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sets covered by any recursively enumerable set of strings that co-
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In this paper, the notion of semigeneric set of natural num-
bers (NNs) is introduced on the basis of the class of recursive-
ly enumerable (r.e.) sets of (binary) strings covering all recur-
sive sets of NNs. The well-known correspondence between recursive
real numbers and recursive sets of NNs makes the obtained results
interesting also from the point of view of constructive mathema-
tics. Semigenericity is a generalization of weak l-genericity in-
troduced and studied by Kurtz [4). we give a new characterization
of this type of sets. )

We now consider the notation. The sign = denotes graphical
equality. For relations and operations on sets of NNs (or strings),
a standard notation is used, AN B signifies the difference and
AAB the symmetric difference of sets A and B. The set of (ell)
NNs is denoted by N, the symbdls s, t, u, v, W, X, y, Z are va-
riables for NNs. A xy <x,y> denotes a primitive recursive pair-
ing function which is 1-1 and onto and 97, and :r2 two primitive
recursive functions such that (Jfl(m), m&(m)) =m for any NN m.
For every sets A and B of NNs and every NN k A® B is the set
ix:3y(x=2y&yeAVx=2y+1&yeB)§ and (A) = {x:{k,x>e& A}, whe-
re == stands for "denotes". @x(...) means: the least NN
x fulfilling (...).

A string is a finite seguence of 0's and 1's (i.e. a word in
the alphabet 10,1}1). In the seqrfl the symbols @ , 6, play the



role of variables for strings, A is the empty string, 1h(@€ )

is the length of 6 . Further, 6 * ©* denotes the concatenation
of 6 and T , @ E 6 means 6 extendggo and @ X € “means ®
lexicographically precedes 6 . For any NN n, let d; be a string
with the number n in the linear ordering < of all strings. Thus,
for any NN k, strings of length k have just numbers 2k-1, 2k,.‘.,
o+i_g, Strings are often taken for (finite codes of) functions
from finite initial segments of N into £0,1% and signs denoting
sets of NNs also stand for their characteristic functions. Thus,
6(x) is defined if and only if x<1h(& ) holds and Ax A(x) is
the characteristic function of A for any set A of NNs .

For any sets ‘f and '.-! of strings, any string & , any set
A of NNs and any NNs m and n, m£n,

a) 4AY>= {d’ :xe At; A Im,n] denotes the string correspon-
ding to the restrictwn of the function A x A(x+m) to the initial
segment $x:x<n-m}¥;

. b) 6 < A ("A extends 6 " or " 6 covers A") denotes

s ALO0,lh(&)]; " S’ covers A" means: there is a siring 'L‘e":?
covering A; " ‘30 covers & " means: any set bf NNs covered by 6'
is also covered by ‘J " ‘:fl overlaps S’o" means: there is a set
of NNs covered by both ¥, and £

Let us notice that by Konig” s lemma (9’ covers ) &=
& AxVp (Ih(e)=x=> 3viTe Fo & 6’*9)) holds and, con-
sequently, for any r.e. set Y of strings the predicate " & covers
6" of a variable 6 is recursively enumerable.

We assume a standard indexing of all partial recursive func-
tions of one variable and indexing as well as enumeration of all
r.e. sets of NNs and, consequently, also of all r.e. sets of
strings. Let Py be the partial recursive function with index x,
w the domain of ¢, and w5 the finite subset of H enumerated
after s steps. (Hence, < w P is the r.e. set of strings with in-
dex x and (H5> its finite part obtained after s steps. )

Analogically, for any set A of NNs and any NN x c/ denotes
the partial A-recursive function of one variable with A- index Xy
N denotes the do‘nain of 9x’ and A° the jump of A (i.e. the set
'ix Py A(x) is detined}). The notation q has the usual meaning:
it the evaluation of 9B(y) where B=> { z:z<1lh(w) & ¥ (2)=1%
(and thus, ¥ € B), finishes within lh(¥ ) steps and all oracle
information needed is coded in T , ‘then q'f((y) is defined and
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qﬁ(y)—denote the value of qg(y);otherwise qi(y) is not defi-
ned. Clearly, the predicate"qi(y) is defined" of variables T .
x and y is recursive. :

We use the notation on tt-reducibility and T-reducibility
introduced in Rogers [83, degtt(A) and degT(A) denote tt-degree
and T-degree of the set A, respectively. For any property P of
sets of NNs a degree is called P (resp. P-free) if it contains
some (resp. no) set with property P. (Thus, -for some P a degree
can be both P and non-P.)

For any strings @ and & , set < of strings and recursive
function f

a) "@ <44 6 via f" means: for any NN m, m<1lh(gp ), the asso-
ciated set of the tt-condition f(m) is a subset of the set
{x:x<1h(& )} and (em)=1& (f(m) is satisfied by the set
fy:y<1n(€) & E(y)=11)) holds;

b) JI(e,D) (979 stands for inverse image) denotes a (fi-
nite and possibly empty) list of all strings being the shortest
ones fulfilling the predicate (@ é%t't via f) of a variable T ;

c) II(L, )= _U. g9 (%, ).

“rved

Let us notice that for any recuréive function f the predica-
tes (@ éttﬁ' via f) of variables @ and & and Az (@ £447T via
f) of a variable (© are, obviously, recursive.

The (Lebesgue) measure on the class of all sets of NNs int-
r&duced by Sacks [91 gives us in a natural way a measure on the
class of all sets of strings. For any set % of strings and any
string 8 , the class of all sets of NNs covered by both ¢ and
6 is obviously measurable and we denote the measure of it by
@w(¥,8). Let @ (&) denote (S ,A). Thus, (u.({'r:%)=2'lh(t)
and the predicate (< wx)> ,Su)>(1—2'y) . (u.({go]) of variables
x, y and @ is recursively enumerable.

For any NN m and recursive function f we say'ﬂiwm? is ef-
fectively measurable via f" if :

Vxy(200) ¢y = | @(EWECIP ) @(CWEP)|£27%) holds.

A set ¥ of strings is called a covering if & is a r.e. set
which covers all recursive sets of NNs; a covering is said to be
proper if it does not cover the empty string (i.e. if none of
jts finite subsets is a covering).

Remark 1. The sets ix:< HX> is a coveringt and fx:<{W D is
4 p—
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a proper covering} are TTa-complete, every covering is a dense
r.e. set of strings and {x <:w Y is dense? is a TT“—complete set.
Further, if the set E of NNs is in TTE, 14n, then the class of
all sets of NNs covered by < W » for any x€E is a TT +1-Class
of sets.

Using the results of Jockusch and Soare [1,2] we shall re-
member that for any NN m the class of all (characteristic func-
tions of) sets not covered by <;w P> is a recursively bounded
(r.b.) TTl—class or even a r.b. special 79 1-class, when <4 W P is
a proper covering.

In Kudera [ 3] the class of NAP-sets which corresponds to
notiohs from constructive mathematics (Martin-Lof [5], Demuth
[10]) is studied. A set A of NNs is called a NAP-set if there is
no recursive function f such that for any NN m (< Nf(m)P ) £
£2™™ holds and (wf(m)> covers A. It follows from [11, Remark 1)
that there is a recursive function e such that, for any NN m,
{He(m)) is a proper covering and (u({‘we(m))>)< 2™™ holds and,
for any set A of NNs, (A is a NAP-set)&> 3 x (A is not covered
by € "e(x)) ).

For our purposes we need to know the following definition
and results quoted from Kurtz [41:

Definition 2 ([41). A set of NNs is said to be weakly 1-
genefic if it. is covered by any dense r.e. set of strings.

Theorem 3 (L4)).1)A T-degree is weakly l-generic if and only
if it is hyperimmune. So, by [6] the class of all weakly l-gene-
ric T-degrees is closed upwards. :

2) Every hyperimmune T-degree contains a hyperimmune set the
-complement of which is hypetimmune, too.

" Further, the following result is known:

Theorem 4. For any weakly l-generic set A of NNs and any
NNs i and j, i#), the sets (A)i and (A). are tt-incomparable
weakly l-generic sets and, consequently, (A)i <4t A holds. Thus,
there is no minimal tt-degree being weakly l-generic.

It is eaéy to prove the following statement.

Theorem 5. Let f and g be two increasing recursive functi-
ons with disjoint ranges and h a recursive function. Then there
exists a NN m such that

a) m(« Hm>)=1 and, consequently, (Hm)? i$ dense;
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b) for no set A of NNs covered by {Wm)
Ix:f(x)e Al £, Ix:0(x)e A% via h holds.

Definition 6. A set of NNs is called semigeneric if it is
a nonrecursive set covered by any covering.

As we have seen, any NAP-set is non—sémigeneric. Let us no-
tice that any dense TTg—class of sets of NNs contains all weakly
l-generic sets and also many of recursive sets. On account of
this and regarding Remark 1 we have proved the following state-
ment.

Theorem 7. 1) Any weakly l-generic set is semigeneric.

2) The class of all semigeneric sets is a TTE-class (of me-
asure zero), the class of all weakly l-generic sets is a TTg—
class (effectively measurable with measure zero L11]). These
classes and their complements are dense and none of them is a
TTg—class‘

Remark 8. Let f be a recursive function and m a8 NN. Then
there is a NN n such that LW > = JI (LW, > ,£) and for any set
A of NNs there is a unique set B of NNs for which B étt A via f
holds and, consequently, (A recursive => B recursive) and
(€W » covers B) & (<W_» covers A) hold. Thus, when 4Hm>
is a covering { W » is a covering, too.

Theorem 9. 1) Let the set A of NNs be semigeneric. Then any
set B,. for which 8 <it B étt A holds, is semigeneric, too. Con-
sequently, degtt(A) contains semigeneric sets only and for any
NN i the set (A)i is either recursive or semigeneric. Thus, a)
any tt-degree is either semigeneric-free or it contains only
semigeneric sets; '

b) the class of all semigeneric-free (i.e. non-semigeneric)
nonrecursive tt-degrees is closed upwards, because its complement
(i.e. the class of all semigeneric or recursive tt-degrees) is
closed downwards.

2) For any weakly l-generic set C the set C @ C from
deg,,(C) is a semigeneric set which is not weakly l-generic.

3) Let E be a non-semigeneric nonrecursive set. Then for
any set B, EéT B, the set E® 8.from degT(B) is non-semigeneric.
Thus, the class of all non-semigeneric nonrecursive T-degrees is
closed upwards.
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4) Any T-degree (T-) comparable with degT(ﬂ') is non-semi-
generic (i.e.it contains a set which is not semigeneric).

Proof. It follows immediately from Theorem 5, Remark 8 and
[2, Corollary 1.1]. ’

Let us notice that according to the last theorem NAP tt-de-
grees are semigeneric-free.

Now we shall study connections between hyperimmunity and we-
ak l-genericity and between hyperimmunity and semigenericity.

Lemma 10. Let m be a NN and M a recursive set of NNs such
that for any set B of NNs and for infinitely many NNs n
(1) Sx:n€x3¥nM=4{x:n£xinB=> (4W_ P covers B) holds. Then

(2) (MAA hyperimmune) =» (< W_> covers A)

holds for any set A of NNs.

Proof. It is obvious that (1) must hold for any NN n and
that, consequently, for any NN n there is a NN k such that

Ve(lh(@ )=n"=> (4 wm> covers @*M[n,n+k1)) is fulfilled. As

we know, the predicate (4 Wm]> covers ExMIx,x+yl) of variables
@, x and y is recursively enumerable and so we can construct an
increasing recursive function f such that

pr(lh(go )=£(x) =» (LW P covers exMIf(x),f(x+1)-11))
holds and the proof is completed.

Theorem 11. Let 4Nm> be a covering. Then for any recursi-
ve set M and any set A (2) holds.
Proof. It is enough to use Lemma 10.

Corollary 12. Let A be a set of NNs. If there exists a recursive
set M such that the set MOA is-hyperimmune, then A is semigene-
ric.
M ~%fh particular, all hyperimmune sets and all co-hyperimmune
(e.g. hypersimple) sets are semigeneric.

By the results of Miller and Martin [61], Theorems 3, 7 and

9 and Corollary 12 the following theorem is proved.

Theorem 13. 1) For any set A, B<; A<, ", there exists a
hyperimmune and, consequently, semigeneric set B such that
AL B étt A.
2) For any nonrecursive set A T-comparable with the set 8’
a) the degree ﬂegT(A) is i) ﬁygzrimmune and, consequently, weakly
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1-generic and thus also semigeneric;

ii) non-semigeneric;

b) if B 1is a semigeneric set and C a non-semigeneric set
(both) from degT(A), then B <, B @cC =; A holds and B® C is
non-semigeneric; thus, the class of all semigeneric tt-degrees
(contained in degT(A)) is not closed upwards.

Any minimal tt-degree T-under #° contains, according to 1)
and Theorem 9, semigeneric sets only. In connection with this and
2) let us notice that Sacks has constructed a minimal T-degree
under degT(B') [9] and Degtev and Marchenkov a r.e. minimal tt-
degree (see [73).

Remark 14. Let 4Wm]> be a dense set of strings. Then for
any string 6 we can find a string @ such that the string 6 x ©
is covered by < W_ » . Iterating the process we can get a recursi-
ve function f for whlch 1h( d'f( ))>1 and Ve (lh(®)=n"=> (LW ¥
covers U % df(n))) hold for any NN n. Let g be a recursive func—
tion such that g(0)=0 and, for any NN k, g(k+1)=g(k)+
+1h( J( ) )) Then g is increasing and the set M, where
Mg y: _-'_1 x(g(x)£y<g(x+1) & f(g(x))(y-g(x))ﬂ)} is recursive.
By Lemma 10, (2) is valid for any set A of NNs.

)

Remark 15. Let M be a recursive set of NNs and A a set of
NNs such that the set MAA is not hyperlmmune Then there exist
an increasing recurswe function f and M M MvM NN\ M, fulfilling
ix: f(n)l—x<f(n+1)}ﬁ(MAA)*ﬂ for any NN n. Let & be the set
16 : 3 v x(1h(t)= f(x)& 6 =vxMlE(x),t(x+1)-1D)}. Then & is a
dense r.e. set of strjngs which does not cover A.

Remarks 14 and 15 give us a characterization of weakly 1-
generi_c sets.

Theorem 16. A set A of NNs is weakly l-generic if and only
if for any recursive set M the set MAA is hyperimmune.

Corol’la'rx 17. For any set A of NNs and any recursive set M
of NNs we have A =,, MAA, (A semigeneric) <= (MAA semigeneric)
and (A weakly l-generic) <= (MAA weakly 1- generic).

Proof. Follows immediately from Theorems 9 and 16 and vali-
dity of BA(CAD)=(BAC)AD for any sets B, C and D.

As we shall see, in general, semigenericity is not connected
with hyperimmunity.
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Example 18. Let A be a set of NNs. Then, for the set B,
where B @& {x:ar,(x)eAl, B =,, A and (thus) (A semigeneric)<&=>
&> (B semigeneric) hold, but for no recursive set M the set MAB
is hyperimmune.

Now we turn to tt-reducibility.

Lemma 19. 1) For any recursive function f there are recursi-
ve functions g and h such that for any NN m €W (m)) is a dense
set, T (4N am ))’ f) is a r.e. set of strings effectlvely mea-
surable via .7\x hKm,x>») and @ (IT (LW (m)P £))£2™" holds.

2) (A...tt B)& (A weakly 1- generlc)&(B NAP-set) holds for
no sets A and B of NNs.

Proof. Using the s-m-n-theorem we get a recursive function
g such that for any NN m W . = 4x: 3y(1h(d‘y)>m&x=

= @z(Ih( &)=3.10( FIH& T o, &u(IT (7, 1)) &
2-2 .1h (cf)

The last equallty shows how to construct a recursive function h
having together with g the properties described in 1). 2) follows
immediately from 1) and Remark 8.

In the terminology useéd in Demuth [11) @ -almost every set
of NNs is a NAP-set. The class of all sets B of NNs fulfilling
B £, B has @ -measure 1. Thus, most of sets of this class are
NAP-gets and, as we have seen in Theorem 13 and in Lemma 19, tt-
under any such set there are semigeneric sets but no weakly l-ge-
neric sets.

»”

Remark 20, Let <« m“> not cover the empty string and let A
be the least set (in the lexicographic ordering) not covered by
4N, > . Then the r.e. set {x:(Vy) , (Ih( )=1n(&,) => (€<uy
covers & ))} and A are tt-equivalent. Thus, according to the
quoted results on NAP-sets, there is a r.e. NAP tt-degree.

Thearem 21. There is a hypersimple and thus semigeneric set
E of NNs such that no set A aof NNs fulfilling A étt E is weakly
l-generic. '

Proof. By Remark 20, Dekker s theorem and part 2 of Lemma
19 there is the désired set E. '

Theorem 22. There is a weakly l-generic r.e. tt-degree.
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Proof. Let f be an increasing recursive function such that
£(0)=0 and for any NN p there is a NN g fulfilling 2f(p)-1£q <
‘_’-Zf(p”’)-Z and ((Wq) covers/\).

We construct a partial recursive function ¢ of two variab-
les with the following properties. Let m and n be NNs and let
k == @x(n 42f(x) 1) and t & (Zf(k*1)+1 2). Let us remember
that Vy(1n( o )=f(ks1) <= PYICE N 12y £t). For any NN x
u&(m n>,x) is defined if and only if n£x ‘Zf(k+1)-2 and
Yz(1h( o) =1(k+1) = (AW, > overlaps & x ¢,)) hold. If
2=Km,n?, x) is defined then there exists a NN w such that < W, ]7
covers d}, A d}-x c w and 2«m,n>,x)=<w,x+1>.

There are recursive functions 9, and g and @ -recursive
functions hO and h tulfilllng: Wg Km, n))is the range of

Ax22&m,n>,x), ho «Km,n?)=2eKm, n> @x(ee(m,n> x) is defined)),

h(0)= <0,07, h(p+1) ho(h(p)) wg(o)-Ko 0>t and wg(p+1)

= U W hold for any NNs m, n and p.
X6 WQQQ g_(x) ¥
Let ¢ be a NN for which Wc= {x:3vyzKv,yYe wg(z)& 1h( d"x)=

1 d) & o, <)}

Then the increasing sequence {3t (h(x))—l}oi=1 contains all
NNs p for which { W ) is a dense set. Further, for any positive
NN x the string (h(x)) is covered by 4 w(ﬂ (hlxy)= 1))- and

extended by the strlng (h(x+1)) Let A be a (unique) set of
NNs covered by cf (h(x)) for any NN x. Then A is obviously weak-

ly 1-generic set being the least set (in the lexicographic or-
dering) not covered by the set 4_W Y and according to Remark 20
the proof is completed.

Now we shall present some results on the structure of semi-
generic T-degrees and tt-degrees. '

Theorem 23. There is a hyperimmune set E of NNs such that
<; 8" and (B<; Cé&; E => C semigeneric) holds for any set C
of NNs.

Proof. The construction of E will proceed in stages. For
each NN n at the end of stage n we shall have a string Thsl
(covering the set under construction) such that a) 1h('tn+1)22n
and any covering with index m (i.e. of the form ﬂn>), where

= 19 =



m£n, covers any set C of NNs for which the function Ax C(x) is
[
the extension of the function 9n"+1,

b) no recursive function with index m, m<£n, majorizes any
set of NNs covered by T ..
Let v, =M.

Stage n. We have a string 7. Let An be the set
Ax:x< 1h( 'tn)&fcn(x)=1}-

Substage (a). See whether o_ is a recursive function.

If so, find a NN p_ such that 1h( ’t’n)épn and no set B,
Anlo,pnlxls B, is majorized by &.

If not, define pﬁ<--= lh('t:'n).

Let ?n = An[(l,pn]*l (thus, ¥  extends < ).

Substage (b). Let 5°n’w$§ (] :‘Ensgo&(cpﬁ(w) is defined
and 9?(0.‘.1)} for any NN w.

Case 1. The set Q gn,w of strings is dense in {go HRCHRE

[ @}‘ Construct recursive sets Bn and Cn such that "E’n covers

n
set Lx:x£n&(LW > covers c )t

If Pn# g, find NNs Sn and tn such that for any NN mePrl the
string Cnto,tn] is covered by 4 wm> , 1nh( ?n)ésn and the functi-

B_L0,s ]
on qnn n

= 8,00,s.
When Pn=ﬂ define «  ,< 'q':'n.

B_ and 9nn is the characteristic function of Cn. Denote Pn the

is defined at each NN xétn. Define Thel =

Case 2. There are a NN w and a string €& such that "Ens 6
and no extension of & belongs. to &Pn,w. Find such pair w,6 and
define T el = 6. -

This completes our description of stage n.

Observe that T, is defined for any NN n and let
E %{X:By(x—tlh('cy)&f (x)=1)%¥. The described construction is
obviously recursive in @", E is the desired set (E =; p" is ex-
cluded by Theorem 9) and the proof is completed. \

Corollary 24. There is a hyperimmune T-degree under
degT(E") which contains. semigeneric sets only.

Remark 25. Let A and B be sets of NNs such that degT(A) is
hyperimmune-free and B éTA. Then, according to [7], we have
B£,, A and degT(B) is hyperimmune-free (consequently, degq(A)=
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= degtt(A) and by Theorem 9 this degree is either semigeneric-

free or containing semigeneric sets only).
]

Theorem 26. There is a set A of NNs such that A" sTﬂ" and
degT(A) is a hyperimmune-free minimal T-degree which contains
semigeneric sets only.

Proof. It is sufficient to modify slightly the proof of The-
orem XVII [8, pp. 276-279). Let us remember that in the proof
the construction of (the characteristic function of) nonrecursive
set A, the T-degree of which is minimal, proceeds in stages. For
each positive NN n at the end of stage n we have two characteris-
tic functions of (different) recursive sets, say Arl' and Ag, and
an increasing recursive function h" for which (a.0.) h"(0)>0
and A?[O,hn(o)-ljé. A[G,hm((])—l], where 14 i42, hold.

For any NN p we modify

a) stage 2p+l so, that we choose h2p+1(0) so great that not
only the functions ¢ and Ax A(x) differ on the segment
ix:x< h2p+1(0)} but we also have: when { W_J» covers both sets

Agpand A%p, then it covers the string A§p+1[0,h2p+1(0)_1] and,

consequently, the set A;

b) stage 2p+2 using the hint from Exercise 13,34 [8,p. 2981
to ensure the T-dedree of A to be a hyperimmune-free one and
At = g" to hold.

According to Remark 25 the described modification of the quo-
ted proof ensures the existence of the desired T-degree.

We shall need the following result of Jockusch and Simpson
(qpoted here in our terminology).

Theorem 27. There is a proper covering <Wb> such that any
pair B, C of different sets of NNs not covered by 4wb> forms a
tt-minimal pair, i.e. B and C are nonrecursive and A £, B &
BAgi, C => (A recursive) holds for any set A of NNs.

Theorem 28. There is a set C of NNs such that C" = g"
and degT(C) is a hyperimmune-free minimal T-degree which is se-
migeneric-free.

Proof. Let b be the NN from Theorem 27. By [1, Theorem 2.4]
there is a set C not covered by 4Hb> (and thus non-semigeneric)
such that C" == g" and degT(C) is hyperimmune-free. According
to Remark 25 this degree is semigeneric-free and for any set E of

-
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NNs we have E.l.—T C=> Eétt C. Using this fact and properties of
diwb) we can easily show (as in [12]) that deg;(C) is a minimal
degree. ’ \

As we have seen, there are both pure semigeneric and semige-
neric-free minimal T-degrees (or tt-degrees). Now we shall show
that the class of all semigeneric T-degrees is not closed upwards.

Lemma 29. Let « WBP' be a proper covering and C a set of
NNs such that degT(C) is hyperimmune-free. Then there is a set A
of NNs not covered by (HaP and such that (A® C)" =, C" and
dag‘(AGB C) and degT(A) are both hyperiwmune—free and semigene-
ric-free.

Proof. Under the supposed conditions any C-recursive func-
tion is majorized by some recursive function. Let J° be the class
of all sets of NNs of the type B ® C, where B is any set not cove-
red by < W, » . Then 7 is a r.b. TTg’c-class and by relativizati-
on of [1, Theorem 2.4) there is a set A of NNs not covered by
4.Na)> such that (A®C)" =, C" and degT(AO C) is C-hyperimmune-
free and thus also hyperimmune-free. The set A is obviously non-
semigeneric. To complete the proof it is sufficient to use Theo-
rem 9 and Remark 25.

By means of constructive mathematical analysis we can prove
the following result:

Lemma 30. For any NAP-set A and any set B of NNs such thét
B<ii B £,, A holds there is a NAP-set C fulfilling C£; B=,4 C.

Examgle/Bl. By Remark 25, Theorem 26 and Lemma 29, where
a = e(0), there are sets C and A of NNs such that among the fol-
lowing three hyperimmune-free T-degrees degT(C), degT(A) and °
degT(A‘G)C) the first one is semigeneric (hence NAP-free) and mi-
nimal, the second and third ones are semigeneric-free, the se-
cond one is a NAP T-degree and the third one is, according to
Lemma 30, NAP-free. So, the class of all semibeneric (as well as
that of NAP) T-degrees is not closed upwards (for NAP T-degrees
this result was proved in Kugera [31] by a different method).

Theorem 32. Under any hyperimmune-free NAP T-degree there
is no minimal T-degree.
Proof. As it follows from Kudera L3, Theorem 53, no NAP

T-degree is a minimal one. By use of Remark 25 and Lemma 30, the
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proof is completed.

At the end, we present two results without proofs.
L)

Theorem 33. Let @(< wa>)<1 and let B be an A-recursively
enumerable set. Then there are a set E not covered by 4.Na>' and
an-A-r.e. set C such that B-éT C =44 £ and, consequently,

E£yy AL

Remark 34. 1In the last theorem, the condition @m(LW P)<1
is substantial. Indeed, according to Jockusch and Soare [1, p. 48],
for any nonrecursive set B there is a proper covering <_Nd)> whiéh
covers any set E of NNs fulfilling B&; E. Thus, @ (LW D)=}
must hold.

Theorem 35. Let A and C be sets of NNs. Then C ‘tt A’ holds
if and only if there are a recursive function f and an A-recursi-
ve function g of twq”variables such that for any NN m C(m)=
= limy g(m,y) and géﬁo lg(m,y)-g(m,y+1)| & £(m) hold.

Addition. A. Kugera has informed me that in Ceitin’s paper
[13] there are results which can be, according to a result of
Kusner([ 14, Theorem 11), reformulated as follows and which, con-
sequently, are a weaker form of part 1 of Theorem 9 and of Corol-
lary 12: .

a) (A,Br.e)&(B<,, BZ4y A) & (A semigeneric):é B semi-
generic,

b) any hypersimple set is semigeneric.

For details see Demuth, Kugera vRemarks on l-genericity, se-
migenericity and related concepts", in this volume.

References

[1) JOCKUSCH C.G.Jr., SOARE R.I.: 1719 classes and degrees of
theories, Ttans.Amer.Math.éoc.173(1972). 33-56.
[2] JOCKUSCH C.G.Jr., SOARE R.I.: Degrees of members of TT?
classes, Pacific J.Math. 40(1972), 605-616.
[3) KUCERA A.: Measure, TT?-classes and complete extensions of

PA, Lecture Notes in Math., vol.1l1l41, Springer-Verlag,
Berlin 1985, 245-259.

[4] KURTZ S.A.: Notions of weak genericity, J.Symbelic Logic 48
(1983), 764-770.

£sl MARTIN-LOF P.: Notes on Constructive Mathemstics, Almquist &
Wiksell, Stockholm, 1570.

[6] MILLER W,, MARTIN D.A.: The degrees of h Eeri mune sets,
f’Math.Logik Grundlagen Math. 1411968 , 159-166.

- 83 -

Z.



{7] ODIFREDDI P.: Strong reducibilities, Bull.Amer.Math.Soc. &
(1981), 37-86.

[8] ROGERS H.Jr.: Theory of recursive functions and effective
computability, McGraw-Hill, New York, 1967.

{91 SACKS G.E.: Degrees of unsolvability, Annals of Mathematics
Studies 55, Princeton University Press, Princeton,
N.J., 1963.

{10) DEMUTH 0.: 0 konstruktivnych psevdo&islach, Comment.Math.
Univ.Carolinae 16(1975), 315-331. .

{11] DEMUTH O.JPO nékotorych klassach arifmetigeskich déjstvitél'-
. nych &isel, Comment.Math.Univ.Carolinae 23(1982),
453-465.

{12) JOCKUSCH C.G.Jr., SIMP®ON S.G.: Minimal degrees, hyperimmune
’ degrees, and complete extensions of arithmetic,
Preliminary report 781-£10, Abstracts of Amer.Math.
Society, 1980, vol. 1, number 6, p. 546. ¥

[13) CEITIN G.S.: On upper bounds of recursively enumerable sets
of constructive real numbers, Proc.Steklov Inst.
Math. 113(1970), 119-194, published by Amer.Math.
Soc.,Providence, 1972. A

{141 KUSNER B.A.: Coverings of separable sets, in: Issledovanija
po tsorii algorifmov i mat. logike, vol. 1, Vyt.
Centr AN SSSR, 1974, 235-246 (Russian).

Matematicko-fyzik4ln{ fakulta, Karlova Universita, Malostranské
ndm. 25, 118 00 Praha 1, Czechoslovakia

(Oblatum 17.9. 1986)

- 84 -



	
	Article


