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SOME REMARKS ON REVEALNESS
A. TZOUVARAS

Abstract: We present a further classification of classes
according to their degree of revealness, which is uniformly in-
duced by schemas of normal formulas.

Key words: Alternative Set Theory revealed class, fully
revealeé class, normal formula. ' ’

Classification: O3E70

Revealed and, especially, fully revealed classes are, in a
sense, good approximations of set-definable classes. Every such
class includes an abundance of infinite sets and behaves well
with respect to prolongation, countable meets, set-definable map-
pings etc.

In an attempt to explore deeper the concept, we define some
forms being either between simple and full revealness, or weaker
than simple revealness. These forms, as well as possibly others,
arise naturally from the restriction of a general schema which
describes full revealness (see Proposifion 1).

Terminology and notation are the usual ones. Basic referen-

ce book on Alternative Set Theory is [v]}. m,n,..., denote finite
natural numbers, a,b,..., denote arbitrgry natural numbers, while
lower greek letters e ,f3,%,..., are used exclusively to denote

ordinals. Thus, v <f3 means & € Bnfil.

Recall that a class X is revealed if for every countable
Y& X there is a set u such that YSu&X. X is fully revealed
(f. revealed) if for every normal formula 9(;,1) of FL,, the
class {x; @(x,x)} is revealed. Clearly the latter condition is
much stronger than the former.

The following is a rather well-known, easily proved charac-
terization which shows the close connéction'betueen‘full reveal-

ness and saturation (see Is-vl, § 1, or LP-S), Theorem 5.1).
- 63 -



Proposition 1. A class X is f. revealed iff the following
schema holds:

T1T2 T () (W) (@ 0 @R Gy (08 &g ()) —>
Ay 1% Fn

> (3 x)(Vn) (@(x,X) & ¢ (x)),

for all normal formulas @(x,Z) and all sequences of set-formu-
las (tyn)n of FLy. =

-

.

By restricting the class of normal formulas for which the
above schema is true, we get various weaker forms of full reveal-
ness..

In this paper we consider three such restrictions, namely
the schemas:

G Fpr -
xel

9&,9&,..

(72 SR .
1:°2 (x), Ay (X) for all positive g.

x€Z
(Recall that the formula y(x,Z) is positive in Z, or simply posi-
tive, if it belongs to the smallest class of formulas containing
the set-formulas, the formula xe€ Z and closed under the positive
operations &, , , .)

(X)), A

For simplicity, we drop the superscripts 2 92,... from the
above symbols of schemas, as well as the subscript xeZ. Thus, the
first of the foregoing three schemas is now written A(X). Every
normal formula ¢(x,Z) yields an operator ﬂ? which transforms
the class X to the class [ (X)=4x; @(x,X)¥. Then, it is easy
to see that for every normal ¢ , every X and every (9n)

A\y(x) holds iff A( T (X)) holds.

n' '

Thus, the forementioned schemas take the forms:
ACO (Y mM(AxeX)(g &.. kg )—> (AxeX)(Vn) g,
ACP(X)): (Y n)(3 xeP(X)')(vl& ko)) — (BxeP(X))(Vn)yn,
A( I"q(X)):(Vn)(Bx € F?(X))(QIS\ ...&qn)-—-)
—>(Ix e T;,(X))(V n)q:n, @ positive,

where P is the power-class operator.

Definition 2. The class.X is called: a) weakly revealed
(w. revealed) if A(X) is true, b) strongly revealed (s. revealed)
if A(P(X)) is true and c) weak fully revealed (w.f. revealed) if
A( ﬂ?(x)) is true for all positive @.

The following contains some trivial facts.
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Pfogosition 3. a) X is w. revealed iff for every sequence -
(xn)n of set-definable classes such that Xn(th ...an)#:B
for every ne FN, we have Xn (/3 X )=*0.

b) Every revealed class is w. revealed.

c) Every s. revealed class is revealed.

d) Every w.f. revealed class is s. revealed.

Proof. a) is immediate from the explicit formulation of A(X),
and it is well-known that every revealed class satisfies a).
c) Let X be s. revealed and Y=4y,,y,,...J€X. Put P 0=1y,,...
.,yn}sx. Then apply the schema A(P(X)) with those ¢ to get
an xe P(X) such that YS x. d) is obvious since xE1Z is positive.D

Proposition 4. X is w.f. revealed iff for every positive
@, Mp(X) is w.f. revealed.

Proof. Immediate from the fact that if ¢,y , are positive
formulas, then the formula & such that Tg = \"'?° PiY is positive.O

Proposition 5. The following are equivalent:
a) X is s. revealed, b) for any sequence (un)n of subsets of X,
there is a set u such that ‘U{un;ne FN¥cu<sX, c¢) P(X) is revea-
led. v
Proof. a)—>b). Let {ul,uz,...igf’(x), and put
qn(x)-_——ulu ...vu €x. By A(P(X)), we get easily a set ueP(X)
such that U{un;nEFNis-.u. )
b)—> c). Let again {ul,uz,...}s P(X). Then there is some u such
that U{un;neFN}s ucX. Therefore (ul,uz,...}s P(u)s P(X).
¢)—> d). This is immediate from the fact that, by definition,
X is s. revealed iff P(X) is w. revealed, and Prop. 3(b). O

Corollary 6. a) Every TT-class is s.revealed. b) Every
JT-semiset is w.f. revealed.

Proof. a) If X= n{xn;neFN}, then P(X)= NiP(X );ne FNE,
thus P(X) is revealed. b) If X=N{u ;neFN},. then for every
positive @, r‘q(X)=ﬂ~i\"q(un);ne FN} (cf.LT], 1.6). O

The following shows that strong revealness does not become
stronger if we replace P(X) by P2(X), P3(X) etc.

Proposition 7. If X is s. revealed, then P"(X) is s. revea-
led for all ne FN.

Proof. It suffices to prove that if X is s. revealed, then
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80 is P(X). Let X be s. revealed and let Ufu ;ne FN} € P(X). Then
u & P(X) and Uunf-.x for every n, hence U{Uun;ne_FNig X. By
assumption, there is u such that U{Uun;ne FN3}cuc X. It follows
that Uu cu for every n, whence u & P(u). Therefore U{un;ne FNfS
€ P(u) and P(u)E P(X). O

Let us denote by WR,R,SR,WFR,FR the (uncodable) classes of
W. revealed, revealed, s. revealed, w.f. revealed and f. revealed
classes respectively. Then, by Prop. 3,

FREWFRS SRE R EWR.

We are going to show that all these inclusions are proper.

Proposition 8. FR g WFR.
Proof. Let X be a proper Tl-semiset. By Corollary 6,
X € WFR. Clearly X & FR, since V\ X cannot be revealed. O

Proposition 9. WFR § SR.

Proof. Put R=U{ax{a};ae N\ FN}. R is s. revealed. Indeed,
if u¢ R, then there are c,de N such that FN< c<dom(u)<d, hence
usU{ax{at;c<a<d? It follows from the revealness of N\ FN
that, given a sequence of subsets of R, (u_) there are c,d of

n‘n’
N such that U{un;neFN}QU{ax{a};tx a<d
Let now {bo,...,bei be an infinite set of infinite natural num-

bers in their natural ordering. Put w=U{ bdx{d};dé e}. Let
X=Ru w. Glearly X is s. revealed. Consider the formula ¢ (x,Z)=
=(VyeN)(xs&Z"{y}). Then, ¢ is positive and it is easy to ve-
rify that Pq(X)=FN. Since FN is not revealed, X is not w.f. re-
vealed according to Prop. 4. O

Proposition 10. SR & R.

Proof. Consider an'infinite set {ao,...,ad} of infinite na-
tural numbers in their natural ordering and such that a§+1-ax
is infinite for all x<d. Let Werl® [ax,a“l) and enumerate all.
w,, N&FN, as follows : W= {y‘n;ac e LY. Put X = Ly nin€efNg
for every o € £ . We shall construct two sequences (u‘)‘, e’
(z )eeq with the following properties:

i) useuy, forec<f,

i1) X e u, for all « e S,

iii) (zu)«.cnis a decreasing sequence of natural numbers
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coinitial to U{wx;x>FN},

iv) {zﬁ; B<xtiNu, =@, for all « € -

v) For every « ¢ & there is some c> FN such that .wa\ uﬂ|>
>c for all x£d and all f<oc-

Suppose the sequences have been constructed and put

X=Uiu ;xe D%, Since (u,), eq 1is increasing, it is easy to see
that X is revealed. Further, by (ii), U{wn;ne FN3= U{ X ; ¢ € Dic
€X and, by (iv), if Z= £z ;¢ € 23, then ZnX=@. Suppose
u-\,wn;neFN}s ucX for some set u. Then, there is some e>FN
such that U{ wx;x£ efc uSX. But this contradicts the fact that
Z is coinitial to U{wx;x>FN} and Zn X=@. Therefore there is no
u such that U{ wn;neEN}_C.u.C_X which, by Prop. 5(b), implies that
X is not s. revealed.

Construction of the.sequences. Assume ug,zg have been defiined for
all 3 <o« and satisfy properties (i)-(v). Then U{Xﬁ; f<attc

c U{uﬂ; B<e«t {z5; <%} N(U{ug; B=< «t)=@ and there is so-
me c>FN such that wa\u |>c for all x£d and all 3< o . Then,
clearly, using the prolongation axiom, we can extend U4 u,,;[s<ac?
to a set u such that un{zﬂ; p<w«i=p and |w \u|>c for all x&d.
Choose, besides, v such that X, & v aizg; B<e}=P and |v nw |£1
for every x<d. This is certainly possible since each X, meets
every interval W, in exactly ‘one point. Put Uy U VVv. Then

wa\ ud'|>-C-1 for all x<d. Suppose {r"; < e LY is a fixed enu-
meration of the class U{ wx;x>FN}. Choose z, such that z <r_,
z.<2pa for every B3 <« and z e U{wx;x>FN}\u¢. This is pos-
sible because of condition (v). It is obvious that the defined

UerZ, conform with all requirements and the construction is comp~-
lete. DJ

Lemma 11. a) A class X is non-revealed iff there.. is a
function f such that £"FN& X and the class {a;f(a)& X} is coiniti-
al to N\ FN.

b) A class X is w. revealed iff for every function f such that
f"FNg X, there is some a> FN such that f(a)e X. :

Proof. Both claims are easily proved using the prolongati-

on axiom. O

Proposition 12. R g WR.

Proof. Take a decreasing fl-sequence (x"{‘)"‘e_r1 of natural
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numbers coinitial to NNFN, and consider the class X=N\{xd_;oce.0-}-
By Lemma 11(a), where f is the identity, we get that X is not re-
vealed. On the other hand, let £"FNeX. It suffices to show that
£9(NN\ FN)n X4 0. Suppose the contrary. Then £"(N\ FN)s {x ;o €03-
Clearly, for non-trivial f (i.e. f£ such that £"FN is countable),
there is ueNNFN such that f"u is infinite. Therefore -{x‘;ao e}
contains an infinite subset v. But then v must be coinitial to
N\FN, a contradiction. O

. Let us remark that in proving Proposition 10, we constructed
a class X of the form X=U{ud;oce.0.} where (u‘)au_n_ is increasing,
which failed to be s. revealed. Clearly, every such class is reve-
aled but the converse is open for us. Let us call these classes
completely revealed (c. revealed) and let CR denote the class of
all c. revealed classes. Then,

Proposition 13. SR § CR.

Proof. Let X be s. revealed and let X= {x‘;oce.(l? be an enu-
meration of X. Since for every countable sequence {ul,uz,..‘ te
€ P(X) there is some u such that U{un;ns FN}cueX, it is clear
that we can define inductively an increasing sequence (ud)d‘n_ such
that x < u, for every « € 02 and u, & X. Hence X= Ufu, ;oce 25%.
Therefore SR& CR and combining this with the proof of Prop. 10,
we get SRECR. O

Proposition 14. X is s. revealed iff there is an increasing
) -sequence (u)geq such that X= (VR u“;oce.Q'i and P(X)=U{P(u‘);
x e f%- .

Proof. Suppose X satisfies the conditions and -lvl,vz,...}s
g P(X). Let v € P(ua ) for every ne FN. If o is some ordinal
greater than all ocnr,' then clearly U{ vn;neFN}E u s X. Converse-
ly, suppose X is s. revealed. By Prop. 7, P(X) is s. revealed,
hence c. revealed according to Prop. 13. Let P(X)= Ulr ;e 03
where (r ), . is increasing. Then X= UP(X)=U{Ur ; oc € A% Put
u.=Ur, . Clearly (‘ud_)«'en_is increasing and X= U{u_; < et. Let
veP(X). Then'ver  for some o , hence v& Ur, =u, and this pro-
ves the claim. O !

One could see the notions of revealness defined in this pa-
per in a more general context as follows: Let 0 denote the class
‘of operators induced by normal formulas. 0 together with the
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usual law of composition of transformations, form a semigroup.
The operator I induced by the formula xeZ is the unit element
of the semigroup. By subsemigroup of 0 we mean any subclass of O
closed under composition and containing I. For example the sub-
class 0_ of positive operators is a subsemigroup of 0. Let us de-
note by (Pl,..., MY the subsemigroup generated by the elements
Pl,...,l"n of 0. Then, clearly,

a) X is w. revealed iff A(T (X)) holds for every Ce I

b) X is s. revealed iff A(T (X)) holds for every e < P>.
(See Prop. 72

Generalizing, one could say that every subsemigroup S of 0
defines a reasonable notion of revealness, say S-revealness, in
the obvious way, that is,

X is S-revealed iff A( (X)) holds for every e S.
0f course not every such notion is expected te be non-trivial, in-
teresting and useful. Some of them, however, might be. For examp-
le the notion corresponding to the subsemigroup {P, ~ 7, where ~
is the operator of the formula x ¢ Z, much stronger than strong re-
vealness, seems to be interesting.

We finish with some questions:

1) 1Is every revealed class completely revealed?

2) Does there exist any subsemigroup S of 0 such that re-
vealness be equivalent to S-revealness?

3) Does there exist any "small"Asdbsemigroup T of 0 such
that full revealness be equivalent to T-revealness?
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