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NONLINEAR PARABOLIC VARIATIONAL INEQUALITIES
Marco BIROLI

Agatraot: The existence of a weak solution of a nonlinear
parabolic variational inequality (with quadratic growth in the
spatial gradient) is studied using e Holder continuity result:

a Meyers estimate and a local uniqueness result are also obtain-
ed in the case of ocontinuous weak solutions.

Kei words: Nonlinear variational inequalities, nonlinear
parabolic equations and systems.

Classification: 49A29, 35K55

§ 1. Notations

Q is a bounded open set in RN with smooth boundary 3= ,
NZz3.

Q= (0,7) x &L
B(Ryx,) = By(x,) =1ix eQ-lx-xo\< R}
QR;z,) = Qp(z,) = $(t,x) €Qlx-x |< R, \t-t |<B% 5 =(t_,x,)
QT (Ryz,) = QR(z)) = {(t,x)eQlx-x <R, t -RP< t<t}
Qg(Rsz,) = 1(t,x) € Qlz-x i< R, t,-R%< t<t - 6BR%},

e (0,1)
¥:Q—>Rui-o0t 18 & Borel function everywhere defined in Q

Let now ¢ be a positive real number

E(e,z,,Y ,r) =iz=(t,x) € Q7 (ry2,), ¥(tx) Z

This paper was presented on the International Spring School on
Evolution Equations, Dob¥ichovice by Prague, May 21-25, 1984
(invited paper).
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z Su -
R aCe/yn) Y

Ae( LN Yor) = Ae( € ,T) = “’Q(2rﬂ°)!( € 1559 Y¥,r),

where the definition of the capacity used in the paper
is given in § 2.

d‘e( -3 "og Y.r) = d‘e (6.:) - Ae( 0.!‘) 6;1 r-., where 6“
is the capacity of the parabolic cylinder with r=1 in
Rl+1.
Por the Sobolev spaces on ) or Q we assume the usual
notations
Let su(t,x) be bounded measurable functions on Q, i,j=1,2,...,N,

such that
N

A:xF(o,m;nl(:L))—» Lz(o,'!;ﬂ"1 (fL)) is the operator defined
by

N
(Au,vO= fO. ‘.'5” ai:,(t,x)l)x:l u Dxi v axdt

G® 1s the Green function relative to A (or its extension by
- A to 12(0,73H'(R¥)) in the case of boundary points
z) with singularity in z
G; is the regularized Green function defined by the problem
- [ vy 0g axat + <agg,v) - f%zz) vaxat
ae 1%(0,m8' ®M), 6F (+-2,-) =0 ven(a™!)
where we indicate again by A its extension to g by ~A and

v dxdt denotes the average of v on Q(So 3%).

fﬂ.‘g-,:.\

§ 2. Introduction and results. Recently some attention has
been paid to the parabolic variational inequalities with a non-
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linear term, which is quadratioc in the spatial gradient, in ocon-
nection with some problems of optimal stochastic control [2].
In the present paper we will study for these variational inequ-
alities the existence, the uniqueness (global or local) and the
regularity of a solution. In the case of equations, a general
result of existence of a solution has been obtained by L., Boo-
cardo, ¥, Murat [8]), for variational inequalities some partial
results, depending essentially om a Holder continuity result
for bounded solutions, has been given by M., Biroli [4], J. Nau-
mann and M.A., Vivaldi have solved the problem of the quasi-va~
riational inequality of the stochastic impulse control.

Por nonlinear elliptic variational inequalities with irreguler
obstacles a general result on the Holder continuity of the so-
lutions has been proved by J. Frehse, U, Mosco [11]1, and U. Mos-
co [191,(20]; using the methods of these papers, M. Struwe, M.
A. Vivaldi prove the Holder continuity of a bounded solution
of a nonlinear parasbolic obstacle problem with an obstacle,
which is Holder continuous in time and one sided Holder conti-
nuous in space variables, and M. Biroli, U. Mosco prove a gene-
ral result in the linear case [22],[71.

Here, using some tricks, given in [22], we extend the result of
{7] to the nonlinear case and we use this new result to prove
the existence of a solution of our variational inequality.

The uniqueness of the solution in the linear case and the local
uniqueness in the nonlinear case are investigated in § 4, gi-
ving a result extending the one proved for elliptic equations
in [14],

Purther regularity of the solution is studied in § 5 proving
the dual ineéualities for our problem, this result eppears in
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[16]) and the L..5f given here .s the same as in L161].
We state now the results precisely.
Let E be a compact set, Ec P, where P-(t,.tz)xB and
ce.pp(E) = Inf § fP IDyw 12; weD(P) w=1 in a neighbourhood of E}
We have so defined a Choquet capacity [9], and we can prove that
if a set E is capacitable, then
7

oap, (E) = fb: capy (E;) dt,
where capy is the usual Newionian capacity and Et is the section
at time t of E. .
Let H(t,x,u,p) be a function measuresble in (t,x) 6 Q and continu-
ous for (u,p)€ Rx RY guch that .
(2.1) |B(t,x,u,p)l <K + K, 1p12

v(t,x)eq, lulsc, paﬂn, where K,, K, depend on C.
A funotion ue12(0,T3H' (2))ALP(N) 1is a local solution of the
parabolic obstacle problem relative to A,H, ¥ if
(a) uz¥ gq.e. in Q for the above defined capacity
N

(v) I‘o*' fn_{vtq(v-u) + ;.Zéd sij(t,x) Dxdu Dxi (p(v-u)) +

+ H(s yoyu,Dpu) @ (v-u) + 1/2 @, (v-u)®3axat z

z12 19 2v-uli?, (1),
Lo /“(v-u \\Lzm)
VveE (0,8 (0))n12(0, BB ()AL ®(Q), vz ¥
and where g€ D(Q) with g=0 in (0,T)x AN and $(0,4)=0

(c) for every comstant d > ¥ in supp(g )n (0,t) x &
1/2 2 t
1/2 l\q / (u—d).*nhzm)(t)éc ‘f; [Dxu D qu +

+ leulzcy + Qt(u—d)zl dxdt
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A function u is a solution of the parabolic obstacle problem re-
lative to A,H, ¥ if (a),(b) and (c) hold for @< D(Q), while we
consider a null initial value. The Wiener modulus of ¥ is defi~
ned by

ae(r,R) =Inf Sw=z 0 f: cfe(w.?) dsa/goz 13

We prove the following result:

Theorem 1. Let u be a local solution of our problem and

z,€ Q; there exists 6, such that for 6 (0, 8,) we have

&
o8¢ o)uéx { M(R) we(z,R) 6., “’e(r'R)A"_acQ(tho) ¥3,

Q(r3z

where 0<r < §'/2R<R< 8'/2R_ (R, suitable) and

- 2 1/2
M(r) = ( _];'_(M%) 1D ul® axdt) /€ + °8%Q(ryz,) U
Moreover if there exists ‘ﬁsﬁ"p(Q). p>N+1, U=0 in (0,T)=
x 30 v(0) x & T zY q.e in Q and z 6 (0,1) = 30 U ()=

and u is & solution,

“oQ(l‘slo) uzk RP 3 e (0,1), r£R,, R, suitable,
Corollary 1, Let u be & local solution of our problem and
let the assumptions of Th. 1 hold, then
Yo Bg
°’°Q(r;s°) uéK(R® + och(R‘zo)Y)w(r,R) +
+ we(r,R)Aoacq(R;zo)‘f
A point 3 ¢ Q such that there exists a B€ (0,1) with
1:|."|3|__> 0me(r,R) =0 R4 R,
is a Wiener point, if
wg(r,R) £K(r/R)¥ o« ¢ (0,1) R=R

o
z, is a Holder Wiener point.
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Corollary 2. Legf u 8 tion of our blem:

s, is e ¥Wiener point u is (H51der) contimuous at
Sy
Corollary 3. Let u be & looal solution of our problem; if

u is one sided (Holder) contimuous at s,, then w is (HGlder) eon-
$inuous at = .

Remark 1. The result of Th, 1 at time t=0 holds also if we
have as initial date u e H'*%0), q>N.

We consider now the problem of the existence of a solution to

our problem. We suppose

(a) every point 5,€ Q is a Wiener point or ¥ is one sided ocon-
tinuous at s

(b) there exists a function W as in Th, 1 and

H(t,x,u,p) (u-d) Z -c [p12 = E(1u\? + 1) e<Pe~

Theorem 2. Suppose that ¥ is quasi continuous on the get
Y= {¥ > =00} and that there is a measure m on Y "weaker" than

the capacity. Let ¥ be bounded from above and (a) amd (b) hold,
then there exists a continmous solution of our problem.

Remark 2, The result of Th, 2 can be extended to the case
of general initisl data and ¥ quasi 1l.s.0. on Y, if in (Db)

v, (0)=u .

Theorem 2°. Let ueC(Q) be & locel solution, D, ¥ e
s 190,78 ' *9(Q)), D, ¥ & 19(Q), q>2, then D usILP(Q), p>2.
For the problem of the uniqueness or of the local uniquemess of
the solution of our problem we obtain the following result:

Theorem 3. In the linear case (H=f(t,x)) the solution
ueC(Q) (if there exists) of our variational inequality is unique.
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be differentiable in (u,p) and such that

Let H

t,x,u,p) 1<K (1 |
ml‘i( %89 Al hipl2 (t,x)eq, lulzc.

|Bn(t,x.u,p) 2K (1+ lplz).

Consider two local slutions uy, W€ c(Q)
equality and suppose

wy, in (t,-B%,t +8%) x OB(Ryx,) v At ~R%3x B(Rsx )c Q.
then, if R<R , R, suitable, u,=u, in Q(R;so) (so-(to,x’)).

Remark 3. The result of Th.3 holds also in the case of ge-
neral initial data, Consider now the following two conditions:
(6) ¥ c B'*®(Q) and there exists v & 12(0,73H)(0))nL%(Q) N

of our variational in-

A E'(0,5E () with v, = ¥ q.e. inQ.
( Y, +AY +H(.,-,¥,D ¥)<k, k>0, in the sense of measures.

Theorem 4. Let the assumptions (¢) and (d) hold; then, if
u is a solution of our variational inequality, we have
(o] éutﬂuﬂ{(- ,-,n,Dxu) £ (Yt-ru[ﬂ!(- 0" ,Y,ny)) V 04k

sengse of distributions on Q, hence, if 313631'“’(0), u

in the

belongs to H2*1*9(Q), 1< q<+ 0 .

Remark 4. The result of Th. 4 holds also for general ini-
tial data, of course for the last part of the result a regulari-

ty assumption on the initial data is necessary.
§ 3. Sketch of the proof of Theorem 1. The main tool in

the proof of Th. 1 is a Poincaré s type inequality involving on-
ly the spatial gradient, which is given for local solutions of

our variational inequalities.
Lenma 1., There algg.nmtntamhtht
dz¥(t,x) -6 in (£,-608%,t +5%) < B(3 sghsx,)
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and
fto-BRz f
t,-63RY  BIIGR; %)

2 -1 t,-8R? 2 2
£C(R°d(&,R) ft:—GGRz fBlR;lenxu\ axdt + £°).

(u-8)? axat <

We observe at first that we consider here bounded solutions of
our variationcl inequality.
We consider at first the case of interior points.
Let & = (X,%) € Q(R/432z) and consider m = M (x) such that
n € D(RY), m =1 in B(R/B32), 7 = O for x & B(R/4;%)
0 £ 41 1in B(R/43%)
1o | & cr™
and ¥ = T (t) such that
CeEDR), T=1for tz% - 36R%, T= 0 for t4T - 568,
04741 in (¥ - 56R%, T - 308),
In, | < c(or®).
Choosing in the variational inequality v=d, where d =z ¥ in
(-6682,%) xB(R/HyT) md @= ©2 77 0F sink ((w-0)%)¢ ,
(w02 + (=-0)2)g = (w-0)?,
((u=0)2)g (F - B?) = (u-0)2 (3-RD),
we obtain, after some computations,

e 2 Jscox ')‘Dx“\2 6% axat + lu-al?(8) «
t-6 e

4c, exp(-c, 0~1) ©=I8/4 g \u-a2
1 297 :p(’lz-sona.’é)xn(n/ui) Bl
~(1438/4) -(H42) [-30R 2
+Cy0 H ri-sen* r&(nﬂ&;iv lu-d\® axdt .

Paking now the supremum for ¥ e Q( 81/23;20) we obtain:

Lempa 2. Let dz ¥ in (t,-60R%, t +B2/4)xB(R/23x,),
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©e (0,1/64) the following relation holds
t

i [ Gz°|n ul? axdt + Sup Joo |u-al 24
to-GR" B(o &’,5‘0) x Q(91 R;zo)

£K, oxp(-K.ZO") g=3N/4 s“’Q(R;zo) [u-a|? +

,t-28R2

=(1438/4) p=(N+2) [ ° 2

+ Ky 0 R Jbo—bﬂkz BV Rix,) } a-a|? axat .

Choosing now d = d+s » d as in the lemma 1, using the lemma 1
and taking into account the estimates on the Greem funotion [1)],
we obtain the following relation

P
1D.ul? ¢ © axat + (osc u)?
f@.‘(91b'R;Z,) x Q( 91/2R;z°)

K,K5(8 ) (m;cwmo)u)2 + (Kg(8) g (e RN,
t,-aR?
J

I 2% 2
t,,—R" B(ch)mx“le dxdt +x7(0) €%,
where °

K5(8) = exp (-K, a-1) @-3W/4,
Kg(8) = Kg exp (-Kqg p-1) o-(1+8/4)
K,.{(G) & K1° e-3N/4'

Taking into account that xs(e). Kc(B) —>0as @ —> O we ob-
tain the following relation

f /g, \D ul? Gz° dxdt + (osc 1/2 u)?
Qe'hz) Tx Q(8 '/%32.)

-1 2 %

(1 +K,(8)d(€,R)) ('rﬂ-‘(Rszo) IDu\? 6 © axat +
(°°°Q(R;z°) w)?) + K5(8) 2,

where O < C 0, suitable.

Using the same methods in the elliptic case [11], we obtain

0800 (ryz,) REEMU(R) exp (- 8 IR (eum slae) 4 8)
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where r < 91/2R, K depends on € and
2 1/2
M(R) = ( fO,'(R;zo) I D ul® axat) + 080 (Ryz,) U

Choosing now € = @ (r,R), we have the result of Th., 1.

The result of Coroll. 1 follows by an iteration method teking in-
to account the result of Lemma 2 L19],[201].

Coroll. 2.3 are easy consequences of Coroll., 1.

The proof of the Holder ocontinuity at boundary points can be gi-
ven by the same methods if we replace in the test function d by T.

§ 4. Existence result. The proof of the existence result is
divided into several steps.
(1) We consider at first the linear problem and we prove the ex-
istence of a solution by penalization using the same methods as
in [17].
We observe that in this case the sequence of the solutions of the
penalized problems converges in LZ(Q); then only one solution is
characterized as 1limit of the sequence of the solutions of the
penalized problems.
In the following we consider always such a solution in the line-
ar case., Consider now two solutions of the linear problem; using
the penalization we have easily

172 g (-0 (002, ¢ I D (g (&)iy ()2, ao =

£1/2 l\u1(o)-u2(o))\\i2m)+ IS fo (44=25) (wy-uy) axag

(2) Consider now the case in which the nonlinear term H(t,x,u,p.
is bounded; in such a case the existence of a solution is proved
by Schauder ‘s tixed poini theorem, using the Holder continuity

result proved in § 3.
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(3) In the general case we denote
Hn(t,x,u,p) = H(t,x,u,p) (1 + n"n(t,x,u,p))'1

We observe that En(t,x,u.p) is bounded and we indicate by w, the
solution given in (2).

We prove as in [15] that the sequence w, is uniformly bounded;
then, from the result on the Holder continuity of the solutions
proved in § 3, the sequence u, is also bounded in c*(Q), « €
€ (0,1).

From the above we can suppose that u, converges to u in €(Q).

We have

172 ug (D (O p -+ L J 1o tugru)1? axas

£ j: fﬂ (B, (s,x,u,,Du )-E (s,x,u,,D u))(w-u) dxds.
We observe that the sequence Hn(' ,-,un.Dxun) 1s bounded in L' (Q)
(un being bounded in LZ(O,T;Hl(n))) then u, converges in

. LQ(O,T;HL(_Q.)) to u. Consider now the sequence Hh("""‘n'nx“n)‘
this sequence is equi-integrable and converges pointwise to

H(. »+»u,D_u). Then it converges in ! (Q) to H(.,«,u,D_u).
Summing up, we have

u, converges to u in ¢(Q) and in LZ(O,T-,El(.Q.))
%(’ ,'.un,Dxun) converges to H(.,+,u,Du) in ! (Q).

Then we can easily prove that u is a solution of our variational

inequality.
§ 5. A Meyers type result (Th. 2°). The proof can be ob-

tained by standard methods (£127 for the elliptic case, [21] for
narabolic case with small nonlineerities) using the variational
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inequality with ve=up (uR is the average of u in the parabolic
oylinder Qp) and ¢ a&s a cut off function relative to Qg.

§ 6. Uniqueness and local uniqueness results. Consider
at first the linear case (Hsf does not depend on u, p). We ob-

serve that if u is a solution of our variational inequality
uy + Au - feH+(Q)

(M*(Q) is the space of positive measures on Q), then we have

(6.1)  <uy + Au, @(v-u)? J, £ (v-u) axat

° r4
M(Q),Cc"(Q)
(€°(Q) is the space of the functions in C(Q) with compact sup-
port in Q) where ¢ € €°(Q) and veC(Q), v < ¥.

Now let u; and u, be solutions of our variational inequelity
in C(Q) and denote wal, -,
Let §,&C°(Q) such that
gy =110 Qy, (Q, =Lz €Q, dist(z, 3Q)>n"'}),
%p =010 Q-q,,
Using (6.1) with v = 2'1(u1+u2). @= %, and passing to the

limit as n — + oo , we have

1/2 luy (D)=u, (MI2, = 172 lu, (0)-u, (O)N2, .
/ u,()uz()Lzm) /2 uy (0)=uy( 2yt

2 &
+ J'& \D w)% axat <o,
from where u; = Wye

We consider now the nonlinear case; our aim is to prove a re-
sult on locel uniqueness analogous to the one given in [14]
for elliptic equetions. Let u; and u, be golutions of our va~-

riational inequality, which are continuous in Q and waug -, ,
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It is easgily seen from the variational inequality that
(ug); + Auge M(Q) i=1,2,

Let QR(zo) be a parabolic cylinder such that w=0 in (to-Rz,to+R2)x
2

*Bp(x,) and in {t -R 3= Bp(x,).

Denote by o(R) the supremum between the oscillations of u, and

u, in Qz(z,) end by ip the characteristic function of Qr(z,)s

by the same methods used in [14] p. 234 for the elliptic equation

we have
(6.2) fdn"’ I wi? axat <Ky [fg.(zy (4 1Du12) + 1D u,1%) w? axat
(4]

Using now the seme methods of the lemmea 1.3 [14] p. 231 we obtain

(6.3) (1+ 1D,u,1)% w? axat £Kpo(R) [o (| ID.wI? axat +

f Qglzy) MR

+ (wt,(u:l-ui(zq)-o(l%))2 w)

where the duality in the last term is between “b(QR(zo)) +
+ 12(¢ B2, +r%; B (Bp(x,))) and C(Qglzy)) u TP (4 -RZ, ¢ +R%;
H) (Bp(x,))).
Consider the last term in (6.3), using in the variational inequ-
ality relative to u; the test fumction ((1-(ui-ui(z°)-o(R)))2u1+
“(“1'“1(%)‘““”2“2)13 + (1-1p)u, end in the variational inequ-
ality relative to u, test fumotion ((1-(u;-u, (s )=0(R))?)u, +
+ (|.|.:|_-ui(zo)-o(R))21,11)1..R + (1-ip)u, we obtein
(6.4) (vt,(ui-ui(zo)-o(n))w)zé1/2 f‘“k‘ , (4 1D )P axa

+ K40(R) J‘QR(%) D wl® axat .
Then from (6.3),(6.4) we have

2 2

(6.5) fak(z°\$<1+ 1Du,12) uatéx4o(a)qu(%, Ipw|? axat

From (6.2),(6.5) we have
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2 2
6:6)  [q (1007 axatsxo® [o .\ 1nw1? axet .

We reocall that u, and u, ere supposed to be continuous; then
there exists R, such that for Réno we have o(R)< K5 and in such

e case we have from (6.6) w=0,

§ 7. Dual inegualities. The proof of the dual inequalities
uses & method which is an adaptation of the one used for the el-
1liptic case in [10] (regularization of the nonlinear term H).
Let Hm(t,x,u,p) be such that
(7.1) Hm(t’x’u’p) Mﬂ(t'xpulp)

a.e, in (t,x), VreR, VpERK,

(7.2) VB (t,x,u,p)| & c <K, + K, |p?
a.e. in (t,x), lul<c, VpeRN,
(7.3)  1H,(t,x,u,p)-H (x,t,u’,p ) &K lu-u’| + K |p-p’l

a.e. in (t,x), lul, lu’l<c, p,p e RV,

We observe that u is also a solution of the variational inequa-
lity
(7.4) (vt,v-u)+ 8, (u,v=u) - 1/2 |lv(0)\liz(ﬂ) z (fm,v-u)

Vvel?(0,1H (0)) nE (0,1E (R)) AL®(Q), vZ ¥
uel?(0,HEN(D))ALPO(R), uz ¥,

and the solution of the variational inequality (7.4) is unique
L31,0133,10101, (am(u,.v)- (Au,v) + f&(ﬂmb ,-,u,Dxu) + Jtmu)v dxdt),
where Jtm is large enough for the strict monotonicity of am),

t, = Hm(- 5%y u,Dxu)-B(- ,-,u,Dxu) - Amu.

Let now
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Tm = Yt + AY + Hm(""Y’DxY)'

We consider the auxiliary variational inequality

(7.5)  <vg,v-2)+ 8, (z,v-2) = 1/2 |\v(0)|lizm) z

z <£mvT vz )

m’
Vv e12(0, B (2))n B (0,1K 1 (2)) AL2(0) ,
uzvau-1

ze Lz(o,T;H;(ﬂ.))n LO(0), uz zZu=-1.,

By the methods of [3],[13] we can prove that (7.5) has a unique

solution.

Using the penalized problems and a regularization of “'m and

%

£.AT,, we can prove (by methods substantially analogous to the
one used in [10] for the elliptic case) that

u<g,
Then we have u=g,

Prom our variational inequality we have

(7.6) ug + Au + H(-,-,u,Du)Z0 .

Prom variational inequality (7.5) we have

(7.7) uy + Au + B (<,°,u,Du) + Apu £
< (Hm(- - -,u.Dxu)-H(- - -,u,Dxu) + lmu) v

(¥, +AY + H(.,+,¥,D W) + A ¥)
which, being u =z ¥ , implies
(7.8) ug + Au + H(.,+,u,Du) £

Ov (¥, +a¥+ B(-,,¥,D Y) + €,
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where 6 = H(., -,u,Dxu)-%(- s -,u,Dxu)-H(- %y ’!,Dx ¥)+

+E (e, ¥,D_¥).

Passing to the limit as m — +c0 in (7.8) and taking into account
(7.6) we have the result.

L1l

[2]

£3)

4]

L5

Lél

n
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L9l
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