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ON BAIRE ISOMORPHISMS OF NON-METRIZABLE COMPACTA
A. CHIGOGIDZE

Abstract: Using a spectral theorem for Baire mappings bet-
ween compacta it-is shown that: (e) the first-level Baire isomor-
phisms preserve the dimension dim of compacta; (b) the;e is no
Baire isomorphism between the Cantor cube of weight T  and its

hyperspace for 7 > 2m .
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All topological spaces considered will be compact and Haus-
dortf.

The Baire sets of X of multiplicative class 0, denoted zo(x),
are the zero-sets of continuous real-valued functions. The sets
of additive class O, denoted czo(x). are the complements of the
sets in zo(x). Define inductively for each counteble ordinal o¢
the sets of multiplicative class o + 1, denoted Z _, (X), to be
the countable intersections of the sets of additive class oc and
the sets of additive class «+1, denoted CZ , ,(X), to be their
complements. The sets of multiplicative class A (A a limit or-
dinal), denoted Z,(X), are defined to be the countable intersec-
tions of countable unions of sets in \J, 2 (X), and the sets of
additive olass A , denoted CZ,(X), are defined to be their com-
plements. The sets from the collection «.\ej s Z,(X) are called

the Baire sets of X, It is well-known that the collection of all
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Baire sets of X is the smallest collection of subsets of X which
contains zo(x) and is closed under complementation, countable
union and couritable intersection.

A mepping f:X—> Y is called e Baire mapping (of class 7 )
if an inverse-image of each cozero-set of Y is a Baire set (of
additive class 7 ) of X. A bijection f is called & Baire isomor-
phism (of class (5 ,d")) if f is a Baire mapping (of class )
and £~ is & Baire mapping (of class d ).

Let us recall also thet a hyperspace of X, denoted exp X,
is a collection of all non-empty compact subsets of X in the Vie-
toris topology. For any mapping f:X —> Y there exists an associ-
ated mapping exp f:exp X —> exp Y. It is well-known L6] that
exp: COMP —> COMP is a covariant functor.

Unless noted, definitions and terminology concerning inver-
se spectra will be found in [61.

Spectral representations of Baire mappings. Results of this
section were announced in [11,

Lemma 1, Let S = {I‘.p‘f ,At be a 7 -spectrum and £:X—> Y
be a Baire mapping (of class ~ ) where X = 1im S and wY £ 7.
Then there exist en index ot € A and & Baire mapping (of class
) 1, 1Xe—> Y such that £ = £ .p -

Proof. By [61, our spectrum is factorizing and so, using
transfinite induction, one can prove that each Baire set of X is
cylindrical, i.e. if B is a Baire set (of additive class ¥y ) of
X then there exist an index oo ¢ A and & Baire set (of additive
class 7) B, of X, sich that B = p, (B).

Let {G,: A 21 be any base of Y consisting of cozero-
sets of Y. Since f is a Baire mapping (of cless y ), the sets
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! (Ga), A e T , are Baire sets (of additive class y)otX

and consequently, by the above remark, for each A € T there
-1 -1 -1

exists o, e A such that £~ (G, ) = P, (pdj‘(f (GJL ))). By

7 -completeness of A, o = supiX, : A e ©1 is en element of

A, Clearly, for each A € v , t'1(G9\) = 9;1(9‘:6 (f'1(Ga )))e.

Let us consider now any two points x, and x5 in X with
p&(x1) = p(x;). Let us show that f(x;) = f(x,). Suppose the con-
verse. Then there exists A€ T such that f(x))eG, and f(x,)¢
¢ G, . Consequently, x,€ - (G)) and x, ¢ ‘e (G,). By the const-

-1 -1
ruction of o« , p (xq)€ p (£77(G,)) and p (x,) & g (27 (G,)).
Hence p (x)% P(x;). Contradiction.

Now we can define the mapping &_:Xx-——? Y by the following
ways fo(, = £ p;1. Clearly, f = %L and so, it only remains to
show that fw
cozero-set of Y. Then & Baire set (of additive class ) t=1(e)

Pe
is a Baire mapping (of class % ). Por, let G be a

is an inverse-imege of a set t;‘ (G) under a perfect mapping p. .
Consequently, 1;1 (G) is a Baire set (of additive class y") of X
(£41, p. 153) and hence £, 1is a Baire mapping (of class ).
The proof is complete.

Suppose we are given two inverse spectra S = {14. p‘:,ﬂ and
S° = {Y‘, ,qi’,,A'}. A Baire morphism (of class 7 ) of S to s’ is
a family {h,foc,} consisting of a nondecreasing function h from
A" to A such that the set h(A") is cofinal in A, and of Baire
mappings (of class 7 ) fd,,th(‘,)-* Y,, defined for all o’é&
ES:; for any «‘, pB’s A” satis-
fying «’ < (‘. Any Baire morphism (of class 3 ) of S to S~
induces a Baire mapping (of class 9 ) of 1lim S to lim S°. To show
this let us consider a thread x = -ﬁxoclé X = 1im S, Let us defi-
ne a point y -{y“,? of the product [ {Y‘,: «<‘e A‘7by
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a mapping £:X—> Y = 1im S with q‘,f = f{, Ph(c?) for any oc‘€

.= &., (xh(d,)). It is easy to see that in such a way we obtain

e A, Let us show that f is a Baire mapping (of class 2 ). For,
consider a cozero-set G in Y. By the compactness of Y there ex-
ist & counteble collection of indexes oc'ke A" end cozero-sets

-1 . }
G‘,k in Y""k such that G = U 4 qd,k(coc,k).k 6 wf , Then

-1 -1 . - -1 .
£7'(6) = U ‘iq“,k(cd,.k).k cwt= U{ph(d’k)(fd'k‘cac'k))"‘ € w3.

Since f , are Baire mappings (of class 7 ) and the mappings p.
Ly

are continuous, the set f"1 (G) is a countable union of Baire sets
(of additive class 9 ). Thus f is a Baire mapping (of cless ¥ ).

Thus we have

Lemma 2. The limit mapping of the Baire morphism (of class
~#} is the Baire mapping (of class 7).

The following theorem shows that for <« -spectra the conver-
;e also holds:

Theorem 1. Any Baire mapping (of class ¥ ) between the 1li-
mit spaces of two m -spectra ( ¥ = w ) with the same index sets
is the limit mapping of some closed and cofinal Baire morphism
(of class ¥ ).

The validity of this theorem is an immediate consequence of

the above lemmas an Proposition 1.3 from [6].

Corollary 1. Any Baire isomorphism(of class (5 ,d")) bet-
ween the limit spaces of two ~ -spectra (7 Z @) with the same
index qeta is the 1imit mapping of some closed and cofinal Baire
morphism consisting of the Baire isomorphisms (of class (2sd))e

Pregervation of dimension. Let us recall [4] that a bijec-
tion between X and Y is called the first-level Baire isomorphism
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if an image of any countable union of zero-sets is a countable
union of zero-sets in both directions. Clearly any first-level
Baire isomorphism is a Baire isomorphism of class (1,1). An im-
portant theorem of Rogers and Jayne [4],[5) states that the
first-level Baire isomorphisms preserve the dimension dim of me-

trizable compacta.

Theorem 2, If X and Y are first-level Baire isomorphic com-
pacta, then dim X = dim Y.
Proof. Without loss of generality we can suppose that
wX=wY>w , Let £:X—> Y be the first-level Baire isomorph-
ism and dim X< n. Of course, it is sufficient to prove that
dim Y< n, Let us consider a sigma-spectrum (i.e. & -spectrum)
Sy =4X,,p",A} such that 1im S, = X and dim X, < n for eacho €
€ A, Since X and Y have the same weight we can suppose that Y is
the 1imit space of some sigma-spectrum S, = {Y&,q:,ﬂ with the
same index set as S,. By the Corvllary 1 there exists a Baire
morphism {£ : oc € A}:S,;—> S, such that f = lim {c and each £ :
:X, —> Y, is & Baire isomorphism of class (1,1). It is easy
to see, using closedness of the limit projections p, anmd q. ,
that each £, 1is the first-level Baire isomorphism. (Indeed, let
Z = uzi be a countable union of zero-sets of X_.. Then, by con-
tinuity of p , p: (zZ) = Up;1(zi) is a countable union of zero-
sets of X. Since £ is a first-level Baire isomorphism

£2(5'(2)) = U 1, where each T, is & zero-set of Y. Simce q
is a closed mapping we can conclude that q“('ri) is & closed sub-
set and, consequently, by metrizability of Y, , is a zero-set of
Y. It only resains o note that £,(2) = o (2(p7 (2))) =

- %‘(U Ii) - U qoo(!i)') Consequently, by the above mentioned
theorem of Rogers and Jayne, dim Yxé n, o € A, Thus dim Y<n,
The theorem is proved.

- 815 -



Let us recall that the transfinite dimensions ind and Ind
are the ordinal valued functions obtained through the extension
by transfinite induction of the classical notions of small or
large inductive dimension respectively; the values of the trans-
finite dimensions considered in the class of separable metrizab-
le spaces are always countable ordinals, The transfinite dimen-
sions were firast considered by W. Hurewitcz who proved that for a
Polish space X the transfinite dimension ind is defined iff X is
countable-dimenasional (i.e. X is a union of countably many zero-
dimensional sets). It is known [ 5] that the last property is an
invariant of first-level Baire isomorphisms in the class of met-
rizable compacta.

Let X denote the class of compacta each of which admits a

zero-dimensional mapping onto some metrizable compactum,

Theorem 3., If X and Y are first-level Baire isomorphic com-
pacta, X ¢ X and the transfinite dimension ind X is defined,
then Y ¢ X and the transfinite dimemsion ind Y is defined.

Proof. By Theorem 5 from [2], there exists a zero-dimensio-
nal mapping g of X onto a countable~-dimensional metrizable com=-
pactum K. By the well-known theorem of Tumarkin, K is a union of
countable collection of zero-dimensional G -sets xi. Clearly,
I= U{g"(xi):i 6 w? and for each i ¢ w , 3'1(K1), denoted
X;, is a zero-dimensional, Lindelstf, Gech-complete space. Let
s, -{x‘,pf.ﬂ be any sigma-spectrum, the limit space of which
coincides with X, Using the above representation of X, the spec-
tral theorem of SZepin [6] for sigma-spectra and the possibility
of representation of any Lindel3f and Cech-complete space with
dim< n as the limit space of sigme-spectrum consisting of Polish
spaces .'ith dim< n we can suppose without loss of generality that
for each o & A, X, 1is a countable-dimensional compactum. Let
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us note also that without loss of generality we can suppose the
zero-dimensionality of all limit pro jections P in 81. Indeed,
X 18 the 1limit space of the sigma-spectrum S1 = {x“,p‘ﬂ,.ﬂ and

X eX , i.e. there exists a zero-dimensional mapping g:X—> K,
where K is a metrizable compactum, Clearly there exist an index

X —>» K = . .
doeA and a mapping gcco %o such thet g 8°‘o p“° Now,

if xeX_  then p"1 (x)"ig'1 (k) where k = g_ (x) € K. By the zero-
o oo o,

o

dimensionality of g, dim 13;1 (x) = 0 end, consequently, is ze-
o

P
%o
ro-dimensional., Finally, let us consider the sigma-spectrum S; =

- {X‘,pf. o € Ay Z o4}, Clearly, lim S, = X and all limit pro-

Jections of S; are zero-dimensional, Let f:X—> Y be a first-le-
vel Baire isomorphism. Let S, = {Yw,qu,A} be any sigma-spectrum
with lim 82 = Y, Since £ is a first-level Baire isomorphism bet-
ween X and Y, by Corollary 1, there exists a Baire morphism
£f,: x € A}:1S,—> S, such that f = lim £ and each f,, is a Bai-
re isomorphism of class (1,1). Moreover, each f. » a8 it is easy
to se, is the first-level Baire isomorphism. (Precisely the same
arguments are used in the proof of Theorem 2.) By [51, each Y
is countable-dimensional. Let us note now that each limit projeo-
tion q in S, 1is zero-dimensional. For, let us consider any fib-
re of the projection Q. It is easy to see that it is first-le-
vel Baire isomorphic to the corresponding fibre of the projecti-
on p, . Since these fibres are compact, we can conclude, by The-
orem 2, that q, is sero-dimensional. Consequently, Y ¢ X . By
[2], the trensfinite dimension ind Y is defined. The theorem is
proved,

I do not know if the last theorem holds without the additi-
onal assumption that X ¢ K ?

- 817 -



Hyperspaces and Baire isomorphisms
+

Theorem 4, There is no Baire isomorphism between D* and
HXp D‘# for @ > 26).

Proof. Consifer the Centor cube B° of welght %, Clear-
75 du tie Tiaté apsce of the ¢ <apenimum 5" - {o*,08,
exp,, V"} where exp,v’!.’*' denotes the collection of all subsets
of rc'" of cardinality £t and pﬁ is the natural pro jection of
B onto DA. Fix some A s exp,, T xt ot ca.rdimlity T . Clearly,
the linit space of the 7 -spectrum S = {DA,pP +Pys A,B2A; AB €
€ exp, ¥ *1 coincides with D® eand all the limit pmjectiona Py
of S are homeomorphic to the natural projection of D° onto %.
Tt is easy to see that exp S = { exp DA, exp pAf is a 7 -spectrum
and its limit space is homeomorphic to exp vt . Let us supposo
now tha.t there exists a Baire isomorphism f between D* end
exp D° . By the Corollary 1, we can conclude that there exists
a Baire isomorphism t‘:DA—-> exp pA (where A & vt and |1A) = 7))
such that fA P, = exp p‘-f. Consequently, for each point F of
exp DA the fibre (exp p‘)'1 (P) is Baire isomorphic to the cor—
responding tibre py'(f3 (F)) which is homeomorphie with il
Let T be a subspace of DA such that T is discrete in the relati-
ve topology end |T| = ¥ . Let P denote the closure of T in DA,
Obviously, P is a point of exp D and there exists a peir-wise
disjoint collection of cardinality ~ of open subsets of F,
indeed, by the construction, F is the closure in D‘(IAI =)
of & subspace G D such that |T| = ¥ and T is discrete in the
topology induced from DX, Let T = {t 3¢ 6 ¥} . Let Gy be an
open subset of P with G, N T = {t } (o € T ). The eollection
Gs we v} of open subsets of P is desired. It only remains te
rote that {G :1oc & T} 1s & pair-wise disjoint collection. Por,
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let us conslder the intersection G N Gp = G, Clearly, G is open
in F and its intersection with T is empty. Consequently, by the
density of T in F, G = G‘n (}'3 is also empty. Ome can easily
check that the fibre (exp p‘)"'1 (F) also contains a pair-wise
disjoint collection of cardinality 7 of open sets. Then we can
conclude that there exists a pair-wise disjoint collection of
cardinelity & of Baire sets in p;1(fz1(1')) = D1+. Since each
Baire set is a union of zero-sets we can conclude that there ex-
ists a pair-wise disjoint collection of cardinality 7 of zero=-
sets in DT+. But this is impossible by the result of R. Engelking
(3] end the inequality 7 > 2% « The proof is complete.

o Comllu;)y 2. (CH) There is no Baire igomorphism between
D 3 and exp 3 .

As L.B, Shapiro informed me, the above corollary holds even
without using CH,[7]. It should be observed also that the Cantor
cubes of weights wn. n = 0,1,2, are Baire isomorphic with their
hyperspaces. (For n = 0,1 these assertions g’ollow from the well-
known facts that the Cantor cubes D0° and D ' are even homeomor-
phic with their hyperspaces. For n = 2 the assertion follows from

Shapiro ‘s result ([7], Corollary 2).)
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