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SEMILINEAR PARABOLIC SYSTEMS
Herbert AMANN

Abstract: We describe a general local existence and regu-
larity result for semilinear parabolic systems of even order.
In particular we obtain classical solutions without compatibi-
1lity conditions for the nonlinearity. Moreover, we describe a
simple method for obtaining global existence by means of a ge-
neralization of the Gagliardo-Nirenberg inequality to fractio-
nal orders of the derivatives.

Key words: Local and global existence, regularity, para-
bolic systems, time-dependent boundary conditions. ’

Classification: 35K60, 35B65

In these lectures we review some recent results of the au-
thor concerning locel and global existence and regularity for
semilinear parabolic systems of arbitrary even order. It is one
of the main features of our approach to prove first of all a
very general existence and regularity theorem, which guaran-
tees the existence of classical solutions on a meximal time in-
terval. In possession of this general theorem one can then tre-
et the question of global existence separately by establishing
appropriate a priori bounds in some weak norm without worrying
any more about existence questions.
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This paper was presented on the Internmational Spring School on
Bvolution Equations, Dob¥ichovice by Prasue, May 21-25, 1984
(invited paper).



1. Regular Parabolic Systems. Throughout this paper .2, m,
n and ¥ are fixed positive integers and k is an integer satisfy-
ing Okk4k + 15 £ & 2m, T is e fixed positive real number, and
. 4s a bounded domain in R of class g2mt L . Moreover " de-
notes a (necessarily finite) set of nonempty open and closed
subsets 1" of 3. which are pairwise disjoint and whose union
equals 0(..

We denote by A(t) for each t €[0,T] a linear differential
operator of order 2m acting on N-vector-valued funoctions u:
+ O — c¥ of the form

A= () = g (-,8)0%,
locl £ 2m

where

Lt v & (-, 1)) c 627(r0,21,04( T, £( €™)))

for a1l @ ¢ N® with lol & 2m (where C2~ means that the functi-
ons have (locally) Lipschitz continuous first derivatives). Mo-
reover:
B(t):= {33,.(1:) \re™)
denotes for each t ¢ [0,T] a system of boundary operators on
3. , where
Bn(B)i= (D) /()
p(t): (B seeey By
and
B(twe = b5 r1(-.‘l=)13"(‘u.
r l“‘“"”@f‘ x<,

with Oﬁlgo p < 2m and

2m+f-m ,I
e b8 (-, 016 c? (10,71, e, 2, o)

for ov € M2 with (| Sm
We let

@ 16 4$nN, and Me .



a(x, b, §)im = 8, (x,) §Fet(c™
and

8 (Xoty g, T)im alx, t,¢) + o1 220 1 e ()
for (x,%,§) e 0x[0,7]< R, > € [-ar, ], and © & IR, where

Iy denotes the identity in £(C¥). Similarly,

bg (x,§ )= Nl bg,r,(x) £

= M‘P’r‘

for (x|l 4 n$°rp v14e€nN, and Ne " , and b(x,g) denotes
the (mNxN)-matrix with rows bg (x,§) for allxel ,Mel
and ¢ e B%

For 1<p<oo and s e R we let I;z- I;(_Q-. cM end, if
2m<sé2m + £,

wp /e

Then (A(t), B(¢),Q,I), 04t4&T, is said to be a regular
parabolic initial boundary value problem (IBVP) of (olass C% and)
order 2m provided the following additional conditions (R),(C) and
(S) are satisfied:

(R) There exists a number o € (#/2,5r) such that

8-1/p-m n 5
FLTI"@=4 'P ®© (r‘-c)o

det a4 (x,t,§,2)%0
end the polynomial of one complex variable
A v>det ag (x.t,g +Ay(x), )
has precigely mN roots l;('ﬁ‘,x.t. o)y 14J4mN, with posi-
tive imaginary parts for each

(0 4x,%,C,7) 6 [=0¢, ) x 302 [0,7)x R® % R

1)
& with (¢ 15 (x)) = 0 and (¢ ,)=*(0,0),

where v is the outer normal on 35l and (. | - ) the euclidean



inner product.
(C) Por each (#.x,t,g »t) satisfying (1) the rows of
the matrix-valued function of one complex variable

A+ bLx, t,§ + AV (x))8 (x,%, § + Av (1), 7)

mN
are linearly independent modulo ;-,:1;T,1 (A - .7\';(-6\ ,x.t.g »t)) (as
poiynomials in A ), where &4.(x,t,7M,T) is the matrix whose
elements are the cofactors of the elements of the transposed
matrix of &, (x,t,m,7)e If ¥ = 1 we put Ao (x,t, M, )= 1.
(S) PYor each t g[0,?] there exists a number A € € such

that the linear operator
(A+ A, B — 1, < w3=1/2

is surjective.

In the remainder of this section we give some important ex-
amples of regular parabolic IBVPs, Por this purpose we recall
that (A(t),0), 0t 4T, is said to be a strongly parabolic sys-
tem 1if

Re(a(x,t,§) 9 17 ) >0

for all (x,t,§ ,n) ¢ Wx (0,21 x B x C¥ with € 0 amd 740
(where now (- | » ) denotes the "euclidean" inner product in c‘,
which is linear in the first and antilinear in the second variable).

(1.1) Examples: (a) Suppose that X = 1 (the case of "one
equation"), that (A(t),0), 0&t &T, is strongly parabolic and
that B(t) is & system of m boundary operators covering A (t)
(that is, satisfying the complementing conditions; e.g. [11]) in
the usual sense. Then (A(t), R(t),Q,l), 0£t£T, is a_regular
parabolic IBVP of order 2m.

(b) Suppose that (A(t),0), 0&t£T, 1s a strongly parabo-
lic system. Moreover, suppose that for each M"e ¥ and t€10,2)]
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there are given m vector fields (34 . (-,t) on I" such that

[t > By, (- 01€ 027(00,73,62™ (1, &™)

and ( ﬂj.p(x.t) |v(x))>0 for J = 1,.c0,my, x€ " and t €[0,2].
Then define (Nx N)-matrix-valued boundary operators 333' r (%

by
ak+3-1u
YT t)}ﬂ'] + lower order terms,
J,m

ﬁj .r( t)ul =

where ki= ki 1s a fixed integer on M with O£k, &m, 1£J)4nm,
Cel , and te (0,71, Pinally let Bp(t):= (B n(¥),...
....ﬁm.p(t)). Then (A(t),R(t),Q,), 06t4&T, is_a_regular
parabolic IBVP of order 2m. Observe that this example covers
in particular the case of Dirichlet boundary conditions, where
By, (est) =» for § =1,...,m, t€[0,7] and M= 230.

(¢) Second order strongly parebolic systems: We suppose
that m = 1 and use the summation convention, where j, k run from

1 %o n. Then we write A(t) in the form

A(t)u = "'Jk(' .t)DjDku + aj(-,t)Dju + e (s,t)u
and consider a boundary operator of the form

B(t)u = Jag (+,t) yIDu + (Iy = D +db(e, 1)

where J:= diag ( Jd%j,s.., dy) is a diagonal matrix such that
d“e c(aq ,{0,1%). Thus each o'3 equals either O or 1 and is
constant on each component of 3.Q , If d'j = 0 then the j-th
equation of B(t)u = O is simply the Dirichlet condition ud = 0
on the corresponding part " of 3. . Of course, u = (u1....
vee,u¥) and »= (»',...,»5). Observe that the function d"(+)
defines implicitly a boundary decomposition T . Then

(A(L), B(L),0,P), Oat&T, is_a regular parabolic_second or-

der 1BVP provided (A(t),Q), 0£t6T, is a strongly parabo-

-— - Ve
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1ic system.
suppose again that m = 1 and that we can write A(t) and B(%)
as upper triangular block-matrix differential operators:

where AP% = BFE a0 for @ > 6 eand where (AFF(), BE(¢),
Q,M), 0£t=«T, is for each @= 15000, & second order regular
parabolic IBVP acting on ll@ -veotor-valued functions with ¥_& ¥*

P
and Ny +...+ N, = N. Then (A(%),B(¢),Q,T), 04t£7, is & re-

angular parabolic system need not be strongly parabolic. Final-
1y it is clear how this example can be generalized to blook-tri-
angular parabolic systems of order 2m. O

The proof that the above examples define regular parabolic
IBVPs is not quite trivial and will be given in [41.

2, Existence and Regularity. Throughout the remainder of
this paper we presuppose that (A(t),J](%),Q,), 04t&£7, is
a regular parabolic IBVP of order 2m. We put M:= ll“é & 1, whe-
re o« € W%, and we suppose that

(1 e c2-(r0,71 =0 = c¥, ¢¥).
This means that £ 1is continuously real differentiable with re-
spect to all variables and that these derivatives are locally
Lipschitz continuous.

For 1< p<co dnd 04 s 42m we let -

WS aeyt= {ue W) (BR(Vu = 0 form <& - 1/phe

Thus l; R(t) is for each t€[0,T] a closed linear subspace of
»



l; and ';,’.E(t) - '; for 04 l";m"' 1/p, where R, 1= ni.n{lsu'r.l
l14po ¢ w¥, M"e i,

After these preparations we can formulate our basic e:

(2.1) Theorem: Suppose that n<p< oo , that Oés <
< min {1,m/2%, that max{2s,s + k + n/p3<6< 2m with 6 & £,
and that 8,6 ¢ N + 1/p. Then the IBVP

2+ A(tu = £(t,x,,Du,...,0%) fn Qx(%,,2)

(e ,u) H(t)u = 0 on B0x(ty,?)

u(.,to) =u en 0

(]

val of existence and Ji= In{it,t. Moreover, J(t,,u;) is_right

open in [t ,T1,
3
961;.3“0),. {(t,m) elt,?1 x 'p.iB(to) | teJd(t,v)}
1s_open in Lto.rlxw;',%o). end

et 1D D

ule,tgmp)€ ¢ (.0 (@, €M cd, PR, M),

where @ := 8 ~ n/p.



In the important autonomous case the uniqueness, the open-
ness of &g B and the continuity assertion (1) imply that
u(e,0,+) defines a (locel) semiflow on the Banach space w:’_,s .

1 ]

More precisely we have the following

- e . mve e e e

latively_compagt.

(2.2) Remarks: (a) The solution u(-.to,uo) of (P)(to'“o)
is independent of pe (n,c0) and of s for t>t,. Thus, in parti-
cular, the maximal interval of existence J(to,uo) does neither
depend on p nor on s.

(v) u(-,to,uo) is a global solution of (P)(to’“o)' that is,

J(to,uo) - [to.‘r], provided P(graph u(-.to.uo)) is bounded in
I.p for some pe (n,00), where P(t,u)(x):= £(t,x,u(x),Du(x),...
vee,DKu(x)),

(c) Let the assumptions of Theorem (2.1) be satisfied and
suppose in addition that

P
where 0<r <6 and re¢ [N + 1/p, Moreover, let the following

'r.mt) = ';,’B(O) Vté [O.TJ [}

ve Ii""mt) and t €00,7), and u € wf,""ﬁ(to) wth At )y €

e';’ﬁ(o)o Then .
u(e,ty,u,) & 61 (I(t,u,) W) 0 eIt ) ,wi“*@)

for every ¢ &/(0,r) with @ ¢ W + 1 p, that is, we obtain
"regularity up to t = t %,
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(d) It is not necessary that f be defined on all of M,
In fact, c" in (1) can be replaced by an arbitrary nonempty
open subget of C". Moreover P need not be a local operator.

(e) Theorem (2.1) remains true if QO is an unbounded do-
main which is uniformly regular of class 2m + £ in the sense
of Browder [5], provided one imposes additional mild regulari-
ty conditions upon the coefficients of A ,J3 and f "near infi-
nity".

(2) It should be noted that the integer £ meassures the
continuity properties of the data. If one is willing to put
£ = 2m (which one has to do 1f k = 2m = 1) then one can choose

6 arbitrariiy close to 2m which implies that the continuity
assertion (2) is rather strong.

(g) The regularity assumption (1) can be weakened. In par-
ticular it suffices to assume that f satisfies only an appropri-
ate Holder condition with respect to x & . a

The proofs of Theorem (2.1), its corollaries and the asser-
tions contasined in Remarks (2.2) are givem in [3]. The main ide-

as are the following: Problem (P)(t u) is considered as an ab-
o’ o
stract evolution equation of the form

33 u ‘+ A(t)u = P(t,u), t,<t£7T,

u(to) -,

in Lp. where A(t) is the Lp-roalizat:l.on of (A(t),T(t)). Then

1t 1s shomn that (B)(y , ) is equivalent to (3) and (3) i3 e~
o' o

quivalent to an integral-evolution equation of the form
t
(4) u(t) = U(t,80u, + [i UCH, ©IR(T u(w))dr, t,4¢ 4D

Here U is a parabolic evolution operator for {A(t) | 0 6t £7% in

- 11 =



I.’ whose existence is gusranteed by general results of Yagi [17]
and Kat¢ and Tanabe [8]. The main difficulties stem from the
fasts that the domain of A(t) is not conmstant (in general) emd
that F is an "unbounded nonlinear operator®”, that is, it is on-

ly densely defined in I-p.

If the domain of A(t) were independent of +, the eqation
(4) ocould be treated by the method of fractional powers (e.g.
[17, 141). However, in our situation this method turns out to
be not appropriate. In fact there seems to be no general results
in the literature for (P)(to'“o) guaranteeing existence and re-
gularity for time-dependent boundary oconditions (not even for
a single equation, i.e. for N = 1), In oyr approach we study
(4) airectly in the Sobolev-Slobodeckii space w:‘ using the fact
that it can be characterized as an appropriate interpolation
space., (More generally, we consider abstract equations of the
form (4) in general interpolation spaces.) In order to obtain
the stated regularity results we show that U restricts to an e-
volution operator om l; which is, however, not strongly continu-
ous for t = to. But we can establish the following fundamental

regularity properties:
U(-,t,) e C((t,,2], ;g’(';"img))
and
(t —> f:; U(s, v)g(rlax)e c((to.gl.'glﬂ-a)

for every geC” ([to,'!],l;) with s/2m <>» <1, where &,(X,Y)
denotes the space of all continuous linear operators from X into
Y endowed with the strong topology (that is, the topology of
pointwise convergence).

As already mentioned Theorem (2.1) seems to be the only

- 12 =



existence and regularity result for semilinear parabolic equati-
ons which applies to general time-dependent boundary conditiens
and does not presuppose any structural condition for the nonli-
nearity f whatsoever, in particular no compatibility oonditions.
In the case of Dirichlet boundary ooﬁditions for a single equa~
tion (N = 1) von Wahl [15] has proved the existence of a classi-
cal solution without compatibility conditions for f. However,
his result applies only to a restricted oclass of parabolic ope-
rators. Recently Da Prato and his students developed an absiract
method to prove existence and regularity results for parabolic
evolution operators without compatibility conditions for the non-
linearity (for the case that D(A(t)) is constant). Their main i-
dea is to drop the assumption that D(A(t)) be dense in the under-
lying Banach space X. However they always assume that the resol-

vent satisfies an estimate of the form
HA+ A Mg gy = 01 + 1217Y) for ReAZ 2.

This restricts to applicability of their method considerably
(for example to the case that X equals C(Il) or an sppropriate
subspace of C™(Q2)), If we let X = v;, as in our situation, it
can only be shown that

WA+ A gy = 0((1 + 121)71%8/28) ¢or Re a1z 2,

Thus their method does not apply to the spaces l;. Moreover for

many questions concerning problem (P)(.t ) the spmces I; are
0’ o

a natural setting as will be seen in the next section. For more

detailed references to the literature we refer to [3].

3. Global Existence. The basis for our global existence

results is the following lemma, where || || 8,p denotes the norm

-13 -



8
in lp.

(3.1) Lemma : Suppose that 14p < © , 1<p < cv and
04s,, 6, <2m +£ , gnd that s, = 0 1f p, = 1. Let s <s<2m +4£
and suppose that

P8, - 6, )<n.
Rinally let O <ot <y and
o s~ d"o) + (1 =x)n/p

n+ (6, - 8)p,

169 <o + p,

(] o y-o wlo -8
"““6’0.p';‘° [ Ila.p ful 5yeP, VueNponlp
provided
1 — o0 28
P73, P

The proof of this Lemma, which can be considered as an ex-
tension of the Gagliardo-Nirenberg inequality, follows from the
interpolation space characterizations of the Sobolev-Slobodec-
xii spaces and from Sobolev-type imbedding theorems.

It is now easy to prove the following general global exis-

tence theorem, where we let t"'(to,uo):- sup J(to.uo).

(3.2) Theorem: Suppose that O&s <2m and 14p < © , and
hat s, = 0 1f p, = 1. Let s €2 satisfy a <s, - n/p, & se + 1

enly_on (t,x) if s <0) and comstents ¢ and ¥y, J =€+ 1,e..
eoe .k el&h_t;_hj
& 7.
lf(t,x,u.Du,...,Dku)lé g(t,X,u,0.-,07%0) + °5,§+4 Ipdul I
angd



) 1é7’<1+p0572'('3§;:1,73;.3-m1....,k.

Pipally suppose that, for some (t ,u;) e[O,'!)ng;ﬁ(to) and

%y € (£,,8% (% ,u.)),

(2) lut,ty,u,) I

su o0 .
t 6t SAR (4,00

-
8,sP
o**o
Then t"'(to,uo) =T,

Proof:s (a) Let s € [6,2m) be arbitrary end suppose we can
show that

2 R

6
where t'i= t"’(to.uo) end u(t)s= u(t,t ,u ). Then '; C» W, implies

) < 00 .
¢, :‘tlp«t* flu( )|6'.p

Thus it is easily seen that
Vs

R TN oy < -

Since, by a continmuity and compactness argument, F is bounded in
L, on {(t,u(t)) | $,4¢ 4%}, 1t follows that P is bounded in L,
on graph(u). Hence the agsertion follows from Remark (2.2.b) pro-
vided we can show that (3) is true.

(b) It follows from (1) that we can find numbers o« &€(0,1),
and s €(k + n/p,2m) \( ¥ + 1/p) such that

Ty< % + B, —(ﬂ)——i——M: " (j-:o);‘;oc s J =8+ 1,...,ke

By the results of Seotion 2 we can assume that pro. Henoe
1/p i(('r‘ - % )/p,) + (c¢/p) and we obtain from Lemma (3.1)

ST L IPPY T I

3,173 .
1ipdul lop 7y ey &
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& 'fj“"
&clul .y Hull .15,

for J = X+ 1,¢oo.ko Tm

() IPCEu(e) Uy o & Bg(t,+,ult) eee D ()l o+
Ty«

By1Pg

k ol
+ o(".‘r-E"‘M Lu(t) ) ) Bu(e)l <

for t1$t<t+ (since u(t)e I; for t.‘ft‘t* by Theorem (2.1)).
8ince »x<s, - n/poﬁ 5, - n/p the a priori estimate (2) and the

8
inbedding W.°C» C*(for 2¢e W) imply

(5) sup lg(t,,ult),ee., D u(t)), < 0 -
tyst<tt P

Now it follows from the results of Seotion 2 that the inte-
gral-evolution equation (2.4) is well defined in '; for t,; £te<tt,
Thus
(6) lu(t)lly o 4 Ut 8)ule)l, o+

+ fy Moce, )1 1P, enl, , ax

L1, W)
for t; &< t* (where we have used the unique solvability). Inser-
ting (4),(2) ana (5) in (6) we see that

o
\\u(t)ﬂ'.p fe(1 +t1-:;x“2llu('c )R -,p)

for t1£ tét2<t+, where ¢ is independent of tz (due to the es-

timate nU(t,'c)ll:(I‘ o 0((t = v)~®/2R) £0r 02 ¢ <t&M).

P'P
This implies (3), whence the assertion. 0O
(3.3) Remark:s Suppose that A, B3 and £ are independent
of t and that the spectrum of A (in L,, for example) is contain-
ed in the open right half-plane. Then, given the assumptions of

Theorem (3.2), it follows that t*(to,uo) = 00 and that

- 16 =



,_:‘?mn“(t’to'“o)nZu,p < .

t,¢
1 .
Thus, if 1t is_known that the positive semiorbit 'x""(no):-

8
u(t,0,u) | 0£4<t7(0,u)) is bounded in ¥,> it_1g bounded in

¥2" (for +>0). Furthermare 1t is relatively compact_in ¥2%,
which implies in particular thet 7'(u ) has & nonempty limit
set in l%m. If, moreover, F(u)é';;gs‘fé?_dome s>n/p (which

is no restriction if min&lP’r, l11£@ £ ¥, Mg M§>0) then 'in

can be replaced by C2™( 7, ¢¥) for-mme '@ (0,1). O

The above theorem generalizes (and simplifies) considerab-
ly numerous earlier results (e.g. [1, 9, 12, 13], cf. [4] for
more detailed references., It should also be noted that, due to
Remark 2.2.e, Theorem (3.2) is also true (modulo some regulari-
ty assumptions near infinity) if Q is unbounded).

The main content of Theorem (3.2) is the assertion that we
obtain global ex:leﬁnce if we can obtain an a priori bound in
some weak norm (in the w::-norm) and if the nonlinearity satis-
fies an appropriate growth restriction. In the particularly im-
portant case that k = 0 it follows that u( -,to,uo) exists glo-

bally if

(M ez, ¢)lge + 1\ ) V(t,x,£) € 10,11 T =¥,
where

2m p n + (2m-8_)p
1ay <14+ 0 . e 0
n-s p, n-s

oPo
provided we know that

sup fﬂu(t.to.no) 1 o

<
t,stet 849D,

+
for some t1e(to,t )e

There is a quite general class of problems for which eve-

= 1T -



ry solution can be bounded & priori in the Wy-norm. To describe
this class we restrict ourselves to the real case and introduce

the following splitting assumption:
(SP) There are continuous functions g and h such that
£(t,x,u,00. ,D%) = g(%,x,u,0..,05) + h(x,u),
a constant ¢ with
x m
lg(t,x,0y000,D7u) | Sc(1 + @Zso pdul),
and a function HeC®* (& < IR¥, R) such that h = Vg B, where
Vg denotes the gradient with respect to Es Rr™,

(D)(to'uo) For each t, € (to,t+(t°.uo)) there are constants

l.°> 0 and c, oo?__o such that
AhultZ e lu(0)M3 ;&2 j;: (Al )ule) il ))ar +
t 2
+c(1 + fh Hu('u)l!_'zd't:)
for t, 4t <t',

By taking the L,-inner product of u(t) and the equation
u + A(t)u = P(t,u) it is not difficult to deduce an a priori
bound for Nu(t)l, , on the basis of (SP) end (D)(y y ) by means
. 0?0

of Gronwall’s inequality. Then Theorem (3.2) implies the follow-
ing

(3.4) Theorem: Let (t,,u,) < [0,T)x 'g'&(t y be_given_and
" %o
guppose that (SP) end (D)(to u ) 8ve maiiafied, Moreaver, mippe-
*“o

ge_that .
e H(x.% 2
11 < o0
lQ\-:co 1§\

- 18 =



uniformly with respect to x € & , and that

InC-, )1 &1 + 1§17) Ve « BY,
where
(8) 1ay<1+ A0 .om,

Then t"'(to,uo) -7,
It can be shown that (D)(t ) is satisfied for every
o' 0
(to,uo)e:o,m)xvgm,‘o) 12 (A(t),Q), 04T, is a strongly

parabolic system and ( (%), "), 04t 4T, 1s the Dirichlet boun-
dary operator (of. Example (1.1.b)). Thus Theorem (3.4) genera-
lizes & result of Pecher and von Wahl [111, where it has been
assumed that N = 1, £(t,x,u,...,D%u) = £(u) and that fogf(n)da &
P gz, that is, H(E ) 4o ga for € e IR

It can also be shown that (D)(to’uo) is satisfied for every
(t5,u))c 'g in the situation of Example (1.1.c) provided the ma-
trices &3k are symmetric. Thus Theorem (3.4) generalizes consi-
derably recent results of Cosner [6] and Alikekos [2]. These
authors assumed the stronger ellipticity condition

N n
va = 5.*%4 sfem glesze, wz’:‘a 31 lgdi2
for ell x € . end gg €elR, 1434n, 1€ér&N, considered Diri-
chlet boundary conditions and the sutonomous case, assumed that
g€ is a linear differential operator end thet (h(., g‘)l £)<0
for ¢ & B¥\0} end
. S

uniformly in x & L , where (3 is a sufficiently large poeitive
constant., Then Comner proved global existence under the growth
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restrioction 1 £ 4y < n/(n-2). Alikakos obtained global existence
it 4 setisfies (8) (with m = 1) but he had to assume that the

matrices ‘jk(x)' 1&3, kén, commute for every x ¢ Q. .

It is natural to ask whether the equality sign in (1) cem
be permitted. Von Wahl [15, 16] has shown that this is the case
if N = 1 and B is the Dirichlet boundary operator, provided
P - 2 and f satisfies an appropriate monotonicity condition.
By means of the continuity argument employed in [15, 16] simi-
lar results can be obtained in our general setting.

Detailed px-oofl of the assertions of this section are given
in 4.
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