

Werk

Label: Article **Jahr:** 1985

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0026|log71

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

26.4 (1985)

A DOWKER GROUP Klaas Pieter HART, Heikki JUNNILA and Jan van MILL

 $\underline{\mbox{Abstract:}}$ We construct, in ZFC, a normal topological group, whose product with the circle group is not normal.

Classification: 22AO5, 54D15, 54D18, 54G2O.

O. <u>Introduction</u>. The purpose of this note is to give an example of a Dowker group: i.e. a normal topological group whose product with the circle group is not normal. We construct our example in ZFC alone, applying the B(X)-construction from [HavM] to a minor modification of M.E.Rudin's Dowker space [Ru]. The paper is organized as follows: Section 1 contains some definitions and preliminaries. In Section 2 we repeat the construction of B(X) and give some generalizations of the results from [HavM] in order to be able to show that for the modified Dowker space X of Section 4 B(X) is a topological group. In Section 3 we describe the Rudin's Dowker space R and show that under ¬CH B(R) is not a topological group.

Our construction shows once more the usefulness of Rudin's example: In [DovM] R was used to construct an extremally disconnected Dowker space.

- 1. <u>Definitions and preliminaries.</u> For topology see [En], for set theory see [Ku].
- 1.0.Free Boolean groups. Recall that a Boolean group is a group in which every element has order at most 2. Such groups are always Abelian.

For a set X we define the free Boolean group B(X) of X to be the unique (up to isomorphism) Boolean group containing X such that every function from X to a Boolean group extends to a unique homomorphism from B(X) to that group. For example B(X) = $\{x \in X^2 : |x^{\bullet}(1)| < \omega\}$ as a subgroup of X^2 . We shall write the elements of B(X) as formal Boolean sums of elements of X. For every $n \in \mathbb{N}$ define $\mathcal{F}_n: X^n \longrightarrow B(X)$ by $\mathcal{F}_n(x) = x_1 + \ldots + x_n$ and let $X_n = \mathcal{F}_n[X^n]$.

- 1.1. $P_{\mathcal{H}}$ -spaces. Let X be a topological space. We call X a $P_{\mathcal{H}}$ -space, where \mathcal{H} is a cardinal, iff whenever \mathcal{U} is a collection of fewer than \mathcal{H} open subsets of X, \cap \mathcal{U} is open.
 - 1.2. k(X). For a space X we let
 - $k(X) = \min \{ \varkappa \ge \omega : \text{ Every open cover of } X \text{ has a subcover of } \text{ cardinality less than } \varkappa \}.$

Observe that $k(X) = \omega$ iff X is compact. Thus k(X) might be called the compactness number of X.

From now on we assume that all spaces are Hausdorff. Observe that if X is a P_ω -space with $k(X)=\omega$ then X is simply a compact space.

For regular \varkappa , P_{\varkappa} -spaces with compactness number \varkappa behave like compact spaces.

- 1:3. Proposition. Let X be a P_{se} -space with k(X) = se , se regular. Then
 - (i) For all $n \in \mathbb{N}$ X^n is a P_{se} -space and $k(X^n) = se$.

- (ii) If f:X \longrightarrow Y is continuous where Y is a P_{2e}-space (and Hausdorff) then f is closed.
 - (iii) X is normal.

Proof: Imitate the proof for $\varkappa=\omega$. Note that only (i) needs regularity of \varkappa .

- 2. B(X) <u>revisited.</u> We begin this section by repeating the construction of a topology for B(X) given in [HavM].
- 2.0. Construction. Let X be a topological space. We define a topology on B(X) as follows:

First for each n let $~~m{ au}_{n}$ be the quotient topology on ${
m X}_{n}$ determined by ${
m X}^{n}$ and $~~m{ au}_{n}$. We then define

 $\tau = \{U \in B(X): U \cap X_n \in \tau_n \text{ for all } n\},$

i.e. τ is the topology on B(X) determined by the spaces $\langle X_n, \tau_n \rangle$, neW. Henceforth we will always assume that B(X) carries this topology.

We now list some properties of B(X), proved in [HavM]. Remember that all spaces are assumed to be Hausdorff.

- 2.1. Properties of B(X).
- (o) Both E and O are clopen in B(X).
- (i) Translations are continuous, hence B(X) is homogeneous.
- (ii) For each n $\langle X_n, \tau_n \rangle$ is a closed subspace of $\langle X_{n+2}, \tau_{n+2} \rangle$, and consequently each $\langle X_n, \tau_n \rangle$ is a closed subspace of B(X).
- (iii) For each n, if X^n is normal then X_n is normal and consequently if each X^n is normal then B(X) is normal. For in the latter case B(X) is dominated by a countable collection of closed normal subspaces and hence normal.

- (iv) If X is compact then B(X) is a topological group.
- (v) If for each $n \in IN$ X^n is normal and $\beta(X^n) = (\beta X)^n$ then B(X) is a subspace of $B(\beta X)$ and hence a topological group.

We shall need some slight generalizations of 2.1 (iv),(v), in order to be able to show that for the space X from Section 4, B(X) is a topological group. The proofs are almost identical to the ones in [HavM], but for the readers' convenience we shall give rough sketches. First we generalize 2.1 (iv).

2.2. <u>Theorem.</u> Let X be a $P_{9\ell}$ -space with $k(X) = 9\ell$, 9ℓ a regular cardinal. Then B(X) is a topological group.

Proof. The case $\varkappa=\omega$ is covered by 2.1 (iv), also B(X) is Boolean, so it suffices to show that the addition is continuous. We assume that $\varkappa>\omega$.

As a quotient of a $P_{2\ell}$ -space each X_n is a $P_{2\ell}$ -space.

From this it follows that B(X) - and hence $B(X) \times B(X)$ - is a $P_{\text{NV}}\text{-space},$ too.

Because $* > \omega$, the sequence $\{X_n \times X_n\}_{n \in \mathbb{N}}$ dominates the space $B(X) \times B(X)$.

Thus, it suffices to show that for every $n \in \mathbb{N}$ $+: X_n \times X_n \longrightarrow X_{2n}$ is continuous.

By 1.3(iii) and 2.1(iii) X^n and X_n are normal,in particular X_n is Hausdorff.So by 1.3(ii) $\varphi_n \times \varphi_n : X^n \times X^n \longrightarrow X_n \times X_n$ is closed. But now if $F \subseteq X_{2n}$ is closed then $+ \stackrel{\leftarrow}{\leftarrow} [F] = (\varphi_n \times \varphi_n) [h \stackrel{\leftarrow}{\leftarrow} \varphi_{2n}^{\leftarrow} [F]]$ is closed,where $h: X^n \times X^n \longrightarrow X^{2n}$ is the obvious homomorphism.

Next we generalize 2.1(v).

2.3. Lemma. Let Y be a dense subspace of X and ne N. Assume that Y_n is completely regular and Y^n is C^n -embedded in X^n .

Then Y_n is a C^* -embedded subspace of X_n .

Proof. Consider the following diagram:

where i and j are the inclusion maps.

 $\phi_n^X \circ i$ is continuous, $\phi_n^X \circ i = j \circ \phi_n^Y$ and ϕ_n^Y is quotient, so j is continuous.

Let $f:Y_n \to [0,1]$ be continuous. We shall find a continuous $g:X_n \to [0,1]$ with $g \circ j = f$. Let $\overline{f} = f \circ \varphi_n^Y$ and let $\overline{g}:X^n \to [0,1]$ be the (unique) extension of \overline{f} .

From the fact that \overline{f} is constant on the fibers of φ_n^X it is easy to deduce that \overline{g} is constant on the fibers of φ_n^X . Thus, \overline{g} induces a function $g:X_n \longrightarrow \Gamma 0,1$ with $g \circ \varphi_n^X = \overline{g}$ and g is continuous because \overline{g} is continuous and φ_n^X is quotient.

These two facts plus the complete regularity of Y_n establish that Y_n is a C^* -embedded subspace of X_n .

2.4. <u>Theorem</u>. Let Y be a dense subspace of X such that B(Y) is completely regular and Y^{Π} is C^* -embedded in X^{Π} for all $n \in [N]$. Then B(Y) is a C^* -embedded subspace of B(X).

Proof.

If $U \subseteq B(X)$ is open then for each $n \in \mathbb{N}$ $U \cap B(Y) \cap Y_n = U \cap Y_n = U \cap X_n \cap Y_n$ is open in Y_n , so $U \cap B(Y)$ is open in B(Y).

If $f:B(Y) \to [0,1]$ is continuous, then for each not we obtain a (unique) extension $g_n:X_n \to [0,1]$ of $f \upharpoonright Y_n$. It is easy to check that the g_n 's are compatible and that $g = \bigcup_{n \in \mathbb{N}} g_n$ is a continuous extension of f.

- 2.5. Corollary. If X and Y are as in 2.4, then B(Y) is a topological group if B(X) is.
- 3. <u>Dowker spaces</u>. We describe Rudin's Dowker space and give some variations.
- 3.0.Construction. Let \mathbf{a}_0 be a cardinal and for $\mathbf{n} \in \mathbb{N}$ let \mathbf{a}_n be the \mathbf{n}^{th} successor of \mathbf{a}_0 . Let $P = \square_{\mathbf{n} \in \mathbb{N}} \approx_{\mathbf{n}} + 1$ i.e. the box product (see e.g.[Wi]) of the ordinal spaces $\mathbf{a}_1 + 1$, $\mathbf{a}_2 + 1$,.... Let $X' = \{ \mathbf{f} \in P \colon \forall \mathbf{n} \in \mathbb{N} \mid \mathbf{c} \mathbf{f} (\mathbf{f}(\mathbf{n})) > \mathbf{a}_0 \}$ and

 $X = \{f \in X': \exists i \in IN \forall n \in IN cf(f(n)) \neq x_i\}.$

Then X is always a Dowker space. We shall briefly indicate why and refer to [Ru] for full proofs.

- 3.1. X is not countably paracompact [Ru,II]. For $n \in \mathbb{N}$ let $D_n = \{f \in X: \exists i \geq n \ f(i) = \varkappa_i \}$. Then $\{D_n: n \in \mathbb{N}\}$ witnesses that X is not countably paracompact.
 - 3.2. X is dense in X'.
- 3.3. If A and B are closed and disjoint in X then their closures are disjoint in X´ ([Ru] Lemmas 5 and 6). Lemma 5 says that X´ is a P_{ω_1} -space and Lemma 6 establishes that $\overline{A}_n \cap \overline{B}_n = \emptyset$ for all n where $A_n = \{f \in A: \forall i \in \mathbb{N} \mid cf(f(i)) \neq a_n\}$ (closures in X´).

In Section 4 we shall reprove that X´ is paracompact, thereby establishing (collectionwise) normality of X. For the rest of this section we let $\varkappa_0 = \omega_0$ so that $\varkappa_1 = \omega_1$ for it. Moreover we shall call this Dowker space R. We shall show that if $2^{\omega} \ge \omega_2$ then B(R) is not a topological group.

3.4. Let H be a topological group which is also a ${}^{\rm P}\omega_1^{}$ -space

then H has a local base at the identity consisting of open subgroups. For let $U_0 \ni e$ be open. Inductively find open $U_n \ni e$ for $n \in \mathbb{N}$ such that always $U_n = U_n^{-1}$ and $U_{n+1}^2 \subseteq U_n$. Then $\mathbb{N} = \bigcap_{n \in \mathbb{N}} U_n$ is an open subgroup contained in U_n .

- 3.5. Let G be an open subgroup of B(R). For $x \in R$ let $G_x = \{y: x + y \in G\}$, then $\{G_x: x \in R\}$ is an open partition of R. Note that G_x is the intersection of R and the coset x + G.
- 3.6. Let $f \in P$ be such that for all $n \in \mathbb{N}$ $0 < f(n) < \omega_n$ and f(n) < f(n+1) and $\sup_{n \in \mathbb{N}} f(n) = \omega_\omega$.

For $A \in [IN]^{\omega}$ let $C_A = \{h \in R : n \in A \iff h(n) \neq f(n)\}$. Then $\mathscr{C} = \{C_A : A \in [IN]^{\omega}\}$ is a clopen partition of R of size 2^{ω} .

For each A find $x_{A,1}, x_{A,2} \in C_A$ such that

- for some $n \in \mathbb{N}$ cf $(x_{A,1}(n)) = \omega_1$ and $x_{A,1}(n)$ is not isolated in $\{ \alpha \in \mathscr{X}_n : cf(\alpha) > \omega_n \}$
- for some $n \in \mathbb{N}$ $cf(x_{A,2}(n)) = \omega_2$.

Now using $2^\omega \ge \omega_2$ we extract from $\mathscr C$ a clopen partition $\{V_\alpha:$

- : ω ω_2 of R together with points $\{x_{\omega}: \omega \in \omega_2\}$ such that
- (i) $x_{\infty} \in V_{\infty}$ for each ∞ .
- (ii) If $\propto \varepsilon \omega_1$ then there is a decreasing sequence $\{C_{\alpha,\beta}:$
- : $\beta \in \omega_2$ of clopen sets with $x_{\infty} \in \bigcap_{\beta \in \omega_2} \mathbb{C}_{\alpha,\beta}$ but
- Xx + Int(noac Cx p)
- (iii) if $\alpha \in \omega_2 \setminus \omega_1$, a similar sequence $\{C_{\alpha \beta}: \beta \in \omega_1\}$ of length ω_1 .
 - 3.7. For $\propto \epsilon \; \omega_2$ define \mathfrak{D}_{∞} as follows:

if
$$\omega \in \omega_1$$
 $\mathcal{D}_{\omega} = \{V_{\beta} : \beta \in \omega_1 \land \beta + \omega\} \cup \cup \{C_{\gamma,\omega} : \gamma \in \omega_2 \setminus \omega_1\} \cup \{V_{\gamma} \setminus C_{\gamma,\omega} : \gamma \in \omega_1 \setminus \omega_0\} - 805 -$

if $\alpha \in \omega_2 \setminus \omega_1$, $\mathfrak{D}_{\alpha} = \{V_\beta : \beta \in \omega_2 \setminus \omega_1 \land \beta \neq \alpha\} \cup \{V_{\gamma \setminus C_{\gamma,\alpha}} : \gamma \in \omega_1\}$.

For each $\alpha \in \omega_2$, $\mathfrak{D}_{\alpha} \cup \{V_{\alpha}\}$ is a clopen partition of R.

3.8. We define an open set $0 \in X^4$ as follows: $0 = \bigcup_{\alpha \in \omega_2} \bigvee_{\alpha}^4 \cup \bigcup_{\alpha \in \omega_2} \bigcup_{W \in \mathfrak{A}_{\alpha}} \bigcup_{\sigma \in S_4} \sigma[v_{\alpha}^2 \times W^2]$ (S₄ acts on X^4 in the obvious way $\sigma(x_1, \dots, x_4) = (x_{\sigma(1)}, \dots, \sigma(4))$. Then $0 = q_4 - [q_4[0]] \text{ so that } q_4[0] \text{ is a neighborhood of } 0 \text{ in } X_4 \text{ (the verification is straightforward)}.$

3.9. Now suppose that G is an open subgroup of B(R) such tat $G \cap X_{\Delta} \subseteq \mathscr{G}_{\Delta}[0]$; we shall show that this gives a contradiction.

The partition $\{G_X: x \in R\}$ has the following property: if $\{a,b,c,d\} \cap G_X$ has 0, 2 or 4 elements for each $x \in R$ then $a+b+c+d \in G$.

Any partition refining $\{G_x: x \in R\}$ also has this property, so w, the common refinement of $\{G_x: x \in R\}$ and $\{V_{\infty}: \alpha \in \omega_2\}$ also has this property.

Fix for each \propto \in ω_2 \bowtie_{∞} \in \mathcal{W} with \times_{∞} \in \bowtie_{∞} , then \bowtie_{∞} \subseteq \vee_{∞} of course.

For each $\ll \omega_2$ let

Find $\gamma_0 \in \omega_2 \setminus \omega_1$, $\gamma_1 \in \omega_1$ and S $\subseteq \omega_2 \setminus \omega_1$ unbounded such that

for $\ll \epsilon \omega_1$ $\beta_{\infty} < \gamma_0$ and

for & 6 5 B = 34 .

Now pick: $x_2 \in S$ $x_2 > x_0$ and pick $y_1 \in W_{x_1} \setminus C_{x_1, x_2}$ and $y_2 \in W_{x_2} \setminus C_{x_2, x_1}$.

Consider $F = \{x_{3_1}, y_1, x_{3_2}, y_2\}$.

Then $x_{\frac{1}{2}} + y_1 + x_{\frac{1}{2}} + y_2 \in G$ because IF $w_{\frac{1}{2}} = 1$ For $w_{\frac{1}{2}} = 2$ and $w_{\frac{1}{2}} = 0$

Fow = 0, W + W₃₄, W₃₄. On the other hand $x_{34} + y_1 + x_{32} + y_2 \notin \mathcal{G}_4[0]$ because $(x = \langle x_{34}, y_1, x_{32}, y_2 \rangle)$:

- for no of F⊆V so x \$ Uxew v4
- if $x \in \mathcal{C}[V_{\infty}^2 \times V^2]$ for some $V \in \mathfrak{D}_{\infty}$ then $F \cap V_{\infty} \neq \emptyset$ so $\infty = \mathscr{Y}_1$ or $\infty = \mathscr{Y}_2$. If $\infty = \mathscr{Y}_1$, then, since $(x_{\mathscr{Y}_2}, y_2) \in V_{\mathscr{Y}_2}$, either $V = C_{\mathscr{Y}_2, \mathscr{Y}_1}$ or $V = V_{\mathscr{Y}_2} \setminus C_{\mathscr{Y}_2, \mathscr{Y}_1}$; but both are impossible since $x_{\mathscr{Y}_2} \in C_{\mathscr{Y}_2, \mathscr{Y}_1} \Rightarrow y_2$. Likewise $\infty = \mathscr{Y}_2$ is impossible.

Thus, combining 3.6 and 3.9, we find that B(R) is not a topological group, assume $2^{\omega} \ge \omega_2$. This leaves open what will happen if $2^{\omega} = \omega_1$.

- 3.10. Question. Is B(R) a topological group under CH ?
- 4. A good Dowker space. In this section we let $\mathbf{ac_0} = 2^{\omega}$ and we let X be the Dowker space constructed in 3.0. We shall show that B(X) is a topological group, and in fact a Dowker group.

To begin we quote from [Ha] the following fact

4.0. For each n s $^{\text{IN}}$ X $^{'}$ is homeomorphic with $(\text{X}^{'})^{\text{N}}$ and the homeomorphism can be chosen to map X onto X^{N} .

Furthermore we need the following

4.1. X' is paracompact and k(X') = 301

Proof. We fix some notation: for f ,g & P we say f < g iff f(n) < g(n) for all n and f \leq g iff $f(n) \leq g(n)$ for all n. For f,g \in P with f < g we put

$$\begin{split} &\mathbb{U}_{\mathbf{f},\,g} = \mathsf{X}' \wedge \mathbb{T}_{\mathbf{m} \in \mathbf{N}}(\mathbf{f}(\mathsf{n}),\mathsf{g}(\mathsf{n})] = \{\mathsf{h} \in \mathsf{X}' : \mathsf{f} \prec \mathsf{h} \not\leq \mathsf{g} \} \ . \\ &\text{For } \mathsf{U} = \mathbb{U}_{\mathbf{f},\,g} \text{ put } \mathsf{t}_{\underline{\mathbf{u}}}(\mathsf{n}) = \sup \{\mathsf{h}(\mathsf{n}) : \mathsf{h} \not\leq \mathsf{U} \} \ (\mathsf{n} \not\in \mathbf{N}) \ . \ \text{Then.} \ \mathbb{U}_{\mathbf{f},\,g} \wedge \mathsf{X} = \mathbb{U}_{\mathbf{f},\,\mathbf{t}_{\underline{u}}} \wedge \mathsf{X}' \text{ and } \mathsf{t}_{\underline{u}}(\mathsf{n}) \text{ is always a limit ordinal.} \end{split}$$

Let 0' be an open cover of X'. We find a disjoint open refinement 2ω of 0' of size $\le 2^{\omega} = 2\varepsilon_0$. We define a sequence -807 -

 $\{u_{\alpha}\}_{\alpha \in \omega_{A}}$ of disjoint basic open covers of X´ such that

- (i) & εβεω, → Uβ refines Uα
- (ii) α ∈ ω₁ → | U_α | ≤ 2^ω
- (iii) & $\epsilon \omega_1 \wedge U \in \mathcal{U}_{\infty} \longrightarrow \{ V \in \mathcal{U}_{\infty+1} : V \subseteq U \} = \{ U \} \text{ iff } U \subseteq 0 \text{ for some } 0 \in \mathcal{O}$.

Let $u_0 = \{x'\}$.

For $x \in X'$ and $x \in \omega_1$ $U_{X,x}$ is always the unique element of \mathcal{U}_{∞} containing x. If $x \in X$ is a limit, put $U_{X,x} = \bigcap \{U_{X,x}: \beta \in x'\}$ and $U_{\infty} = \{U_{X,x}: x \in X'\}$. If U_{∞} is found make $U_{\infty+1}$ as follows. Let $U \in \mathcal{U}_{\infty}$ if $U \in S$ some $0 \in \mathcal{O}$, put $S(U) = \{U\}$. Otherwise consider two cases.

- a) For some n $\mu = \operatorname{cf}(t_{\mathfrak{U}}(n)) \not \in 2^{\omega}$ (i.e. $t_{\mathfrak{U}} \not \in X'$). Let $\langle \lambda_{\xi} : \xi \not \in \mu \rangle$ be a strictly increasing, continuous and cofinal sequence in $t_{\mathfrak{U}}(n)$ with $\lambda_{0} = 0$ and $\operatorname{cf}(\lambda_{\xi}) < 2^{\omega}$ for all ξ . Put $U_{\xi} = \{f \not \in U : \lambda_{\xi} < f(n) \not = \lambda_{\xi+1}\}$ ($\xi \not \in \mu$) and let $S(U) = \{U_{\xi} : \xi \not \in \mu\}$.
- b) For all n cf $(t_{\mathbf{L}}(n)) > 2^{\omega}$ (i.e. $t_{\mathbf{L}} \in X'$); pick $0 \in \mathcal{O}$ with $t_{\mathbf{L}} \in 0$ and $f < t_{\mathbf{L}}$ such that $U_{\mathbf{f}}, t_{\mathbf{L}} \in 0$. For $A \subseteq \mathbb{N}$ let $U_{\mathbf{A}} = \{ h \in \mathbb{U} : n \in A \longrightarrow h(n) \neq f(n), n \notin A \longrightarrow h(n) > f(n) \},$ and set $S(\mathbb{U}) = \{ U_{\mathbf{A}} : A \subseteq \mathbb{N} \}.$

Now let $\mathcal{U}_{\alpha+1}=\cup\{S(U)\colon U\in\mathcal{U}_{\alpha}\}$. It follows that always $|S(U)|\leq 2^{\omega}$ and hence inductively that $|\mathcal{U}_{\alpha}|\leq 2^{\omega}$ for $\alpha\in\omega_1$. Let $\mathcal{U}=\{U\in\mathcal{U}_{\alpha\in\omega_1}|\mathcal{U}_{\alpha}\colon S(U)=\{U\}\}$. Then, as in [Ru], \mathcal{U} is a disjoint open refinement of \mathcal{O} and by construction $|\mathcal{U}|\leq 2^{\omega}$.

The above argument is from [Ru] but we included it because we need to know that the refinement is not too big.

We now collect everything together in.

4.2. Theorem. B(X) is a Dowker group.

Proof. (i) $X = X_1$ is a closed subspace of B(X), so B(X) is not countably paracompact.

- (ii) From 3.3, 4.0 and 4.1 it follows that for all n X^n is normal and C^* -embedded in $(X^{'})^n$, hence B(X) is normal by 2.1-(iii) and a C^* -embedded subspace of $B(X^{'})$ by 2.4.
- (iii) X´ is a $P_{\mathbf{x}_1}$ -space and $k(X') = \mathbf{x}_1$ hence B(X') is a topological group.
 - (iv) By 2.5 B(X) is a topological group.
- 4.3. Remark. Actually, the method of Section 3 and this section yield the following result:

If X is the space constructed in 3.0 then

- (i) if $2^{\omega} \leq x_n$ then B(X) is a topological group,
- (ii) if $2^{\omega} \succeq w_2$ then B(X) is not a topological group. This leaves open a generalization of the question 3.10:

Is B(X) a topological group if $2^{\omega} = \varkappa_1$?

If we specialize by setting $\varkappa_0 = \omega_1$ then we obtain a space X for which B(X) is a topological group if $2^{\omega} = \omega_1$, not a topological group if $2^{\omega} \ge \omega_3$ and maybe (not) a topological group if $2^{\omega} = \omega_2$.

References

- [DovM] A. DOW and J.van MILL: An extremally disconnected Dowker space, Proc. Amer. Math. Soc. 86(1982), 669-672.
- [En] R. ENGELKING: General Topology, PWN Warszawa (1977).
- [Ha] K.P. HART: Strong collectionwise normality and M.E. Rudin's Dowker space, Proc. Amer. Math. Soc. 85(1981),802-806.
- [HavM] K.P. HART & J.van MILL: A separable normal topological group which is not Lindelöf, Top. Appl. (to appear).
- [Ku] K. KUNEN: Set Theory, North-Holland, Amsterdam (1980).
- [Ru] M.E. RUDIN: A normal space X for which $X \times I$ is not normal, Fund. Math. 73(1971), 179-186.

(Wi) S.W. WILLIAMS: Box products in Handbook of Set-theoretic Topology, North-Holland, Amsterdam (1984).

K.P.Hart and J.van Mill: Subfaculteit Wiskunde en Informatica Vrijes Universiteit, De Boelelaan 1081- 1081 HV Amsterdam, Nederlande

H.J.K. Junnila: Dept. of Math. University of Helsinki, Hallituskatu 15, 00100 Helsinki 10, Finland

(Oblatum 22.4. 1985)