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Abstract: We construct, in ZFC, a normal topological group,
whose product with the circle group is not normal.
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0. Introduction. The purpose of this note is to give an ex-
ample of a Dowker group: i.e. a normal.topological group whose
product with the circle group is not normal. We construct our ex-
ample in ZFC alone, applying the B(X)-construction from [HavM] to.
a minor modification of M.E.Rudin’s Dowker space [Ru]. The paper
is organized as follows: Section 1 contains some definitions and
preliminaries. In Section 2 we repeat the construction of B(X)
and give some generalizations of the results from ﬁiavM] in order
to be able to show that for the modified Dowker space X of Secti-
on 4 B(X) is a topological group. In Section 3 we describe the
Rudin’s Dowker space R and show that under 7CH B(R) is not a to-
pological group.

Our construction shows once more the usefulness of Rudin’s ex-
ample: In [DovM] R was used to construct an extremally disconnec-
ted Dowker space.
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1. Definitions and preliminaries. For topology see [En], for

set theory see [Kul.

1.0.Free Boolean groups. Recall that a Boolean group is a
group in which every element has order at most 2. Such groups are
always Abelian. _

For a set X we define the free Boolean group B(X) of X to be the
unique (up to isomorphism) Boolean group containing X such that e-
very function from X to a Boolean group extends to a unique homo-
morphism from B(X) to that group. For example B(X) ={_>5¢ Xg.

x2. We shall write the elements

Ix*(1)1< w}? as a subgroup of
of B(X) as formal Boolean sums of elements of X. For every nelN de-

X

fine @ :X"— B(X) by g (x) +...+ x and let X_ = ¢ [XT.

1
1.1. Pn-spaces. Let X be a topological space. We call X a
P”—space, where 2 is a cardinal, iff whenever W 1is a collection

of fewer than 2 open subsets of X,n U is open.

1.2, k(X). For a space X we let
k(X) = min{nzw: Every open cover of X has a subcover of
cardinality less than 3},

Observe that k(X) = @ iff X is compact. Thus k(X) might be cal-
led the compactness number of X.
From now on we assume that all spaces are Hausdorff. Observe that
if X is a P, -space with k(X) = @ then X 1is simply a compact
space.

For regular %, -spaces with compactness number 2¢ behave like

F
compact spaces.

1.3. Proposition. Let X be a P -space with k(X) = s¢ , 9 re-

gular. Then

(i) For all neiN X" is a Pe-space and k(X M = %.
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(ii) If f£:X — Y is continuous where Y is a P -space (and
Hausdorff) then f is closed.

(iii) X is normal.

Proof: Imitate the proof for a2 = @ . Note that only (i)

needs regularity of e¢.

2. B(X) revisited. We begin this section by repeating the con-

struction of a topology for B(X) given in [HavM].

2.0. Construction. Let X be a topological space. We defise
a topology on B(X) as follows:
First for each n let <, be the quotient topology on Xn determin-
ed by X" and ¢, We then define

v =4iUg B(X): Un X &t  for all ni,
i.e. ® 1is the topology on B(X) determined by the spaces
4 Xn,c'1) , n€lIN. Henceforth we will always assume that B(X) car-
ries this topology.

We now list some properties of B(X), proved in [HavM]. Remem-

ber that all spaces are assumed to be Hausdorff.

2.1. Properties of B(X).

(o) Both E and 0 are clopen in B(X).

(i) Tr;nslations are continuous, hence B(X) is homogeneous.

(ii) For each n ¢ X,» ¥,> 1is a closed subspace of
< xn+2"cn+2> , and consequently each (Xn,'rn) is a closed subspa-
ce of B(X).

(iii) For each n, if X" is normal then Xn is normal and con-
sequently if each X" is normal then B(X) is normal. For in the lat-
ter case B(X) is dominated by a countable collection of closed nor-

mal subspaces and hence normal.
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(iv) If X is compact then B(X) is a topological group.
(v) If for each neiN X" is normal and B(X™) = (BX)" then

B(X) is a subspace of B(f3 X) and hence a topological group.

We shall need some slight generalizations of 2.1 (iv),(v), in
order to be able to show that for the space X from Section 4, B(X)
is a topological group. The proofs are almost identical to the ones
in [HavM], but for the readers’ convenience we shall give rough

sketches. First we generalize 2.1 (iv).

2.2. Theorem. Let X be a R,-space with k(X) = 2¢ , 2 a regu-
lar cardinal. Then B(X) is a topological group.

Proof. The case 9= @ 1is covered by 2.1 (iv), also B(X) is
Boolean, so it suffices to show that the addition is continuous.
We assume that 2¢ > @w.

As a quotient of a Pn-space each Xn is a F’“_-space.

From this it follows that B(X) - and hence B(X)x B(X) - is a
Py-space, too.

Because 9 > @ , the sequence {an xn‘nclN dominates the space
B(X)» B(X).
Thus, it suffices to show that for every neIN +:an Xn"" X2n is

continuous.

By 1.3(iii) and 2.1(iii) X" and X, are normal,in particular X,
is Hausdorff.So by 1.3(ii) Pn ® qn:xnﬁ X" —» X, %X, is closed.
But now if F <[ - N

w it FaX, is closed then +* [F] = (7n x 7n)[h ¢2n[F]]
is closed,where h:X"x X" — x2" jg the obvious homomorphism.
Next we generalize 2.1(v).

2.3..Lemma. Let Y be a dense subspace of X and ne N. Assume

that Yn is completely regular and Y" is C"-embedded in X".
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Then Y_ is a C*-embedded subspace of Xq-
Proof. Consider the following diagram:

Yn
g l
Yn

where i and j are the inclusion maps.

PRIl
X
|
7
[ Xn

qr):oi is continuous, qﬁoi =3 99:‘ and ga':

is quotient, so
J is continuous.

Let f:Yn —> [0,1] be continuous. We shall find a continuous
g:X,—> [0,1) with goj = f. Let T = fo @) and let T:X"—>10,1)
be the (unigue) extension of T.

From the fact that f is constant on the fibers of q:' it is easy
to deduce that g is constant on the fibers of qﬁ. Thus, @ induces
a function g:Xn—-> £0,1) with g oq§ = g and g is continuous be-
cause g is continuous and qﬁ is quotient.

These two facts plus the complete regularity of Yn establish that

Y, is a C*¥-embedded subspace of X

2.4. Theorem. Let Y be a dense subspace of X such that B(Y)
is completely regular and Y" is C™-embedded in X" for all ne IN.
Then B(Y) is a C“-embedded subspace of B(X). .

Proof.
If UeB(X) is open then for each n&iN UaB(Y)nY = UnY =
=UnX, nY is open in Y, so UnB(Y) is open in B(Y).
If £:B(Y) — 10,11 is continuous, then for each neIN we obtain
a (unique) extension gn:xn—-) [0,1 of £Vt Yn. It is easy to
check that the gn's are compatible and that g = L‘J“l‘ %n is a
continuous extension of f.
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2.5. Corollary. If X and Y are as in 2.4, then B(Y) is a to-
pological group if B(X) is.

3. Dowker spaces. We describe Rudin’s Dowker space and give
some variations.

3.0.Construction. Let "u be a cardinal and for neiN let aen

be the nth

successor of »,. Let P = DnGN % +1 i.e. the box
product (see e.g.[Wi)l) of the ordinal spaces 3, + 1, % +1,....
Let X" = {feP: YneN cf (f(n)) > aeD} and

X = {fe X : JieIN VnelN cf(f(n)) £ azi}.

Then X is always a Dowker space. We shall briefly indicate why and

refer to [Ru) for full proofs.

3.1. X is not countably paracompact [Ru,II]. For nelIN let
D, =AfeX: 3izn £(i) = ”i}‘ Then {Dn;neNi witnesses that

X is not countably paracompact.
3.2. X is dense in X'.

3.3. If A and B are closed and disjoint in X then their clo-
sures are disjoint in X  (LRul Lemmas 5 and 6). Lemma 5 says that
X" is a P&) -space and Lemma 6 establishes that -Kn"En = @ for all

1
n where A = {feA: VieIN cf(f(i)) = ¢} (closures in X7).

In Section 4 we shall reprove that X is paracompact, thereby
establishing (collectionwise) normality of X.
For the rest of this section we let ®, = W, so that 2¢; = ;
for ieIN. Moreover we shall call this Dowker space R.
We shall show that if 29> @, then B(R) is not a topological

group.
3.4. Let H be a topological group which is also a P@ -space
1
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then H has a local base at the identity consisting of open subgroups.
For let Uo 3 e be open. Inductively find open Un 2 e for nelN such

-1 2

that always U = U " and U ;& U . Then IN= f?_' U, is an open sub-

e
group contained in Uo'

3.5. Let G be an open subgroup of B(R). For xe€R let GX=
= {y:x + yeG§, then {Gx:xeR§ is an open partition of R. Note

that GX is the intersection of R and the coset x + G.

3.6. Let f¢P be such that for all nélN 0<f(n)< @  and
f(n)=< f(n+l) and sugneNf(n) = @,
For A& [INJ® let Cy = fheR:ne Aes> h(n)£ £(n)}. Then €= {C,:
;A e [INJ¥% is a clopen partition of R of size 289
¢C

For each A find such that

Xa10%a,2¢ ta

- for some neiN cf (XA,l(n)) = @, and "A,l(") is not isolated
in ¢ € 2 : cfl0) > }

- for some nelN cf(xA’z(n)) = @,.

Now using 2‘0 Z W, we extract from $ a clopen partition {V‘_:

% 6 wziof R together with points {x_ : < € @, such that

(i) X, € Vo for each o .

(ii) If & € @, then there is a decreasing sequence {C‘p:

pe @, of clopen sets with x n{uv, Ccp but
X, @ Int(ﬁfu"c‘p)
(iii) if «& @, \ @,a similar sequence {C‘p: e wl? of length
@

3.7. For « e @, define 3,‘_ as follows:

if <6, mi-ivﬂ:pso‘,/\{!hc} v

u-(C,r"-.wco,\wq} v {V,’\ cm; reo ol
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it «2ew\w,, 0‘={Vﬂ:(6£wz\c.g'/\ﬁ¢¢g} v
vl rped UAVENCy i ye v,

For each x € @, Y v {Vd! is a clopen partition of R.

3.8. We define an open set O¢ X“ as follows:
4 2 2
0=\ Ve Y uet‘t), Weq‘uus,,“”x"“ ]

<€ W, &
4, . K
(S, acts on X" in the obvious way G’(xl,...,xa) = (x‘(l),...,o,(“)‘
Then 0 =g, [g,[0)] so that @,L0) is a neighborhood of O in

X, (the verification is straightforward).

3.9. Now suppose that G is an open subgroup of B(R) such tat

GnXA = 94[0]; we shall show that this gives a contradiction.
The partition &Gx:xeR'} has the following property:

if §a,b,c,d¥n Gx has 0, 2 or 4 elements for each x& R then
a+b+c+debG.
Any partiti®n refining {Gx:xc R? also has this property, so W ,
the common refinement of {Gx:x & R} and Vg i e QZ} also has this
property.

Fix for each « € @, W, ¢ W with x_e W, then W_ & V  of

-1 oC
course.

For each o« & 02 let
Pg= minife:We & C ol

Find v, ¢ 02\ @, Y ¢ @ and S € @, @, unbounded such
that

for « € @, Be< A, and

for « € S B = %1 ° .
Now pick ) 7265 T2 > %, and pick v, & Hz; N Cx'n and
Yo € Wpo™N Crz’rl.
Consider F = ~ixx W1 ,y2'§ .
Then Xp, * YLt Xy y,& G because | Fan "l’,‘ =| Fa H&\ = 2 and
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FAW =190 , Ws Wy Wy, . On the other hand Xy * V1t xt, + y2¢

& ‘_fALU] because (x =<x.‘; ’yl'x#,' ,)'2)):

4
- for no o FeV, so x QU-““,’V“

- if x eslv_zcx VZJ for some V € D then FAV %® so =7y OF
® = ,.If &= 7, then, since (xt’,yz)svz.z, either V =
= C‘J;.‘T, or V = Vyz N\ Cy.y, + but both are impossible since

Xy, € 073.3’1 $ y,. Likewise oc= 7, is impossible.

Thus, combining 3.6 and 3.9, we find that B(R) is not a topologi-
cal group, assume 2“) 2 wz. This leaves open what will happen if

2% = @, .

3.10. Question. Is B(R) a topological group under CH ?

4.A good Dowker space. In this section we let %, = 20 and

we let X be the Dowker space constructed in 3.0. We shall show

that B(X) is a topological group, and in fact a Dowker group.

To begin we quote from [Hal the following fact

4.0. For each n&!N X  is homeomorphic with (X*)" and the
homeomorphism can be chosen to map X onto x".
Furthermore we need the following

4.1. X  is paracompact and k(X") = %,

Proof. We fix some notation: for f ,geP we say f<g iff
f(n)< g(n) for all n and f<g iff f(n)<g(n) for all n. For f,g €
€P with f<g we put

] = X" A T W(f(n),g(n)] = &heXx :f<h&gt

f.0

For U = U, > put t,(n) = sup4h(n)sheU% (neN) . Then.U, AX =
1]

f,0
=Up 4 N X" and t (n) is always a limit ordinal.
T
Let O be an open cover of X . We find a dis:oint open refi-
nement % of 0’ of size & 2%-= . We define a sequence
- 807 -



U disjoint basi fx’ h that
i a‘aew, of disjoin asic open covers o such tha
(i) « e ey — 'LL{; refines Uy
N

(ii) o € wy — oy, ) a2

(iii)  eyAU 6 Uy —> Ve U, ,:V € Ut ={UL iff UcO for
some 0 € O -

Let %, = §x°%.

For xe X' and o & col Ux,‘ is always the unique element of 44‘
containing x . If o 1is a limit, put Ux,‘ = f\{Ux,p: 3 €cxi and
U= {Ux,‘:x €ex’'§. If 2, is found make QA&»I as follows.

Let U & Qé‘ if Ue some 0 € 0’, put S(U) = {U§. Otherwise consi-
der two cases.
(] . .
a) For some n (= cf (tu(n))£ 2% (i.e. tu_¢ X'). Let
4 A¥: g€ (4) be a strictly increasing, continuous and cofinal se-

quence in t,(n) with A_ = o and cf (J\g)< 2% for all € -
Put UE = {fe U}: 7\§< f(n)élgul (§e @) and let S(U) =
= {U,: < .

prEs @

b) For all n  cf (t,(n)>2% (i.e. t, & X");pick 0 € O
with tuc 0 and f« tu_ such that Uf,tug 0. For Ag N let

Uy ={heU: neA—> h(m££(n), ngA—> h(n)>£(n},
and set S(U) = §U,: A& N}

Now let Uy, 4= ULSU): U e U, . It follows that always
\s(U)1£2% and hence inductively that |'u.‘| € 2% for « € @y -
Let U =4U ¢ Ud.co., U : S(U) = AUt} . Then, as in [Rul, U is
a disjoint open refinement of O’ and by construction |U| £ 2%,

The above argument is from {Rul but we included it because

we need to know that the refinement is not too big.

We now collect everything together in.

4.2. Theorem. B(X) is a Dowker group.
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Proof. (i) X = X; is a closed subspace of B(X), so B(X) is
not countably paracompact.

(ii) From 3.3, 4.0 and 4.1 it follows that for all n x"
is normal and C* -embedded in (X )", hence B(X) is normal by 2.1.
(iii) and a C* - embedded subspace of B(X ) by 2.4.

(iii) X  is a &‘1 -space and k(X") = 2, hence B(X') is a
topological group.

(iv) By 2.5 B(X) is a topological group.

4.3. Remark. Actually, the method of Section 3 and this section
yield the following result:

If X is the space constructed in 3.0 then

(i) it 2%¢ 2%, then B(X) is a topological group,

(i1) it 2% Z g2, then B(X) is not a topological group.
This leaves open a generalization of the question 3.10:

Is B(X) a topological group if 2% = ®, 7
If we specialize by setting xR, = col then we obtain a space X for
which B(X) is a topological group if 2% @, not a topological

group if 2% za>3 and maybe (not) a topological group if 2¢J= @,.
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