkmlkhnukﬂnlzlx-xol -A+2 dx £
- 100 -



C
£+ ) (v a2 (e 8B L) (1-2 K A)0Cu ) 12 1x-xy 172 axe

- k 2, A2 g
“‘Kz[fllmlkAUkD’llzlx‘xol dx+ fl"‘i ADUkD"ll | x x0| dx]

|4 «

23y~
£(1+e)(1+ )alA) (1 %2)—)(7\%%)2 S D€y ) 11 x-x,
Ky JonClul2+10u, 12 dx

since supp |Dq |c P=B(xg,2R)\ B(xO,R) and the function

1011||x—x0| % is bounded on P.

A
Now we have 3?:>K(n) and so we can choose positive §,d" and
A > n-2 such that

- 2
(1+a)(1+a")a(9\')<;im°)2<1+ -2y <1
o

and hence

2 - i
fB(x,,R)lnunl |x-x0|» ékdluk|w1( ).4(:-
2y
(0,8, 5= Aplul 1/2 ¥
12 3 wl/2a0)
If we take into account the definition of the space H, A(SIZ) and
its imbedding into Co"(ziz) we have for x,y “Qz
uy (x)-u (y)
Ix-y|% ]
where C does not depend on k. Letting k —>co we obtain the con-
clusion of the theorem.

5. Open problems
a) Is }he estimate a« %E% in Lemma 3.4 sharp ?

b) It is a well known fact that in the case n=2 or m=1 is
the system (2.1) regular. The case_n=2 is the consequence of the
theorem 3.1, but our condition on 52 does not take into account
the number of the equaiions m. It w&uld be better to have condi-
tions in the form

2o >K(m,n)

m,n).
kY 2 )
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