

Werk

Label: Article **Jahr:** 1985

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0026|log8

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

26,1 (1985)

NONLINEAR PARABOLIC VARIATIONAL INEQUALITIES Marco BIROLI

Abstract: The existence of a weak solution of a nonlinear parabolic variational inequality (with quadratic growth in the spatial gradient) is studied using a Hölder continuity result: a Meyers estimate and a local uniqueness result are also obtained in the case of continuous weak solutions.

 $\underline{\text{Key words}}\colon$ Nonlinear variational inequalities, nonlinear parabolic equations and systems.

Classification: 49A29, 35K55

§ 1. Notations

 Ω is a bounded open set in $\mathbb{R}^{\mathbb{N}}$ with smooth boundary $\partial \Omega = \Gamma$, $\mathbb{N} \geq 3$.

$$Q = (0,T) \times \Omega$$

$$B(R_{\xi}x_{0}) = B_{R}(x_{0}) = \{x \in \Omega \mid x-x_{0} \mid < R\}$$

$$Q(R; z_0) = Q_R(z_0) = \{(t,x) \in Q | x-x_0| < R, |t-t_0| < R^2\} z_0 = (t_0,x_0)$$

$$Q^{-}(R_{\dagger}z_{0}) = Q_{R}^{-}(z_{0}) = \{(t,x)\in Q | x-x_{0}| < R, t_{0}-R^{2} < t < t_{0}\}$$

$$Q_{\theta}^{-}(R_{t}z_{0}) = \{(t,x) \in Q|x-x_{0}| < R, t_{0}-R^{2} < t < t_{0}-6\theta R^{2}\},$$

 $\theta \in (0,1)$

 $\Psi:Q \longrightarrow R \cup \{-\infty\}$ is a Borel function everywhere defined in Q

Let now & be a positive real number

$$E(\varepsilon,z_0,\Upsilon,r) = \{z=(t,x)\in Q_Q^T(r,z_0),\Upsilon(t,x)\geq z\}$$

This paper was presented on the International Spring School on Evolution Equations, Dobřichovice by Prague, May 21-25, 1984 (invited paper).

$$z \sup_{(t,t_0+r^2/4)\times B(r/2,x_0)} \Psi - \varepsilon^{\frac{3}{2}}$$

 $\Delta_{\Theta}(\varepsilon, \mathbf{z}_{o}, \Psi, \mathbf{r}) = \Delta_{\Theta}(\varepsilon, \mathbf{r}) = \operatorname{cap}_{\mathbb{Q}(2\mathbf{r}, \mathbf{z}_{o})} \mathbb{E}(\varepsilon, \mathbf{z}_{o}, \Psi, \mathbf{r}),$ where the definition of the capacity used in the paper is given in § 2.

 $d_{\Theta}(s, s_{0}, \Psi, r) = d_{\Theta}(s, r) = \Delta_{\Theta}(s, r) d_{\Pi}^{-1} r^{-1}$, where d_{Π} is the capacity of the parabolic cylinder with r=1 in $R^{\Pi+1}$.

For the Sobolev spaces on Ω or Q we assume the usual notations

Let $a_{\underline{i}\underline{k}}(t,\underline{x})$ be bounded measurable functions on Q, i, j=1,2,...,N, such that

$$\sum_{i,\frac{1}{4}=1}^{N} a_{ij}(t,x) \, \xi_{i} \, \xi_{j} \geq \nu \, |\xi|^{2} \quad \nu > 0$$

 $A:L^2(0,T;H_0^1(\Omega)) \longrightarrow L^2(0,T;H^{-1}(\Omega))$ is the operator defined by

$$\langle Au, v \rangle = \int_{Q} \int_{i, \frac{\pi}{2} = 1}^{N} a_{ij}(t, x) D_{x_{j}} u D_{x_{j}} v dxdt$$

 G^{Σ} is the Green function relative to A (or its extension by $-\Delta$ to $L^{2}(0,T_{*}H^{1}(R^{N}))$ in the case of boundary points z) with singularity in z

 G_0^z is the regularized Green function defined by the problem $-\int v_t G_0^z dxdt + \langle AG_0^z, v \rangle = \int_{G_0(c;z)} vdxdt$

$$G_{0}^{Z} \in L^{2}(0,T_{2}H^{1}(\mathbb{R}^{N})), G_{0}^{Z}(t-2,\cdot) = 0 \quad \forall \in D(\mathbb{R}^{N+1})$$

where we indicate again by A its extension to R^{H+1} by $-\Delta$ and $f_{Q,(Q;\Sigma)}$ v dxdt denotes the average of v on $Q(g;\Sigma)$.

§ 2. <u>Introduction and results</u>. Recently some attention has been paid to the parabolic variational inequalities with a non-

linear term, which is quadratic in the spatial gradient, in conmection with some problems of optimal stochastic control [2]. In the present paper we will study for these variational inequalities the existence, the uniqueness (global or local) and the regularity of a solution. In the case of equations, a general result of existence of a solution has been obtained by L. Boocardo, F. Murat [8], for variational inequalities some partial results, depending essentially on a Hölder continuity result for bounded solutions, has been given by M. Biroli [4], J. Naumann and M.A. Vivaldi have solved the problem of the quasi-variational inequality of the stochastic impulse control. For nonlinear elliptic variational inequalities with irregular obstacles a general result on the Hölder continuity of the solutions has been proved by J. Frehse, U. Mosco [11], and U. Mosco [19],[20]; using the methods of these papers, M. Struwe, M. A. Vivaldi prove the Hölder continuity of a bounded solution of a nonlinear parabolic obstacle problem with an obstacle, which is Hölder continuous in time and one sided Hölder continuous in space variables, and M. Biroli, U. Mosco prove a general result in the linear case [22].[7].

Here, using some tricks, given in [22], we extend the result of [7] to the nonlinear case and we use this new result to prove the existence of a solution of our variational inequality.

The uniqueness of the solution in the linear case and the local uniqueness in the nonlinear case are investigated in § 4, giving a result extending the one proved for elliptic equations in [14].

Further regularity of the solution is studied in § 5 proving the dual inequalities for our problem, this result appears in [16] and the proof given here is the same as in [16]. We state now the results precisely.

Let E be a compact set, EcP, where $P=(t_1,t_2)\times B$ and

 $\operatorname{cap}_{\mathbf{p}}(\mathbf{E}) = \operatorname{Inf} \left\{ \int_{\mathbf{P}} |\mathbf{D}_{\mathbf{x}} \mathbf{w}|^2, \ \mathbf{w} \in D(\mathbf{P}) \right\}$ w=1 in a neighbourhood of E} we have so defined a Choquet capacity [9], and we can prove that if a set E is capacitable, then

$$cap_{p}(E) = \int_{t_{1}}^{t_{1}} cap_{N}(E_{t}) dt,$$

where $cap_{\overline{N}}$ is the usual Newtonian capacity and E_{t} is the section at time t of E.

Let H(t,x,u,p) be a function measurable in $(t,x) \in Q$ and continuous for $(u,p) \in R \times R^N$ such that

(2.1)
$$|H(t,x,u,p)| \leq K_1 + K_2 |p|^2$$

 $\forall (t,x) \in Q$, $|u| \leq C$, $p \in \mathbb{R}^N$, where K_1 , K_2 depend on C. A function $u \in L^2(0,T;H^1(\Omega)) \cap L^\infty(\Omega)$ is a <u>local</u> solution of the parabolic obstacle problem relative to A,H,Y if

(a) $u \ge \Psi$ q.e. in Q for the above defined capacity

(b)
$$\int_{0}^{t} \int_{\Omega} \{v_{t} \varphi(v-u) + \sum_{i,j=1}^{N} a_{ij}(t,x) D_{x_{j}} u D_{x_{j}} (\varphi(v-u)) + H(\cdot,\cdot,u,D_{x}u) \varphi(v-u) + 1/2 \varphi_{t}(v-u)^{2}\} dxdt \ge$$

$$\geq 1/2 \| \varphi^{1/2}(v-u) \|_{L^2(\Omega)}^2$$

 $\forall \forall \in H^{1}(0,T;H^{-1}(\Omega)) \cap L^{2}(0,T;H^{1}_{0}(\Omega)) \cap L^{\infty}(Q), \quad \forall \geq \mathcal{Y}$ and where $\varphi \in D(\overline{Q})$ with $\varphi = 0$ in $(0,T) \times \partial \Omega$ and $\varphi(0,\cdot) = 0$

(c) for every constant $d \ge \Upsilon$ in $supp(q) \cap (0,t) \times \Omega$

1/2
$$\| \varphi^{1/2}(u-d)^+ \|_{L^2(\Omega)}^2$$
 (t) $\neq c \int_0^t |D_x u| D_x \varphi u + 1 D_x u|^2 \varphi + \varphi_+(u-d)^2 1 dx dt$

A function u is a solution of the parabolic obstacle problem relative to A,H, Ψ if (a),(b) and (c) hold for $\varphi \in D(\overline{Q})$, while we consider a null initial value. The <u>Wiener modulus</u> of Ψ is defined by

 $\omega_{\Theta}(\mathbf{r},\mathbf{R}) = \inf \{\omega \geq 0; \int_{\kappa}^{\mathbf{R}} \delta_{\Theta}(\omega,\rho) d\rho/\rho \geq 1\}$ We prove the following result:

Theorem 1. Let u be a local solution of our problem and $\mathbf{z}_0 \in \mathbb{Q}$; there exists Θ_0 such that for $\Theta \in (0, \Theta_0)$ we have $\operatorname{osc}_{\mathbb{Q}(\mathbf{r};\mathbf{z}_0)} \mathbf{u} \in \mathbb{K} \setminus \mathbb{M}(\mathbb{R}) \omega_{\Theta}(\mathbf{r},\mathbb{R})^{\beta_{\Theta}} + \omega_{\Theta}(\mathbf{r},\mathbb{R}) \wedge \operatorname{osc}_{\mathbb{Q}(\mathbb{R};\mathbf{z}_0)} \mathbb{Y}^{\zeta}$, where $0 \leq \mathbf{r} < \theta^{1/2} \mathbb{R} < \mathbb{R} < \theta^{1/2} \mathbb{R}_0$ (R suitable) and

$$M(r) = \left(\int_{Q^{-}(n_1, x_0)} |D_x u|^2 dxdt \right)^{1/2} + osc_{Q(r; x_0)} u.$$

Moreover if there exists $\overline{u} \in H^{1}$, $\overline{p}(Q)$, p > N+1, $\overline{u}=0$ in $(0,T) \times \partial \Omega \cup (0) \times \Omega$ $\overline{u} \geq \Psi$ q.e. in Q and $z_0 \in (0,T) \times \partial \Omega \cup (0) \times \Omega$ and u is a solution,

$$osc_{\mathbb{Q}(r; \mathbf{z}_0)} u \leq K R^{\beta}$$
 $\beta \in (0,1), r \leq R_0, R_0$ suitable.

Corollary 1. Let u be a local solution of our problem and let the assumptions of Th. 1 hold, then

A point $z_0 \in Q$ such that there exists a $\theta \in (0,1)$ with

$$\lim_{R \to 0} \omega_0(\mathbf{r}, \mathbf{R}) = 0 \qquad \mathbf{R} \leq \mathbf{R}_0$$

is a Wiener point, if

$$\omega_{R}(\mathbf{r},R) \leq K(\mathbf{r}/R)^{\infty} \propto \epsilon (0,1) \quad R \neq R_{0}$$

zo is a Hölder Wiener point.

Corollary 2. Let u be a lecal solution of our problem; if so is a (Hölder) Wiener point, then u is (Hölder) continuous at so.

Corollary 3. Let u be a local solution of our problem; if u is one sided (Hölder) continuous at so, then u is (Hölder) continuous at so.

Remark 1. The result of Th. 1 at time t=0 holds also if we have an initial data $u_n \in \mathbb{H}^{1,q}(\Omega)$, q > W.

We consider now the problem of the existence of a solution to our problem. We suppose

- (a) every point $s_0 \in Q$ is a Wiener point or Ψ is one sided continuous at s_0
- (b) there exists a function \overline{u} as in Th. 1 and $H(t,x,u,p)(u-\overline{u}) \geq -c |p|^2 K(|u|^2 + 1) \qquad c < v c$

Theorem 2. Suppose that Ψ is quasi continuous on the set $Y = \{\Psi > -\infty\}$ and that there is a measure m on Y "weaker" than the capacity. Let Ψ be bounded from above and (a) and (b) hold, then there exists a continuous solution of our problem.

Remark 2. The result of Th. 2 can be extended to the case of general initial data and Ψ quasi l.s.c. on Y, if in (b) $\Psi_0(0)=u_0$.

Theorem 2'. Let $u \in C(Q)$ be a local solution, $D_t \Psi \in L^q(0,T;H^{-1},q(\Omega))$, $D_X \Psi \in L^q(Q)$, q>2, then $D_X u \in L^p(Q)$, p>2. For the problem of the uniqueness or of the local uniqueness of the solution of our problem we obtain the following result:

Theorem 3. In the linear case (H=f(t,x)) the solution $u \in C(\overline{\mathbb{Q}})$ (if there exists) of our variational inequality is unique.

Let H be differentiable in (u,p) and such that

 $|H_{p_1}(t,x,u,p)| \le K (1+|p|)$ $(t,x) \in Q, |u| \le C.$

 $|H_n(t,x,u,p)| \le K (1+|p|^2).$

Consider two local solutions u₁, u₂ ∈ C(Q) of our variational inequality and suppose

 $u_1=u_2 \ \underline{in} \ (t_0-R^2,t_0+R^2) \times \partial B(R_1x_0) \cup \{t_0-R^2\} \times B(R_1x_0) \subset Q$ $\underline{then. \ if} \ R < R_0, \ R_0 \ \underline{suitable}, \ u_1=u_2 \ \underline{in} \ Q(R_1x_0) \ (s_0=(t_0,x_0)).$

Remark 3. The result of Th.3 holds also in the case of general initial data. Consider now the following two conditions:

- (c) $\Psi \in H^{1,\infty}(\mathbb{Q})$ and there exists $\Psi_0 \in L^2(0,T_1H_0^1(\Omega)) \cap L^\infty(\mathbb{Q}) \cap H^1(0,T_1H^{-1}(\Omega))$ with $\Psi_0 \geq \Psi$ q.e. in Q.
- (d) $Y_t + AY + H(\cdot, \cdot, Y, D_XY) \le k$, k > 0, in the sense of measures.

Theorem 4. Let the assumptions (c) and (d) hold; then, if u is a solution of our variational inequality, we have

 $0 \le u_t + Au + H(\cdot, \cdot, u, D_x u) \le (\Psi_t + A\Psi + H(\cdot, \cdot, \Psi, D_x \Psi)) \quad \forall \quad 0 \le k$ in the sense of distributions on Q, hence, if $a_{ij} \in H^{1, \infty}(Q)$, u
belongs to $H^{2,1, Q}(Q)$, $1 < q < +\infty$.

Remark 4. The result of Th. 4 holds also for general initial data, of course for the last part of the result a regularity assumption on the initial data is necessary.

§ 3. Sketch of the proof of Theorem 1. The main tool in the proof of Th. 1 is a Poincaré's type inequality involving only the spatial gradient, which is given for local solutions of our variational inequalities.

Lemma 1. There exists a constant \hat{d} such that $\hat{d} \ge Y(t,x) - \varepsilon \quad \text{in } (t_0 - 6 \cdot \theta \cdot R^2, t_0 + R^2) \times B(3/8^R; x_0)$

and

We observe at first that we consider here bounded solutions of our variational inequality.

We consider at first the case of interior points.

Let $\vec{z} = (\vec{x}, \vec{t}) \in Q(R/4; z_0)$ and consider $\eta = \eta(x)$ such that

$$\eta \in D(\mathbb{R}^{\mathbb{N}})$$
, $\eta = 1$ in $B(\mathbb{R}/8; \overline{x})$, $\eta = 0$ for $x \notin B(\mathbb{R}/4; \overline{x})$

$$0 \le \eta \le 1$$
 in $B(R/4, \overline{x})$
 $|D_{+}\eta| \le CR^{-1}$

and $\tau = \tau(t)$ such that

$$\tau \in D(R)$$
, $\tau = 1$ for $t \ge \overline{t} - 3\theta R^2$, $\tau = 0$ for $t \le \overline{t} - 5\theta R^2$,
$$0 \le \tau \le 1 \quad \text{in } (\overline{t} - 5\theta R^2, \overline{t} - 3\theta R^2),$$
$$|D_t \tau| \le C(\theta R^2)^{-1}.$$

Choosing in the variational inequality v=d, where $d \ge Y$ in $(\bar{t}-6\theta R^2,\bar{t})\times B(R/4,\bar{x})$ and $\varphi=\tau^2-\eta^2 G_0^{\bar{z}}$ sink $((u-d)^2)_{\epsilon}$,

$$(((u-d)^2)_{\epsilon})_{t} + ((u-d)^2)_{\epsilon} = (u-d)^2,$$

 $((u-d)^2)_{\epsilon} (\overline{t} - R^2) = (u-d)^2 (\overline{t} - R^2),$

we obtain, after some computations,

$$\int_{\overline{t}-\theta R^2}^{\overline{t}} \int_{B(\theta^{1/2}R;\overline{x})} |D_{x}u|^2 G^{\overline{z}} dxdt + |u-d|^2(\overline{z}) \le$$

Taking now the supremum for $\overline{z} \in Q(\theta^{1/2}R_1z_0)$ we obtain:

Lemma 2. Let $d \ge \Psi$ in $(t_0 - 6\theta R^2, t_0 + R^2/4) \times B(R/2 x_0)$,

0 6 (0,1/64) the following relation holds

$$\begin{split} &\int_{t_{o}-\Theta R^{2}}^{t_{o}} \int_{B(\Theta^{1/2}R;x_{o})} g^{\mathbf{z}_{o}} |D_{\mathbf{x}}u|^{2} d\mathbf{x} dt + \sup_{Q(\Theta^{1/2}R;\mathbf{z}_{o})} |u-d|^{2} \leq \\ &\leq K_{1} \exp(-K_{2}\Theta^{-1}) \quad \Theta^{-3N/4} \sup_{Q(R;\mathbf{z}_{o})} |u-d|^{2} + \\ &+ K_{3}\Theta^{-(1+3N/4)}R^{-(N+2)} \int_{t_{o}-\Theta R^{2}}^{t_{o}-2\Theta R^{2}} \int_{B(3/8R;x_{o})} |u-d|^{2} d\mathbf{x} dt . \end{split}$$

Choosing now $d = \hat{d} + \epsilon$, \hat{d} as in the lemma 1, using the lemma 1 and taking into account the estimates on the Green function [1], we obtain the following relation

$$\int_{Q^{-}(\Theta^{1}b_{R;z_{0}})} |D_{\mathbf{x}}u|^{2} g^{\mathbf{z}_{0}} d\mathbf{x}d\mathbf{t} + (osc_{Q(\Theta^{1}/2_{R;z_{0}})}u)^{2}$$

$$K_{4}K_{5}(\Theta) (osc_{Q(R;z_{0})}u)^{2} + (K_{6}(\Theta) \sigma(\varepsilon,R))^{-1}.$$

$$\int_{t_{0}-R^{2}}^{t_{0}-\theta R^{2}} \int_{B(R;x_{0})} |D_{\mathbf{x}}u|^{2}g^{\mathbf{z}_{0}} d\mathbf{x}d\mathbf{t} + K_{7}(\Theta) \varepsilon^{2},$$
where
$$K_{5}(\Theta) = \exp(-K_{2}\Theta^{-1}) \Theta^{-3N/4},$$

$$K_{6}(\Theta) = K_{8} \exp(-K_{9}\Theta^{-1}) \Theta^{-(1+N/4)},$$

$$K_{7}(\Theta) = K_{10} \Theta^{-3N/4}.$$

Taking into account that $K_5(\theta)$, $K_6(\theta) \rightarrow 0$ as $\theta \rightarrow 0$ we obtain the following relation

$$\int_{Q_{1}Q^{4/2};z_{o}} |D_{x}u|^{2} g^{z_{o}} dxdt + (osc_{Q(\theta^{1/2};z_{o})} u)^{2}$$

$$(1 + K_{11}(\theta) \delta'(\varepsilon,R))^{-1} (\int_{Q_{1}R;z_{o}} |D_{x}u|^{2} g^{z_{o}} dxdt + (osc_{Q(R;z_{o})} u)^{2}) + K_{12}(\theta) \varepsilon^{2},$$

where $\theta \leq \theta_0$, θ_0 suitable.

Using the same methods in the elliptic case [11], we obtain

$$\operatorname{osc}_{\mathbb{Q}(\mathbf{r}_1\mathbf{z}_2)} \mathbf{u} \leq \mathbb{K}(\mathbb{M}(\mathbb{R}) \exp (-\beta \int_{\mathbf{r}_1}^{\mathbb{R}} d' (\varepsilon, s) s^{-1} ds) + \varepsilon)$$

where $r \in \theta^{1/2}R$, K depends on θ and

$$M(R) = (\int_{Q_{1}^{-}(R;z_{0})} |D_{x}u|^{2} dxdt)^{1/2} + osc_{Q(R;z_{0})} u.$$

Choosing now $\varepsilon = \omega(r,R)$, we have the result of Th. 1.

The result of Coroll. 1 follows by an iteration method taking into account the result of Lemma 2 [19],[20].

Coroll. 2.3 are easy consequences of Coroll. 1.

The proof of the Hölder continuity at boundary points can be given by the same methods if we replace in the test function d by $\overline{\mathbf{u}}$.

- § 4. Existence result. The proof of the existence result is divided into several steps.
- (1) We consider at first the linear problem and we prove the existence of a solution by penalization using the same methods as in [17].

We observe that in this case the sequence of the solutions of the penalized problems converges in $L^2(Q)$; then only one solution is characterized as limit of the sequence of the solutions of the penalized problems.

In the following we consider always such a solution in the linear case. Consider now two solutions of the linear problem; using the penalization we have easily

$$1/2 \|u_1(t)-u_2(t)\|_{L^2(\Omega)}^2 + \int_0^t \|D_x(u_1(s)-u_2(s))\|_{L^2(\Omega)}^2 ds \le$$

$$\leq 1/2 \, \|\mathbf{u}_{1}(0) - \mathbf{u}_{2}(0)\|_{\mathbf{L}^{2}(\Omega)}^{2} + \int_{0}^{t} \int_{\Omega} \, (\mathbf{f}_{1} - \mathbf{f}_{2}) \, (\mathbf{u}_{1} - \mathbf{u}_{2}) \, d\mathbf{x} d\mathbf{x}$$

(2) Consider now the case in which the nonlinear term H(t,x,u,p) is bounded; in such a case the existence of a solution is proved by Schauder's fixed point theorem, using the Hölder continuity result proved in § 3.

(3) In the general case we denote

$$H_n(t,x,u,p) = H(t,x,u,p) (1 + n^{-1}H(t,x,u,p))^{-1}$$

We observe that $H_n(t,x,u,p)$ is bounded and we indicate by u_n the solution given in (2).

We prove as in [15] that the sequence u_n is uniformly bounded; then, from the result on the Hölder continuity of the solutions proved in § 3, the sequence u_n is also bounded in $C^{\infty}(\overline{Q})$, $\infty \in (0,1)$.

From the above we can suppose that u_n converges to u in $C(\overline{Q})$. We have

$$1/2 \|u_n(t) - u_m(t)\|_{L^2(\Omega)} + \int_0^t \int_{\Omega} |D_x(u_n - u_m)|^2 dxds \le$$

$$\leq \int_0^t \int_0^t (H_n(s,x,u_n,D_xu_n)-H_m(s,x,u_m,D_xu_m))(u_n-u_m) dxds.$$

We observe that the sequence $H_n(\cdot,\cdot,u_n,D_xu_n)$ is bounded in $L^1(Q)$ (u_n being bounded in $L^2(0,T;H_0^1(\Omega))$) then u_n converges in $L^2(0,T;H_0^1(\Omega))$ to u_n Consider now the sequence $H_n(\cdot,\cdot,u_n,D_xu_n)$; this sequence is equi-integrable and converges pointwise to $H(\cdot,\cdot,u,D_xu)$. Then it converges in $L^1(Q)$ to $H(\cdot,\cdot,u,D_xu)$. Summing u_n , we have

 u_n converges to u in $C(\overline{Q})$ and in $L^2(0,T;H^1_0(\Omega))$

 $H_n(\cdot,\cdot,u_n,D_xu_n)$ converges to $H(\cdot,\cdot,u,Du)$ in $L^1(Q)$.

Then we can easily prove that u is a solution of our variational inequality.

§ 5. A Meyers type result (Th. 2'). The proof can be obtained by standard methods ([12] for the elliptic case, [21] for parabolic case with small nonlinearities) using the variational

inequality with $v=u_R$ (u_R is the average of u in the parabolic cylinder Q_R) and φ as a cut off function relative to Q_R .

§ 6. Uniqueness and local uniqueness results. Consider at first the linear case (H=f does not depend on u, p). We observe that if u is a solution of our variational inequality $u_+ + Au - f \in M^+(Q)$

(M+(Q) is the space of positive measures on Q), then we have

(6.1)
$$\langle u_t + Au, \varphi(v-u) \rangle_{M(0), C^0(0)} \ge \int_{\Theta} f(v-u) dxdt$$

(C^C(Q) is the space of the functions in C(Q) with compact support in Q) where $\varphi \in C^{C}(Q)$ and $v \in C(Q)$, $v \in Y$.

Now let u_1 and u_2 be solutions of our variational inequality in $C(\overline{\mathbb{Q}})$ and denote $w=u_1-u_2$.

Let $\phi_n \in C^0(Q)$ such that

$$\varphi_n = 1$$
 in $Q_{2n} (Q_n = \{z \in Q, \operatorname{dist}(z, \partial Q) > n^{-1}\}),$
 $\varphi_n = 0$ in $Q - Q_n,$
 $|D_x \varphi_n|, |D_t \varphi_n| \leq K_1 n^{-1}.$

Using (6.1) with $v = 2^{-1}(u_1+u_2)$, $\varphi = \varphi_n$ and passing to the limit as $n \to +\infty$, we have

$$\begin{aligned} 1/2 &\| \mathbf{u}_{1}(\mathbf{T}) - \mathbf{u}_{2}(\mathbf{T}) \|_{\mathbf{L}^{2}(\Omega)}^{2} - 1/2 &\| \mathbf{u}_{1}(0) - \mathbf{u}_{2}(0) \|_{\mathbf{L}^{2}(\Omega)}^{2} . + \\ &+ \int_{Q_{1}} |D_{\mathbf{x}} \mathbf{w}|^{2} d\mathbf{x} d\mathbf{t} \leq 0, \end{aligned}$$

from where u1 = u2.

We consider now the nonlinear case; our aim is to prove a result on local uniqueness analogous to the one given in [14] for elliptic equations. Let \mathbf{u}_1 and \mathbf{u}_2 be solutions of our variational inequality, which are continuous in $\overline{\mathbf{Q}}$ and $\mathbf{w}=\mathbf{u}_1-\mathbf{u}_2$.

It is easily seen from the variational inequality that

$$(u_1)_{+} + Au_{+} \in M(Q)$$
 1=1,2.

Let $Q_R(z_0)$ be a parabolic cylinder such that w=0 in $(t_0-R^2,t_0+R^2)\times B_R(x_0)$ and in $\{t_0-R^2\}\times B_R(x_0)$.

Denote by o(R) the supremum between the oscillations of u_1 and u_2 in $Q_R(z_0)$ and by i_R the characteristic function of $Q_R(z_0)$; by the same methods used in [14] p. 234 for the elliptic equation we have

(6.2) $\int_{\mathbb{Q}_{\mathbb{R}}(z_0)} |D_{\mathbf{x}} \mathbf{w}|^2 d\mathbf{x} d\mathbf{t} \leq K_1 \int_{\mathbb{Q}_{\mathbb{R}}(z_0)} (1 + |D_{\mathbf{x}} \mathbf{u}_1|^2) + |D_{\mathbf{x}} \mathbf{u}_2|^2) \mathbf{w}^2 d\mathbf{x} d\mathbf{t}$ Using now the same methods of the lemma 1.3 [14] p. 231 we obtain

(6.3)
$$\int_{\mathbb{Q}_{\mathbb{R}}(x_0)} (1 + |D_x u_1|)^2 w^2 dx dt \leq K_2 o(\mathbb{R}) \int_{\mathbb{Q}_{\mathbb{R}}(x_0)} |D_x w|^2 dx dt + |(u_1 - u_1(x_0) - o(\mathbb{R}))^2 w$$

where the duality in the last term is between $M_b(Q_R(z_o)) + L^2(t_o-R^2,t_o+R^2; H^{-1}(B_R(x_o)))$ and $C(\overline{Q_R(z_o)}) \cup L^2(t_o-R^2,t_o+R^2; H^{-1}(B_R(x_o)))$.

Consider the last term in (6.3), using in the variational inequality relative to u_1 the test function $((1-(u_1-u_1(z_0)-o(R)))^2u_1+(u_1-u_1(z_0)-o(R))^2u_2)i_R+(1-i_R)u_1$ and in the variational inequality relative to u_2 test function $((1-(u_1-u_1(z_0)-o(R))^2)u_2+(u_1-u_1(z_0)-o(R))^2u_1)i_R+(1-i_R)u_2$ we obtain

(6.4)
$$\langle w_t, (u_i - u_i(z_0) - o(R)) w \rangle \leq 1/2 \int_{Q_R(z_0)} (1 + |D_x u_i|^2) w^2 dxdt + K_3 o(R) \int_{Q_R(z_0)} |D_x w|^2 dxdt$$
.

Then from (6.3),(6.4) we have

(6.5) $\int_{Q_{\mathbb{R}}(z_0)} w^2 (1 + |D_{\mathbf{x}}u_1|^2) dxdt \leq K_4 o(\mathbb{R}) \int_{Q_{\mathbb{R}}(z_0)} |D_{\mathbf{x}}w|^2 dxdt$ From (6.2),(6.5) we have

(6.6)
$$\int_{Q_{p}(z_{n})} |D_{x}|^{2} dxdt \leq K_{5}o(R) \int_{Q_{p}(z_{n})} |D_{x}|^{2} dxdt.$$

We recall that u_1 and u_2 are supposed to be continuous; then there exists R_0 such that for $R \leq R_0$ we have $o(R) < K_5$ and in such a case we have from (6.6) w=0.

§ 7. <u>Dual inequalities</u>. The proof of the dual inequalities uses a method which is an adaptation of the one used for the elliptic case in [10] (regularization of the nonlinear term H). Let $H_m(t,x,u,p)$ be such that

(7.1)
$$H_m(t,x,u,p) \xrightarrow{m \to +\infty} H(t,x,u,p)$$

a.e. in (t,x), $\forall r \in R$, $\forall p \in R^N$,

(7.2)
$$|H_m(t,x,u,p)| \le c_m \le K_1 + K_2 |p|^2$$

a.e. in (t,x), $|u| \in C$, $\forall p \in \mathbb{R}^N$,

(7.3)
$$|H_m(t,x,u,p)-H_m(x,t,u',p')| \leq K_m|u-u'| + K_m|p-p'|$$

a.e. in (t,x), |u|, $|u'| \leq C$, $p,p' \in \mathbb{R}^{\mathbb{N}}$.

We observe that u is also a solution of the variational inequality

$$(7.4) \quad \langle v_{t}, v_{-u} \rangle + a_{m}(u, v_{-u}) - 1/2 \| v(0) \|_{L^{2}(\Omega)}^{2} \ge \langle f_{m}, v_{-u} \rangle$$

$$\forall v \in L^{2}(0, T_{s}H_{0}^{1}(\Omega)) \cap H^{1}(0, T_{s}H^{-1}(\Omega)) \cap L^{\infty}(\Omega), \ v \ge \Psi$$

$$u \in L^{2}(0, T_{s}H_{0}^{1}(\Omega)) \cap L^{\infty}(\Omega), \ u \ge \Psi ,$$

and the solution of the variational inequality (7.4) is unique [3],[13],[10], $(a_m(u,v) = \langle Au,v \rangle + \int_{Q} (H_m(\cdot,\cdot,u,D_xu) + \lambda_m u)v \, dxdt)$, where λ_m is large enough for the strict monotonicity of a_m , $f_m = H_m(\cdot,\cdot,*,*,D_xu) - H(\cdot,\cdot,u,D_xu) - \lambda_m u.$ Let now

$$T_m = \Psi_t + A\Psi + H_m(\cdot, \cdot, \Psi, D_{\pi}\Psi).$$

We consider the auxiliary variational inequality

$$\langle v_{t}, v_{-z} \rangle + a_{m}(z, v_{-z}) - 1/2 \|v(0)\|^{2}_{L^{2}(\Omega)} \ge$$

$$\ge \langle f_{m} \vee T_{m}, v_{-z} \rangle$$

$$\forall v \in L^{2}(0, T_{t}H_{0}^{1}(\Omega)) \cap H^{1}(0, T_{t}H^{-1}(\Omega)) \cap L^{\infty}(\Omega),$$

$$u \ge v \ge u_{-1}$$

$$z \in L^{2}(0, T_{t}H_{0}^{1}(\Omega)) \cap L^{\infty}(\Omega), u \ge z \ge u_{-1}.$$

By the methods of [3], [13] we can prove that (7.5) has a unique solution.

Using the penalized problems and a regularization of \mathbf{f}_{m} and $\mathbf{f}_{m} \wedge \mathbf{T}_{m}$, we can prove (by methods substantially analogous to the one used in [10] for the elliptic case) that

$$u \leq z$$
.

Then we have u=z.

From our variational inequality we have

(7.6)
$$u_{\pm} + Au + H(\cdot, \cdot, u, D_{\pm}u) \ge 0$$

From variational inequality (7.5) we have

$$(7.7) \qquad \mathbf{u_t} + \mathbf{A}\mathbf{u} + \mathbf{H_m}(\cdot, \cdot, \mathbf{u}, \mathbf{D_x}\mathbf{u}) + \boldsymbol{\lambda_m} \mathbf{u} \neq$$

$$\leq (\mathbf{H_m}(\cdot, \cdot, \mathbf{u}, \mathbf{D_x}\mathbf{u}) - \mathbf{H}(\cdot, \cdot, \mathbf{u}, \mathbf{D_x}\mathbf{u}) + \boldsymbol{\lambda_m}\mathbf{u}) \vee$$

$$(\boldsymbol{\Psi_t} + \mathbf{A}\boldsymbol{\Psi} + \mathbf{H}(\cdot, \cdot, \boldsymbol{\Psi}, \mathbf{D_x}\boldsymbol{\Psi}) + \boldsymbol{\lambda_m}\boldsymbol{\Psi})$$

which, being $u \ge \Psi$, implies

(7.8)
$$u_t + Au + H(\cdot, \cdot, u, D_x u) \leq 0 \vee (\Psi_t + A\Psi + H(\cdot, \cdot, \Psi, D_x \Psi) + \sigma_u),$$

where $G_{m} = H(\cdot, \cdot, u, D_{X}u) - H_{m}(\cdot, \cdot, u, D_{X}u) - H(\cdot, \cdot, Y, D_{X}Y) + H_{m}(\cdot, \cdot, Y, D_{Y}Y).$

Passing to the limit as $m \to +\infty$ in (7.8) and taking into account (7.6) we have the result.

References

- [1] ARONSON D.G.: Nonnegative solutions of linear parabolic equations, Ann. Sc. Norm. Sup Pisa 22(1968),607-694.
- [2] BENSOUSSAN A., LIONS J.L.: Inéquations variationnelles et quasi-variationnelles en contrôle stochastique et en contrôle impusionnel, Dunod (1982).
- [3] BIROLI M.: Sur les inéquations d'évolution paraboliques avec convexe dépendant du temps: solution forte et solution faible, Riv. Mat. Univ. Parma 3(1974), 33-72.
- [4] BIROLI M.: Existence of a Hölder continuous solution of a parabolic obstacle problem, Boll. U.M.I. 6,2A(1983), 311-319.
- [5] BIROLI M.: Pointwise continuity for a weak solution of a parabolic obstacle problem, Lecture at the "Summer Research Institute on Nonlinear Functional Analysis and Applications" A.M.S., July 1983.
- [6] BIROLI M., MOSCO U.: Wiener estimates at boundary points for parabolic equations, Ann. Mat. Pura e Appl., in print.
- [7] BIROLI M., MOSCO U.: Wiener obstacles: the parabolic case.
 Submitted to Indiana Math. Univ. J.
- [8] BOCCARDO L., MURAT F.: Personal communication.
- [9] CHOQUET J.; Lectures on Analysis, Benjamin (1969).
- [10] FREHSE J., MOSCO U.: Irregular obstacles and quasi-variational inequalities of the stochastic impulse control, Ann. Sc. Norm. Pisa IV, IX, 1(1982), 105-157,
- [11] FREHSE J., MOSCO U.: Wiener obstacles, Collège de France, Seminar on nonlinear partial differential equations, 1982/83 Pitman (1984).

- [12] GIUSTI E., GIAQUINTA M.: Nonlinear elliptic systems with quadratic growth, Man. Math. 24(1978), 323-349.
- [13] KENMOCHI N.: Nonlinear parabolic variational inequalities with time dependent constraints, Proc. Jap. Ac. 53 A6(1976), 186-189.
- [14] LADYZENSKAYA O.A., URAL CEVA N.N.: Equations aux dérivées partielles de type elliptique, Dunod (1968).
- [15] LADYZENSKAYA O.A., SOLONNIKOV V.A., URAL CEVA N.N.: Linear and quasilinear equations of parabolic type, Trans. of Math. Mon. A.N.S. (1968).
- [16] MATZEU M., MOSCO U., VIVALDI M.A.: Optimal impulse and continuous control with Hamiltonian of quadratic growth, Preprint.
- [17] MIGNOT F., PUEL J.P.: Inéquations paraboliques avec convexe dépendant du temps; applications aux inéquations quasi-variationnelles d'évolution, Arch. Rat. Mech. An. 64(1977), 59-91.
- [18] MOSCO U.: Implicit variational problems and quasi-variational inequalities, "Nonlinear operators and the calculus of variations", Lect. Not. in Math. 543, Springer (1976).
- [19] MOSCO U.: Module de Wiener pour un problème d'obstacle, C.R.A.S. Paris 295(1982), 571-575.
- [20] MOSCO U.: Lecture at the "Summer Institute on Nonlinear Functional Analysis and Applications", A.M.S., July 1983.
- [21] STRUWE M.: On the partial regularity of weak solutions of nonlinear parabolic systems, Math. Zeitschr. 179, 4(1982), 437-453.
- [22] STRUWE M., VIVALDI M.A.: On the Hölder continuity of bounded weak solutions of quasi-linear parabolic variational inequalities, Ann. Mat. Pura e Appl., in print.

Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milano, Italia

(Oblatum 25.5. 1984)

