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THE APPROXIMATION OF AN OPTIMAL SHAPE CONTROL
PROBLEM GOVERNED BY A VARIATIONAL INEQUALITY WITH FLUX
COST FUNCTIONAL
laroslav HASLINGER, Jan LOVISEK

Abstract: The paper deals with the finite element appro-
ximatIon of an optimal shape design problem, when the state re-
lation is given by a unilateral boundary value problem, Dual
norm of the normel derivative of the solution on the boundary
is taken as the cost functional. The relation between continu-
g?shmgdel and its finite dimensional approximations is estab-

shed.

. Key words: Structural optimization, optimal shape, design
problem.

Classification: 49A22

It is the aim of the present paper to continue the analysis
from [1], where the existence of an optimal shape for a problem,
governed by a variational inequality with the cost functional
expressed as the dual norm of the normal derivative of the stea-
te along the unknown part of the boundary, has been proved. The
present paper deals with the approximation of this problem, us-
ing approximate finite element spaces. The main effort is devo-
ted to the study of the relation between discrete and continu-
ous model. Using an equivalent expression for the dual nomm,
it is possible to give another form of the cost functional,
more convenient for the practical computations.

In Section 1, the continuous problem is defined. In Seo~-
tion 2, the approximation of the optimal shape control problem
is described, using piecewise linear functions in 1 and 2
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variables, for the approximation of the shape, the state rela-
tions, respectively. In Section 3 it is proved that discrete
optimal shapes are close in the appropriate sense to the conti-
nuous ones, In Section 4 we derive the exact form of the cost
functional gradient in the discrete case., It is shown that the
cost functional, as a function of design paresmeters is 1x con-

tinuously differentiable.

1. Setting of the problems Let {0 ()}, e Ugy be &
family of bounded plane domains,

Ugg = dove CO(<0,1) 1 0< oy afxy) 3,
1
|,,o'(x2)\£vo1; «[;’ov(xz)dx2 = Cp% 226(0,1)},
where Lo @o. ¢y ¢, are given positive constants, With any
o & 'u“ we aspociate the following unilateral boundary value
problem:

(1.1) “ay(e) + y(ec) = £ in Q(x),

on Iy(e),

=0
8y
!(cc)zos-a-%‘vs‘)-zos y(oo)mé%)- =0 on M),

where the decomposition of the boundary 3 (c«¢) into MM(wx),
r'a(oo) is clear from fig. 1:

) MN(x)

M@  N() M ()
M) Xy~
Pig. 1

Our aim is to determine such N(oc*)e {Q(x)y, x € Ugyy 100
such a function «f¢ ’IL‘d, satisfying
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(P° Baun i) Voo & U,

where

(1.2) Bk ) = 1/2 ||azul||2 ©
v l1/2,50()

and y(ov) is & function of o¢ through (1.1).

In order to give the rigorous mathematical formulation, we
introduce some notations.

Let oce Uyqe Set

V() = H'(D(«))

K(x) =4ge V() lgz 0 on (o)}
and

109 =2 191 e - (190,000
with

£617(04)3 Qg = (03 B)x(031)4 B=p,
We denote by 11, D) ? ("°)0§ﬂ.(e£) H (0 (c)) = norm, L2 (0 (cc )
- scalar product, respectively.

By a weak formulation of the state inequality (1.1) we call

the problem
,find y = y(t)eK(x) much that J (y(cc)) 43 ()
(Pl 07T Ll eily
qux(oo)

or equivalently
find y = y(oc )€ K(c¢c ) such that
(P(c)) (y(w).q-y(cc))un(")z (f%?-ﬂ"‘”o,n(ao
Vg & K(x ).
As 3'1/2( 3Q ) - norm, by means of which the cost functional ¥ is
defined, is not suitable for the treatment, we reformulated in

x) lf"l_}/z‘an_ denotes the norm of the linear functional

we (B30
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1] our problem under the consideration, as follows:
(P) find e uad such that E(x*)¢E(x) Vo e Uga
where

2
B(x) = 1/2 “2(’)"1’9.(¢)

z(y) € V(¢ ) 1is the unique solution of an auxiliary problem
T find z(y) € V(o0) such that (z(y)3¢)q e =

= (y(cC)s ?)1,.0.(0() - (f;?)o.n(a_) @eV(x)

and y(ec)e K(ec) is & solution of (P(x)). In [1] 1t has been

proved thet ( [P) possesses at least one solution.

2. Approximation of ( (P). Let tho-x,‘(,°)< x§1)< ...<x§“)- 1

be a partition of <0:3>, the norm of which tends to zero and set
Sy =fsy € G031 ey (1-1), (1) e Py [CI R P

h
Ugq = Uggnsy -

12

In other words, (oy), %y € 'u.ﬁd is a domain with a piecewisge-
linear varieble part [M,(cty)e As N(ccy) is & polygonal domain,
one can construct its triangulation 7’ h(“h)‘ Next we shall assu-
me on}y such femilies of ¥, (cc,)? which are uniformly regular
with respect to dhe%:‘d; h —> 0%, i.e. there exists '9°>0 such
that
(2.1) min Hhycp) 2 Vh—o0,,
€ € Uy

where -(hj “'h) is the smallest interior angle of T, computed
among all T, ¢ S'h(ech).

with any T,(cc,), oty e UL, we associate the finite-dimen-
sional space 'h("‘h)' ocontaining all continuous, piecewise-line-

ar functions and its closed convex subset K, (oc)):
'h("‘ h) - {?hﬁ cO(n (“h)) |th !16 P«‘ (,1) V!,_ [ 'Ih(‘ h)}
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The approximation of (P (ay)), with oty € %% , will be defined
by means of Ritz-Galerkin procedure on Kh(oc h)’ The approximate
of state inequality (take fixed o, € UD,) 1s defined by

ind y; = yp(oty) €K (oty) such that
(Pley))y

where
2 .
or equivalently
find yy(ecy) &« Kp(ocy) such that

Thus the optimal shape control problem ( [P) can be stated as fol-
lows:
(1), find o’ eUgy such that By(oc*) & By(ocy)  Veou €Uy,
where
(2.2)  By(oy) =172 zh(yh)nfmdh)
and z, € Vh(cch) is a unique solution of
(A'(d'h))h (ih& qh)hﬁﬁth) = (yh(och); ?h)1 ,ﬂ(ach) -
yh(och) appearing in the definition of («‘l(ca(.h))h denotes the so-
lution of (P(c¢y))ye.

Using the classical compactness arguments, one can easily

prove

Theorem 2,1. PFor any h>0 there exists at least one soluti-
on of (IP),.
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3. Relation between ( IP), and ( IP). In this section we shall
analyse the mutual relation between a family of ( IP),, aud the con-
tinuous problem ( IP) if h —0*,

Let o« e uad' By P we denote the mapping from H’(Jl(ac))
into 1L2((031)) defined through the relation

G @iE ) B o L)) E () ey,
where 3y~ = (ly| - y)/2 is the negative part of y. It is easy to
see that

ye Klx) &= (P(y)5¢ ), = O YE ¢ D(Ry).
First we introduce 2 auxiliary results, useful in what follows.

Lemma 3,1. Let o, =% o (uniformly) in <031, o, e AD,,
&% E ?‘Lad' Let y, € Vh(och), yeV(ec) be such that
(3.2) ¥y — ¥ (weakly) in A (G (e¢)) for any m integer, where

(3.3) Gploc) = {[xy3x;) € IRyIxy€ (0506 (x,)=1/m), x,(031)f.Then
(3.4) (P(yy)s g)"‘h—) (P(¥)s &)y V& ¢ D(R,).

Por the proof we refer to [2],

Lemma 3,2, Let <& U,, and g€ K(cc). Then there exists an
extension ¥ of ¢ from Q () on D4 end functions {(p"i}?ﬂ i
gz*jc 81(_03) such that

(1) q;"d — g@¥ in n‘(nﬁ)

(11) Q*J-V+":’; where y Z 0 in 05 , 'qjec.""(gﬁ)
and Qj(xﬂxz) =0 V[q,lece‘(j), where 2(J) .

-i[x.‘;xz] € I'B.Z\xza(o,ﬂ y 3 € (x (%) - E(})'""}’ )iand m(j) — 0 3
J— o .

Proof can be found in [11],

Now we prove & fundamental result, by means of which we es-

tablish the mutual relation between ( IP)h and ( |P).
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Lemms 3,3, Let o, =% ¢ 1n<0,1>, euly,, <€y,
and let yy=y,(ccy) € K(ecy), 2p6 Vh(&h) be solutions of
(G‘(och))h. (.ﬂ(ech))h, respectively. Then there exist subsequ-
ences {y, {ciy,i, {shj §ciz,t end elements yeK(cc), zeV(er)
such that

yhj -y

‘hj'"‘ %
in H' (Gn("‘)) for any m, where Gn(oc) is given by (3.3) and y, s
are solutions of (P(«)), (A(x)), respectively. Morsover,

(3-5) “111 “1,9.( )"‘7“7“1 Q,((,)' l\zh “1 n“h )"’l!ll‘ n(d‘),
j ‘hd » j k) j »
hj-—>0+.
Proof. Sequences y,, I, are bounded in the following sense:

30> 0 independently on h,cc, € U2, and such that

(3.6

Indeed, substituting g, = 0,2y, into (P (%)), and using the
tact £ ex.z(nﬁ), we immediately obtein the boundedness of Y.
Prom this and (A(«y))y, the boundedness of z, follows.
Let m be fixed. Then there exists ho-ho(n) such that

G-zoc)c 0 (e¢y) for any hé&h  and (3.6) yields
(3.7 “’hnl,Gn“ °, ush|1.G.£ ¢ Vhh,.
Thus there exist subsequences {yh(n) teiyyt, {zl(")l cisg} aad
functions y® 3 MO PE (Gy(c)) such that

’1(1-) . ’(n)

‘1(:.)"‘ s® 4y (Gg(e)).
Proceeding in the same way on G 4 (oc ) with '«é w‘,x.l(")} one
can choose -Yyl(l"n ’3c{y§')}, {sﬁ""”f €1 }%% pacy that
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() _y p(m) | plm) (@) 4p w6 ().

Further, it is clear that

Y@ ) ) g,
The diagonal sequence, constructed by means of {yéq)}, {zl(‘q)}.
q = m, m+1,,.. (and denoted by {y, }, {zh; for seke of simpli-
city) have the following property:

Ih,—7Y 1
.e) 9 in H'(6,(x))

*ny F

for any m, with y and z defined by

(3.9) y= y‘('), z=2™ o Gplec)e

Moreover, it is clear that y,z ¢ V(oc). We next show that ye K(o<).
Por this we need the lemma 3,1, As thE T (ocy JeK(ocy )y we
_— J J 3

(3.10) (P()‘h:).ﬁ )othj =0 V& € 3(112)-

On the other hand, (3.4) yields
(3.11) (P(yhd)’ {)‘hj—» (B(¥)s& ) »  By—> o*.
Combining (3.10) and (3.11) we have
(B(¥)y&) =0 VE e D(R,),
i.0, yeK(t ), Now we prove that y, z solve ( P(«<)), (A(x)),
respectively.

We do it for the function y. Let £e K(c¢) be given. Accor-
ding to Lemms 3.1 one cen construct its extension &£* from O(x)
onto 03 and functions &%€H'(D4), =¥ +ny, yZO0in
Das ny€ c""('ffé'). ny = 0 1n ¢™J) (defined in Lemma 3.1) and
such that

(3.12) > E*  mE'(03).
Without loss of generality, one can agsume ¥ & c‘”(TLa‘), ¥vz0
- 778 =



(if not, ¥ can be replaced by regularizations vy C”(-.Q.-;;_).
¥;z0in Of end yyj—y 1 B (g
Let

be a piecewise linear Lagrange interpolate of g‘i l,O.(a ) over
h
Tp(p)e Let § be fixed snd b — 0%, Then from the comstruction

of the sequence é"a it follows that édhe x(och), provided h
is small enough and moreover:

Let hy be & filter of indices, for which (3.8) holds.
If h, is sufficiently smell, &£, € K(«, ) and one can substi-
t Ing b,

tute gjht into (P(oty )¢
(3.14) (yht, g‘dht"ht)‘ﬂ“ht’? (z, gjht"ht)o,n(e(ht)'
Let m be fixed. Then one can write:
(7,3 aiht-yht)"m‘ht) = Ond Sgn, T 1,0 0 *
*+ (s Sim,Tn, )1 o (o Na) *

* Ongd Sam T4, @60-0,60) A0, ) £

é(’ht‘ E,Jut"ht)uc‘(ec) + Gy §3ht)1 £ty N D60 *

* Ongd Ban 1, 000656000006, ) *
From (3.8) and (3.13) we conclude that

3 3
(3.15) ol Tng Eam,Tn01,0,60 € O3 £59)1 0 (00
In view of (3.8) and the fact that ocht:;oo 1n <0,1> 1t holds
+

(3.16) (’ht‘ gjh’)1 ’n(&ht)\n(d') — 0, hf_’ 0.

- 179 -



As

|

x
\Gy3 Sgn,~ E301 (206 ) 0 0.ty )
*
£ ¢ lgdht. ng “1’0'("(ht) £ ¢ ht‘ E le’n(“(’ht) —> 0, ht‘_’ 04"
we have:
SR b gaht’umw\a,(m)\n(«ht) <
1im sup (v 3 €%, @loNG, (€)) NG, ) *
g0+ By ST, (<N,
*Pm 2P Ond Sing S 0Ne, @806, ) 7
7 *
PR Ong S0 0N, 0000, ) 2
»
R AR RPN ST
which elong with (3.15) and (3.16) yields
o1 1lim - <
(3.17) ht:»“g_'_ (yht‘ giht ’hth'n("ht) <

< (3 §3‘Y)1,Gm(cc) +c Mg 1,0(NG ()°

Also we have
5 Sy Tn oy, ) = (5 SinyTn o660 *
+ (1 §aht"ht)o,n(¢ht)\nw +

* (1 Sim 7000, (200N, 600 066, )*

Hence
(:18)  ym 40t (55 BgnyTn 0,204, 0% 1 E57)0,0,60

- eiltly oone, 0 + VS N aone ot

Taking into account (3.14), (3.17) and (3.18) we see that

Y

G.19) s &30 6 0 * ¢ 1 a0

z (f‘ g*s-’)olGn(¢) - ¢ L0 f“o,n(d)\on(m) +
= 780 =



+ 15 acone et .

Letting m —> o0 in (3.19) we have

O3 5594 000 Z (5 §57)0,0(0)
Pinally 12 j—> 00 4 then

3 =901 0600 Z (13 S§-T)g 9y VE € K,
i.e. y is & solution of (P(«)). In a similar way one can prove
that z, defined by (3.9) is a solution of (R(x)), taking into
account (3.8),. Let us prove (3.5). As K(ecy ) is & convex cone
containing zero, one has: C
(3.20) (’hj"hd)uﬂ.(d.hj) - (f.’yhj)o.ﬂ((hj)
so that

2
(.21 3% b . yhd“hﬂ(ochj) g S “Whj’o.n(«,hj) -
= %2 S o e, ) ¢ “*’hj)o,nuhd)\n(oc) *

# ‘f*’nj’o,cnw\cnm)nn(cchjﬁ = (3o, ()* (@)

c(m) = %1;3%* (f"hj)o.(n(x)\cn(“))"‘o'(‘hd)

holds for any m, It is readily seen that c(m)—> 0, if m — 00
Indeed, we observe

‘e(n)\‘aﬂf'ln“)\qn(‘)—)05 n—>» 00,
which, using (3.21), implies
2 2

(3.22) 1};; 3’0+‘l,h1“1 ’n(d‘hj) < (f!’)o'n_(d') = “1“1 L0
On the other hand

2 2 2

s a8 b 1 12y ) = a1 6w 2 LR

holds for Y m, so that

2 2
Yo 1 U i, ) = Wl e
Z 781 -



Combining (3.22) and this inequality we obtain (3.5)1. Now it
will be shown below (3.5)2. Inequality

iim int I zh 1&(«1, )= “““1..(1(90)

is obvious. Let yhj. zhde 12 (.D.'\) be functions, defined by means
of

¥ on £1(o0y, )
By ny

2w (analogously 2
YhJ N0 on ’o‘ﬁ\‘o’(“’hj) ogously z1»13).
As

by, 02 = W5 02 & Ty 42
yhj 1,&(th) yh 0,04 ’hd 0,04

2
“zhj“1'9‘(°‘hj) - ll'l ‘o in+ “Vr.h 0,04
elements Ohj = (’ihj, th), "9'113 = (i’hj, Vzhd)e (L (nﬁ))3 are

bounded as follows from (3.6). Thus there exist subsequences cf
ieu;s . -i'ﬁ'hd'i (denoted again by the same symbol) and elements
9, Pe (Lz(ﬂﬁ))3 such that

O — 0 = (37,7,,75) € T2(Q3))>
(3.23) By ¥eets 5
D = (305053 € (¢SS PHIEN
It is clear that y, = 2z, =0 in .O.a\.(l(co).

“720’3}‘_0‘(&) - V(I‘;'_n_(‘_))

’552.53} ‘n_(d) - V(l1 ‘ n“))

¥y = y(t)y, 2y = 2(x).
Furthermore

2 2 2 2
(3.24) ) Oh “0 ﬂ." = | 7h3‘|1’n(%j) w—— “11‘1 'Q‘(ﬁ")- nO‘o’ﬂa'
Taking into account (3.24) and (3.23), we get
op— 0 1n (1F(np3.
- 7682 =



This, in turn, implies
(3.25)} (yhj‘zhd)1’n(‘hj) - (ohj‘ q,hj)oinﬁ —> (O.ﬂ))o,_n(; -
= (y,z)1's\_(w).
From (3.25) end (3.8), we obtain
2 2
(3.26) ];j;;; sup, uzh;jﬂ"m"‘h:’) - }-.1:—?8* “’h;‘zh;“'n(“hj) -
- (84700, (e, )0, )T £ 7201 060 -

- (£32) ’
32 O,Gm(oc) + ¢4 (m)
where
o(@) = 3ga mup {-(2i2, Do, (0(aNGy () ARl ) ¢
Moreover, one cen easily verify that 1lim c¢;(m) = O, which, us-
m - 0

ing (3.26) implies

2
2
- “2“1 n‘ :) °

This completes the proof,
The main result of this section is:

Theorem 3,1. Let oc"ha’u.:‘d be & solution of ( [P), and let
r‘ﬁ =5 (x*,) be the corresponding solution of (( oC*h))h. Ther
there exists a subsequence {oc') ¥ c {1« 1, and elements
<€ Ugqs ¥* =y(x*) 6 K(c¥) such that cc"hj:; «* 1n<0,17;

*

’h:(c‘”hj) — y*(o®) in " (Gn(ac*)) for eny m, where oc* is a
sotution of ( [P) and y* =y*¥(«*) 1is the solution of the correspon-
ding state inequality ( P(oc*)).

Proof. As 'u.’.“ c 'lL‘d and ’l.l..d is a compact set in
€%(<0,17) - norm, there exists a subsequence of {o(*, % (denoted
again by {«* 1) and an element oc"€ U,, such that
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(3.27) o« 3 o* 1n<0,17%.

From Lemma 3.3 it follows the existence of subsequences
{y;&( “'*hj)} c {ypacy)l, 42;;3(#;3)1 c {zi(yp} and of elementa
y¥e K(<*), z*e V(«*) such that

* *>
Jph, —~7 1
(3.28) J in B (6,(*)) for any m,
’;j(vﬁd) —2*(y*%)

hd Mo ) 19 Mo
(3.29) 3 "
b 3
4, ! TR, )T R LYo

and moreover y*(o*), z¥(y¥) are solutions of (P (x*)),(A(x*)),
respectively. By the definition of ( 'P)h we have

1 2
(3.30) heX | = («®, V4B, (g, ) =
3 ’ij 1,n(¢*ha) Ehj it 16 By dn, .
-3z (3, )02 Y&, €U 3.
Z "nytny 1.n(u,hj) hy ad
Let « € ’H..d be given, Then (see [3]) one can find o) € ’U,zd

satisfying
Ly 3 in <0,1> .

Let y, (), 2,(yy) be solutions of (P(ocp))ps (A(cxy))y, res-
pectively, with properties analogous to (3.28) and (3.29). Using
(3.29) and similar results for {z, (y, )} end passing to the 1i-
mit with hy—> 0% in (3.30) we obtain

% l\s"(y*)\\frﬁ(‘,) - B(x*)£B(x) = 5 Iz(y)\\f’n_(%)

V& eUgqgs
i,e, <Me 'u'ld is a solution of ( [P).
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4. Numericel realization of (IP),. Let h,cx, € ?L&d be fi-
xed. The state inequality (?(xh))h, expresaed in the matrix
form can be written as follows:

(4.1) £ind x(o¢)e K such that L(x(oc)) < L(x) Vxek,
with

L(x) = 1/2(x, € «)x) - (F,x)

K =4{xcR |x,z0 Yie1},
where €(x) is a stiffness matrix, depending on design parame-
ters

& € RYy
F(k) o+e. linear term;

I ... set of indices, corresponding to constraint compc-
nents of the nodal displacement field x.

Analogously, the matrix form of (.Il(och)-)l1 is the following:

find z(ec) = z(x(cc )) € R® such that
(4.2)
C(x) z= Cx(x) - F.
Pinally, the matrix form of ( [P), can be stated as follows:
find e U such that
e(x*) 4 e(x) Vo 6 U,
where U = {oc 6 R, (c) 4y Vi=1,..0,8 1,,,(c) = 0},
e () = H(2(x), €(x)2(x)),

(4.3)

1 i=1,...,8+1 are linear forms of ¢,
d.le R, are given real numbers.

The last equality constraint corresponds t> the constant const-
raint volume. Our aim will be to determine the gradient of e .

It is known that the mapping o —> x(<) is not Préchet
differentiable and the same holds for the mapping o« — & (x),
in general. In our case, however, we prove that the function €
is, dué to its special choice, Fréchet differentiable.

Let «,& e RY be given and let us denote
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elx) X = 1in  ElXrtet) - E(c) |
t >0

It has been proved that such 1limit exists as well as

x(+tal) = x() (see [41,15)).

(X)X = 1im
t—-0* t

Now

(4.4) () = $(€(x) 2(e0),2(x)) = = £( €(x) z(ox),z(x))+

+ (C(x) x(x),2(c)) = (F(o0),2(cx6)),
when (4.2) has been takem into account. Let us denote
€)X = ((Vyoqqe) -+ XN 5y
FUxIE = ((F, Fy() - )Y _4
Elements of € (x)& are given by derivatives of elements of
C at the point o« and the direction & (analogously
F(XIZ)e
Starting from (4.4) and using the previous notation, we can write:
(X)X = =(2(e6)X 4C(o6)z(e0)) -
1/2(C “(w0)E 2(x ) y2(e0 ) + (€ (c6)Sx(ec),2(ex)) +
(€(ot)x (0 )& 42(c6)) + ( C(k)x(x),2 (6)X) =
(F() L p2(x)) = (F(x),2 (x)X) =
= =27 ()&, C(x)z(cx)- C(x)x(oc) + F(x)) +
1/2( € ()X 2(o0),2(cc)) + (€ (x)Lx(cc),2(0)) +
(C(x)x ()X ,2(x)) = (F'(x)X ,2(cL)) =
= =1/2( € (e )X 2(x),2(x)) + (€ (o)X x(x),2(cx)) +
+ (x ()X, C(x)z(x)) = ( F(x),2(x)),
making use of (4.2).

+

+

+

Now we derive another equivalent form of the term
(x(x)k, €(x)z(x)), where x (o)X will not appear explicit-
ly. To this end we present an equivalent formulation of (4.1),
using Lagrange multipliers. It is known that x(o¢) is & solution
of (4.,1) if and only if 3IA z O, such that
- 786 =



cij(cc)xj(cc) - 3"1(06) Vig1

(4.5)
ojy(e)xy(x) = Fy(o) + Ag(x) Vier
and

7\3 are multipliers, associated with the constraint x(oc)e K.
From (4.2),(4.5) and (4.6) we see that

(x° ()%, €(cx)z(c)) = (x7(ec)X 5 €Cot)x(oc)=F(cx))=
We prove that the last sum is equal to zero. Indeed:

é%] xij(“)"cij .7\3 - éeZ’onij(o(,) ocij .7(;,

where IOSI and such that jeI <& ?Lj?O. Let A.'; be Lagrange

multipliers associated with the design parameters oc+t6"c, t>0,
i.e, ﬂ; satisfy the same relations (4.5),(4.6), only with o«
replaced by +t% . AB .7&; are continuous functions of t, then
it

jel. also a;>o

o
and the corresponding constraint is active, i.e. x4 (oc+t§r:) =0
J

so that x{ ()& = 0.
3
Summing up all our considerations we see that

(<))& = =1/2(C () 2(cc),5(cc)) +
+ (€ ()& x(oc),2(ex)) = (F/(ex)X,2(cC))
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