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A REMARK ON THE SOLVABILITY OF THE DIRICHLET PROBLEM
IN SOBOLEV SPACES WITH POWER-TYPE WEIGHTS
Josef VOLDRICH

Abstract: For each ¢ # O (with lel sufficiently small)
such an elliptic partial differential equation is constructed
that the corresponding Dirichlet problem is unsolvable in the
Sobolev space with a weight given by the ¢ -th power of the dis-
tance to the boundary.

Key words: Dirichlet problem, Sobolev power weight spaces.
Classification: 35D05, 46E35

1. Let Q¢ Rn be a bounded domain with a smooth boundary
3Q end Mc 8f)l be a closed manifold. The weight dy 1is defi-
ned in & point x € & by 4,(x) = min {lx-yl;ye M, The weighted
Sobolev space ';'2(.0 3dy, ) 1s the closure of the set C:’ ()
of smooth functions with a compact support in f) with respect to
the norm

i
Hubg = ¢ [, Tul? afx) an)’.

Let us consider the Dirichlet problem

11l 1 . J
(D){ I‘”,Iz‘ﬂé‘l (-1) D (a.“\x) Du(x)) = £(x) in O ,
u(x) =0 on 300 ,

where -.“ are such that the corresponding bilinear form

- = e, Ddu plv ax
a(u,v) R -TPP jn 44 D'u D'y

1s bounded on ';'2(0. )R 3 ll’z(.ﬁ.) and, moreover, it is ll'z(ﬂ.)-
elliptic, i.e.
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a(u,u)zcllu |§ with some ¢> 0.

Here, ¥}'2(Q) = w)+2(034,,0) denotes the standard Sobolev spa-
ce without the weight and I):l denotes the differential operator
with the multiindex i.

We shall say that the function ueW)'2(Q3dy,¢) is a weak
solution of the Dirichlet problem (D), if

a(u,v) = fn £(x) v(x) dx

for every veC(Q).

Many papers deal with the solvability of the Dirichlet pro-
blem in the weighted spaces even in the case if the correspond-
ing equation is nonlinear or of higher power (see e.g. [11,[21,
[31). It is motivated by two following reasons: At.first, the
behaviour of the right-hand side f near the boundary 3{l may
exclude the solvability of the problem (D) in a classical (non-
weighted) Sobolev space. At second, if the problem (D) is solvae-
ble in a classical Sobolev space then from the behaviour of the
right-hand side f near the boundary 3fL we should like to dedu-
ce the analogous one of the solution. The use of suitable weights
could answer some of such questions., The results obtained are a-

nalogous to that from the following theorem,

Theorem. Therer exists an interval I ocontaining a neighbour-
hood of O that for any e I and felW)'2(N 34 ,~¢)]" there
exists exactly one weak solution ue ll'z(n ;d',e) of the prob-
lem (D).

Such ngnrtion Justifies our effort to ask for the maximal
interval I(D) in case of each particular Dirichlet problem (D).
The aim of our note is to show that there is no chance to obtain
any universal I(D) for at least some class of Dirichlet problems.
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Namely, we shall prove the following

Proposition. Por any lel , arbitrarily small, we can find
such a Dirichlet problem (D) that ¢ ¢ I(D).

2. At first, let us remind a certain version of H&rdy'-
inequality. If ¢ #* 1 then

4 2 e-2 a2 x€
@ ) ah oty Jo 1w @12 x%ax,

for all ue Il’z((0,1);x. <)
Let us consider the Dirichlet problem

<) { -u’(x) +J(&=1) x2 u(x) = £(x) for xe (0,1),
g u(0) = u(1) = o.

The corresponding bilinear form

a(u,v) = f: uwvax + o (d-1) j: x~2 uv ax

1s bounded on W)*2((0,1)) = ¥}*2((0,1)) and ¥}2((0,1))-ell1ptic
for |4 (&=-1)1< } Really, on the basis of (H) and the Holder
inequality we have

4
letw,mié (4 18 =D ¢ [ 1a1%a0'2 ¢ ["1+1200172,

a(u,w2 (141 8@ - [ 1ut2ex,

Further, let ¢ +0 and le| be sufficlently mmall, Put d' = J3&.,
Let us suppose that the right-hand side of the problem (Ds) is
of the form

x’r'z(-ln P 200 ~w-w(w -1)(-1n ™11
2(x) = { for x6(0,1/2),

% ’(x) +d(J 1) x2u(x)
for x6<1/2,1),

where @ # 0, lw|< % and w 1s & funotion with the continuous
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second derivative in the interval (i-, §), w(1l) = 0, w(x) =
= x9(-1n 0% for x ¢ (§, ). Then e [¥)+2((0,1)4x,-2)]¥. Indeeq,
4 ’
lfo £(x) v(x) dx|€ const (1;4 | v(x)| 2 x'e’dx)vz,
for any ve ll’z((on);x.-e ) ,because the inequality (H) implies

172 4 -
) 2972 (<10 x*~Yv(x) dxléﬁz( Lt (x)| 2x~%ax)1/2,

/-
.( f; 2271 (~1n 1)2245)1/2£ const I v g -

Regarding the uniqueness, the weak solution of the problem
(Dd") is of the form

0 for x = O,
u(x) = x9 (-1n x)® for x€ (0, %-) -
w(x) for x¢€ (%, 1.

However, 2d' =2+¢ = =1, 2w > =1 and
1, . 12 o4
(Iuilz - _,fo lu (:z)lzxe dx Z const j; xzd- 2"'e(-ln x)zaldx = +00,

t.e. ud W 02((0,1)33,¢ ).
Therefore ¢ ¢ I(Dy_,)s for ¢ = O, and |e| sufficiently
-

small,
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COUNTABLE HAUSDORFF SPACES WITH COUNTABLE WEIGHT
Véra TRNKOVA

Abstract: We show that every countable commutative semigroup
admits a productive representation in the class of countable Haus-
dorff spaces with countable weight. As a consequence, we obtain a
countable Hausdorff space X with countable weight, homecmorphic
to XX Xx X but not to X=X,

Key words: Countable Hausdorff space.
Classification: 54B10, 54G15

I. Preliminaries and the Main Theorem. Let (S,+) be a commu-
tative semigroup, X bea category with finite products, ¢ e class
of its objects. A collection

{X(s)Ises}
of objects of ¢ 1s called a productive representation of (S,+)
in € 1t

(1) for every s,,s,¢S, X(8,)xX(s,) 18 isomorphic to
X(sy+8,),

(11) 1f s+ s,, then X(sq) is not isomorphic to I(lz).

The field of problems which commutative semigroups have producti-
ve representations in which categories generalizes some problems
investigated e.g. by S. Ulam [17], A. Tarski (10],{11), W, Hanf
[3], B. Jonsson [4],(5], A.L.S. Corner [2], J. Ketonen [6], R.S.
Pierce (9] and others. Por example, if the represented semigroup

(3,+) 1s a cyclic group o,= 10,1} of order 2 (i,e. 1+1 = 0) and
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{X(0),X(1)} is its productive representation, then X=X(1)=
= X(1+41+41) 1is isomorphic to X2 Xx Ix X but not isomorphic to
X% Ix X2X(141) = X(0).

In (151, a survey of results concerning productive repre-
sentations of commutative semigroups in classes of topological
spaces was presented and six open problems concerning this topic
were formulated. Let us mention that some of them have been al-
ready solved, namely Problem 1 in [7], Problem 2 in [16]and Pro-
blem 4 in [8]. Here, we solve Problem 5 aboud productive repre-
sentations in the class of countable spaces with countable weight.
Problems 3 and 6 of [ 15]remain open.

Let us recall here the situation concerning classes of coun-
table topological spaces. If a countable metrizable space X is
homeomorphic to X2, then it is homeomorphic to X2, by [13]. On
the other hand,

every countable commutative semigroup has & productive re-

presentation in the class of all countable paracompact spaces.
This is proved in [14]. The construction in [14] uses an infinite
collection of pairwise incomparable ultrafilters (in the Rudin-
Keisler order) on a countable set and the constructed represent-
ing speces are far from having countable weight. The result con-
cerning countable spaces with counteble weight is much weaker,
By(15], every countable commutative semigroup has a productive
representation in the class of all countable Ti-spaces with coun-
table weight.

In this essertion, T,-spaces cannot be replaced by T3-spacu
because a ‘.!3-|paoo with countable weight is metrizable and, as
mentioned above, the group S, has no productive representation
in the class of countable metrizable spaces. Problem 5 of [15]
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is to f111 up the gap between T,-spaces and T3-spacea. The aim
of the present paper is to prove the following

Main Theorem. Every countable commutative semigroup has a
productive representation in the class of all countable Tz-spa-

ces with countable weight.

Let us sketch the contente of the next parts of the paper,.
In II, we introduce the notion of irregularity degree of a topo-
logical space and investigate its basic properties. By means of
this new topological inveriant we prove in III aml IV the above
Main Theorem. In III, we construct the representing spaces, in
IV we prove that they really form a productive representation in
the class of all Countable Hausdorff Spaces with Countable Weight
(let us use the neame CHSCW for this class). In the part IV, we
present some sirengthenings and generalizations of the Main The-

orem.

II. The irregularity degree id.

II.1. The inductive definition of the irregularity degree
of a topological space P (similar in its form to the definition
of ind - the small inductive dimension) is as follows (X denotes
the closure of A).

1a J = -1
If x6P then

1dp x4 n = for every neighbourhood Uof xin P

there exists a neighbourhood V' of x in P such that
1d(T\U)én - 1y

1d P£n = for every x€P, id? X 4ng

idp x = n = 1dp x4n and non (:I.d? x<n - 1)

id P » n = id P<n and non (id P<£n - 1),
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Since in our constructions in III and IV we are interested only
in spaces with finite irregularity degree, we simply put
id P = o0 = for no natural number n, id P<n.

Observation. id P£0<=>P is regular,

The proofs of the following lemmas are straightforward in-
ductions; the cases n = 0 and n = co are usually trivial, so we
shall indicete in each case the induction step.

II.2, Lemma, If QcP, then id Q<id P.
Proof. Use the inequality

Vn N (UnQ) e TPE\ L .

II.3. Lemma, If P = Pyu P2 and P4, P2 are closed, then
14 P = max {14 P;,1d Py},

Proof. It suffices to show that idp x <max 114 Py,1d P}
for each x€P. For xe€ PyN P3_1 it follows readily that idp x =
= 1d1,ix 8o we take x&PynP,, Now, use the fact that if Vi is a
P, -neighbourhood of x for i=1,2, then V= ¥ju V, 1is & P-neigh-
bourhood of x and if U 1is sny other neighbourhood then

P, o
TENU e (TN (Un 2o (T2 (UnBy)).

II.4. Lemma, Let x be a point of P such that
1d1,x-1dl’-n<ao.
Then for every neighbourhood U of x
14 %F = n.
Proof. Straightforward.
II.5. Broposition., Let P = Pyx P, @. Then
14 P =14 P, + 14 B,.
Rroof. First observe that if U;,U,s P, ere open for i=1,2
and VaVynV,, U= U;xU,, thea
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o P, e P, < B
TaUe (TN U= T2 (T (T2 w)).
Then £ follows in a straightforward way and = follows, fixing
e l’i with 1d.1,1:i = id Pi for i=1,2 and then, using II.4, show-

ing that idp(x1 ,22)_71d Py+ 14 Py

II.6. Example, Let m>1 be a natural number., Let us define
& space Z as follows: Let {Dil 1=0,...,m} be a pairwise disjoint
system of counteble dense subsets of the interval (0,1) of the
real numbers, let B be the set of all rational numbers in the in-
terval {-1,0) . Put

Z,=B ”;go Dy.

Let ¥  be the Buclidean metric on 2, & (-1,1) , denote K"6 =
=ixez | v (x,2)< <1 . The topology of Z, is defined such that

if zeD;, then 1its local base 1s “z,e"(@g%“ e > 0}

if ze€ B\ 10}, then its local base is {Kz,e le> 0%

the locel base of 0 is 4(-¢ ,0> v ((0,€)n D,) | & > OL.

Observation. Zm is an element of the class CHSCW and
a) if 26 Dy, then 1d; s = 13
m

b) 2eB\{0t 1ff z has a clopen (= closed-and-open) neigh-
bourhood, which is a regular space;
c) 1d; O = m; moreover, O is the unique point z of Z with
n

the following property:
id £>0 and any neighbourhood of z contains & clopen (in zm)

subset. which is a regular space,

III. The besic constructions.
III.1, Pirst, let us describe a method which has been used

several times for constructions of productive representations.

Ve start from & collection X = {X |k e ®3Y of spaces, where o
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denotes the set of all nonnegative integers. PFor every f e wm 4
we put
2(k)
x(¢) -k_‘]:rka ’

t.e each XI(5) 15 the product of £(k) copies of X, (if £2(x) = o,
then XE(X) 14 & one-point space) and X(f) is the product of a1l
xi“‘). ke @ . Then, clearly,
X(2)» X(g) 1s homeomorphic to X(f+g).
Denote by Ll the semigroup of all countable infinite subsets A
of @¥\ {0} (where © 1s the function which maps the whole c
to 0) with the operation + defined by
A+Ba={f+g|tca,geBl.
For every A € UL denote by X(A) the coproduct (= a disjoint uni-
on es olopen subsets) of %, copies of each X(f) with fe A. Then,
clearly,
X(A) < X(B) is homeomorphic to X(A+B) for all ABe Wl .
If the starting collection X={X |k ¢ } 1s constructed such
that the following implication is fulfilled,
X(A) is homeomorphic to X(B) = A = B,
then {X(A)lAe W} is & productive representation of UJ ., And,
by [12], every countable commutative semigroup can be embedded
into U.

III.2, In the present paper, we have to modify the above
method because the spaces X(f) are usually uncountable. The idea
is to choose suitable subspaces, say Y(f) ‘s, such that still

Y(2) xY(g) is homeomorphic to Y(f+g).

In our eonstruction, however, the topology on the subset of the

product is also modified a little, Thus, let us suppose that the

starting oollection ¥ = X |k ¢ W} of elements of CHSCW has

been already construoted (this will be done in III.3) and let us
- 754 -



suppose that a gemigroup S « W 13 given such that its support

|
supp S -A‘SA

is countable (every countable subsemigroup of W hes countable
support, of course)., Let us describe the spaces X(f) =
't,Uw xi(k) in a way more suitable for handling with coordinates.
Por every f ¢ w “\ {0} , denote

L(2) = §(k,J)k e @ , I=1,0..,2(k)}
and for every £ = (k,j) € L(f) put L= k. Then, clearly,

X1 = Tl -

For every f,gc supp S, we choose a bijection

(g, gt L(E) U L(g) — L(t+g),
where L(f) U L(g) denotes the disjoint union of L(f) and L(g).
Let us define a map

Pr.g 1X(£) = X(g) —> X(£+g)
by

gof's(x.y) = 2
where for every £ e L(f+g), the /{-th coordinate Zp of z is pre-
cisely the £'-th coordinate of either x or y, with £ = (u,?.éz),
depending on the fact whether £’ is either in L(f) or in L(g).
Thus pf‘s only permutes coordinates (so it is a homeomorphism
of X(£)x X(g) onto X(f+g)).

If f,gcsupp S, J° 1is a finite decomposition of L(f) and J”’
is a finite decomposition of L(g) then i(ut's(z)lz € d or
Z €4’} 18 a finite decomposition of L(f+g); demote it by
(“f'g(d' U d'). Conversely, if J is a finite decomposition of
L(t+g), then $L(1) A @ (2)1Z ¢ &'} mnd TL(g) n w} g (2)12 653
form finite decompositions of L(f) and L(g); let us denote them
by wiig,1(d) amd w3l (o

Por every fesupp S, we define a countable set D(f) of
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finite decompositions of the set L(f) as followe (simultaneously

for all fesupp S, by induction):

Do ()= {4L(2)N KIu{iky| ke K} | K 18 a finite subset cf L(£)},

Dy (L)= .‘Dn(f)u{,u.;:gn(d‘)lze supp S end d'e D (f+g)3 v
visgly o) | gcoupp S and o e D (148) § U
u&p&s'h(d'ad")lg,ha supp S, g+h = £,5€ D (g), d’e D (),

2 -, 9 (0.

Now, let us suppose that the starting collection X={X (kew}
has been constructed such that each X, 1s an element of CHSCW and,
moreover,

e) there is a distinguished infinite subset H in each of
them (the same set for all the X ‘s ) end

b) for each k ¢ w , a continuous metric G"k is given on xk
such that diam Ik- 1, all the metrics G'k, k € w , coincide.on
H (i.e. 6 (a,b)= 6] (a,b) for all k,k's «> , a,beH) and deter-
mine the topology of H.

Then we have two topologies on each X(f), namely the product
topology p and the topology of uniform convergence of the collec-
tion of the metric spaces {(X,, &, )k ¢ w3.

For every fe supp S put

H(f) = {xeX(f)) there exists o"c D(f) such that x is constant
on each Z € & eand, for each Z € J° , the value x, of x at Le 2
is in H3,

¥(2) = {xeX(f) | there exists y ¢ H(f) such that X, = y, for all
Ae L(£)\ K, where K is finite}.

The topology investigated on Y(f) is the infimum of the topo-
logies p and m, i.e. & local base of & point x ¢Y(f) 1is formed by
all the sets

(N (V ,‘L.TIKQLK)’
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where K< L(f) is finite such that x, 6 H for all Le LIONK, U,
is a neighbourhood of x, in xk for each keK and v is a neigh-

t . -
bourhood of fx, | £ € L(£)\ K} in the apacolbm)\.( (lz ’ 6:?, ),

where T-T denotes the product of metric spaces endowed with the
metric
6(a,b) = .,'tlp 6, (‘z'bl)'

Proposition. Por each fe¢ supp S, Y(f) is an element of
CHSCW. Moreover, for every f,ge supp S,
Y(£) < Y(g) is homeomorphic to Y(f+g).
Proof. Every Y(f) with fe supp S is in CHSCW, evidently.
The bijection $°f,g maps Y(f) x Y(g) precisely onto Y(f£+g), this
follows from the definition of &) (f), D(g), D(£+g); since it

only permutes coordinates, it is a homeomorphism.

III.3. We finish this part with the comstruction of the
starting collection X = {xklk € wlof elements of CHSCW, the
system of continuous metrics {6,k e wt , 6y on X, , and the
distinguished subset H of all the xk'c. The proof that this coil-
lection really leads to a productive representation of a given
semigroup S € W (with countable support) will be given in the
next part IV,

Let M = {M |k ¢ @t be & pairwise disjoint system of infi-
nite subsets of @ \ {0,1}. Let us express each M, as an incree~
sing sequence, i.e. M = {‘k,ili € wi , where

1oy 0 g, 1< P 5 Soee
Let 2., By ¥, Dd be as in II.6, We define the space X, by means

of the system ““x 1|1 ¢ wt of spaces. We multiply them by one-
]

point spaces to make them disjoint, then we form their (disjoint)
union and add one point more. Thus,
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R
b -{diu‘;% 12 }xzmk'i

Let us denote
fm"’ o
o0 /]
cn=d
& =i
¢ = .U 1277 < (B\{0})
H={c}vu G.
Clearly, xsxk for all k € < . We define the topology of xk as
follows:

each {2'1}r~ ka . is a clopen subspace of xk (homeomorphic
1]
to ka i as in II.6, under (2'1.x)~w-)x), a local base of 0 in
14

> is{‘.o‘}uag} iz'iixzmk’ila c wl.

Kow, we define the continuous metric 6'k on X,.

G'k(x,y)- %-(2'14-2'3) whenever 1+j, xe£2'1} *x ka'i,

yei{2793x 3z K

6. (x,0 )= & +21 whenever xe427 <2
k™ 3 m,3?

1 i Ao e
6 (x,y)m= we 27", © (x,¥) whenever X,5¢ 2 an
TS Dy ,1 By, 1

b 3 (2'13), y = (2'15), where %, 1s as in II.6.

d

Then diam xk- 1 and, since each « is a continuous metric on

X |
zuk ’ G'k is really a continuous metric on Ik. Moreover, since
i
»
every < determines the topology on B (see II.6), 6 really de-
termines the topology on H and all the metrics ek, ke w, o=
incide on H, Finally, let us denote

Pe,1 = (271,00 e {271inz Lo tew.

lk'
¥e conclude: let & semigroup S ¢ U with countable support
sapp S be given, let L ={X |kew} be the collection of spaces
Just constructed; for each f¢ supp S, let Y(f) be the space
- 758 -



constructed by means of ¥ as in III.2 and, for every AeS, let
Y(A) be a coproduct of s*:o copies of each Y(f) with fe& A, Then

o) Y(A) is an element of CHSCW and

(#) if A,BeS, then Y(A)x Y(B) is homeomorphic to Y(A+B).
In the next part IV, we prove the following implication.

if A,B€S and Y(A) 1is homeomorphic to & clopen sub-

(k) { space of Y(B), then AcSB.
This will complete the proof of the Main Theorem because e-
very countable commutative semigroup is isomorphic to a subse-

migroup of W , by [12].

IV. The recognizing of A from Y(A). In this part, we show

that the set A€ S of sequences can be recognized from the topolo-
gical structure of the space Y(A). We present the definitions
1 = 4 below and prove that F(Y(A)) = A.

IV.1, Definition 1. Let P be a topological space. We say
that x¢ P is essential in P iff idP x>1 and any neighbourhood
of x contains a clopen subset of P, which is & regular space. We
say that x is distinguished if it is essential in P and there ex-
ists its neighbourhood V such that if y € V' 1is essential in

P, then 1d; y= 1d; x.

Definition 2, Let P be a topological space. Por every x&P,
we define

q(x) =4im € w | every neighbourhood of x contains a distin-
guished point y with 1d; y = mf.

Definition 3. TLet My =im  ,m ,,...} be as in IIL.3,
Let P be a topological space. For every x< P and every k ¢ @
define o (k) & @ and g (k) ¢ @ uiw} py

JG og(k) if? for every mé w and every neighbourhood U

- 759 -



of x there exists z € % such that card q(z) = j and q(z) <
S M\{0,1,¢..,m},

g;(k) = sup o (k).
emarl:. For every topological space P and every x€ P, we
have defined a function gy: W —> wufwl. Let us write
&< &y

ire gy(k)é 8,(k) for all k € @ and g, ¥ &y.

Definition 4. Let P be a topological space. Put

V(P) ={xeP | there exists a neighbourhood % of x such
that g < g, for every y & UN{xii,

P(P) = {g lxeV(P)i.

Remark, As mentioned above, we are going to prove that for
every A¢S,
P(Y(A)) = A,
(More precisely, w is never a value of 8y for any xe V(¥(4)),
hence gy can be regarded as & function @w —» @ and in this
sense F(Y(A)) = A,)
This will imply (%) in III.3, as we show below.

IV.2, Pirst, we discuss essential and distinguished points.

Observations. a) If zm is as in II.6, then O is its uni-
que essential point, hence it is its distinguished point.

b) Since each copy of Y(f) with fcA is a clopen subspace
of Y(A), x6 Y(f) is essential in Y(f) and 1dy(s) x = n iff x is
essential in Y(A) and 1d!“) x = n, Hence x is distinguished in
Y(2) iff it is distinguished in Y(A) (more precisely, x< (!(t)):.

where (!(f))j is a copy of Y(£) in Y(A) -?..Lil.‘,.J (Y(!))J. 1l de-

$cA
noting the coproduct).

Lot L(f) and £ be as in IIT,2, let Iy, Byy Gy Py g De s
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in III.3.

Lemma A. Let xe€ Y(f) be such that all its coordinates X,
Le L(f), are in G, Then x is not essential in Y(£).

Proof. If x, € G for £e L(f), then id x = O hence x is mot
essential.

Lemme B, Let x be in Y(f) and there exists te€ L(f) such that
the t-th coordinate x; of x is in E « Then x is not essential in
Y(£).

Proof. Let us suppose x; 6 E; e Since E"t' is open in I; 5

YDA @ %, WD)
is a neighbourhood of x in Y(f) which does not contein a clopen
regular subspace because B; does not contain a clopen regular sub-

space.

Lemme C., Let KcL(f) be non-empty and finite, let the coor-
dinates of a point x& Y(f) fulfill the following:
x, 1s in G for all £ e L(2)\K,
Xy = Bri(g) for all Zfe K (for a suitable i(£)e w ).
Then x is essential in Y(f) and
1oy(e) * =4 Tk "z,100)°
Proof. Every neighbourhood of x in Y(f) contains a neighbour-
hood of the form
Y(2)n (V XLTZK ’UZ).

where 7, is a neighbourhood of x, = Pz,1(z) 0 Xz am YV 1s a

subspace of the metrizable space ((}2c (where T5T is &8

LeLtenk
in III,2). Consequently every neighbourhood of x in Y(f) contains
a clopen reguler subspace (by II.6) and 1d.!(f) X =, m- i(i,)>1'

Le K &
(b’ 11.5).

Proposition. Let x be in Y(f). Then x is dir‘ pguished in
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Y(£) iff precisely one coordinate of x is equal to Py ¢ 8nd all
,
the others are in G.

Proof. a) Let x be in ¥(f), x, & G for all Ze L(f)\ {ti, xy =

= pf,i' Put
Upg = G for all £e L(L)N {t}
-1
Uy = 427742 .
1 mt,i
= 1T .
Then %Y = ¥(f) Ny ie) Uy 18 & neighbourhood of x in Y(£).By Lemmas

A<C, ye U 1is essential iff ye¥(?), Yp€ G for all £e L(£)N {t3
and Ty= pf.i' Then id y = m§’1= id x, hence x is a distinguished
point of Y(f).

b) Conversely, let x be & distinguished point of Y(f). Since
x is essential, none of its coordinates are in some Ek' by Lemms B,
Hence all its coordinates are in H = {o'} v G, except, possibly, fi-
nitely many which are equal to some pk'i'e. First,we prove that no
coordinate of x can be equal to . Thus, let us suppose that there
exists te L(f) such that xy= 0 .Then every neighbourhood of x con-
tains infinitely many essential points z with 14 z all distinct.In
fact,we can choose Zym= p¥'i with sufficiently large i and,since no
coordinate of x is in Ek end G is dense in each Ik\ Ek' we can
find z, in G arbitrarily close to x; for all fe L(£)\N {t3 such
that z = {2, |£ € L(£)} is in ¥(f) and sufficiently close %o x.
Then z is an essential point of Y(f) with id z = mEg g And x is
an accumulation point of all such z s with all larger i’s, s0 x
cannot be a distinguished point of Y(f). Thus, if x is & distin-
guished point of ¥Y(f), then there exists Kc L(f) finite such that

xp € G for all £e L(f)NK,

X, = P7.1(p) for all £€ K (and suitable i(£ )e o ).
By Lemma A, K is non-empty. Let us suppose that card K>1, Then
id x = L%K ml.i(l) but every its neighbourhood contains an es-
sential point y with id y = "f,i(t) for teK. In fact, if
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5, =% for all £ € (L(f)\ K)u 4t} and v, 1s in G and suffici-
ently close to x, for all £€ KN\{t}, then really y is an essen-
tial point with 1id y = mf,i(t)" if card K> 1, then id y#$1id x,

which is a contradiction. Consequently card K = 1,

IV.3. Now, we investigate the invariant q(x) from Definition
2.

Obgervation. If Q is a clopen subspace of P and x&Q, then

qp(x) = qQ(x), evidently. Hence for every fe A and x€¥Y(?f),

Lemma, Let x be in Y(f), m be in <« . Then me q(x) 1ff no
coordinate of x is in any Ek and at least one coordinate of x is

equal to pk,.i with "k.i" me

Proof, If a coordinate of xe€Y(f) belongs to some B, then

x has & neighbourhood containing no essential point so that q(x)=
= @, Hence if q(x)##, no coordinate of x is in any E . If no co-
ordinate of x is equal to Pe,1 wi th By ,q1™ ®» then x has a neigh-
bourhood containing no distinguished point y with id y = m, this
follows from IV.2 Pwopositiony hence m4 q(x). Conversely, let us
suppose that at least one ccordinate of x is equal to pk,i with
'k,i' m, say the t-th one, and no coordinate xy of x is in Bl .
Since G is dense in each Xl' N\ E- , we can find a distinguished

2
point y sufficiently close to y such that

g = Xg = P ar
y, ¢ G for all £e L(£)\1td,
hence id y = m. Thus, mé q(x).

IV.4. Let us investigate the invarients from Definition 3.

Dbgeryetion., If Q is a clopen subspace of P and x€Q, then
the definition of 'k(k) and ;x(k) with respect to P and with
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respect to Q coincide.

Lemma, Let x be in Y(f). If some coordinate x, of x is in
Ey , then cy(k) = {0} for all k € @ , Otherwise, 8, (k) 1is the
number of all the coordinates x, of x, for which simultaneously

L-kam::‘:o’-

Broof. 1If a coordinate x, of x is in EZ , then x has a
neighbourhood U containing no essential point so that q(z) =
= @ for every 2 ¢ U , hence card q(z) = O; consequently cx(k) =
= {0V for all k e w»

Let us suppose that no coordinate x, of x is in EE . Let
k € w be given; we denote by K< L(f) the set of all £ e L(f)
such that £ = k and x, = o (hence card K< r(x)).

a) We prove that card K< gx(k). Let & neighbourhood % of
x and m € @ be given, We can find z € % with q(z)<c e £0,...
+esp,m} and card q(z) = card K as follows: we choose distinct num-
bers By 1(2)? te K, in M \N{0,s..,m} such that Px,1(2) is suf-
ficiently close to o and put

z, = Pe,i(2) for all £ e K

Zy € G sufficiently close to x, for all £e L(f)\K
(since G is dense in xz \ EZ s this is possible) and such that
z = \zl\ £ e L(£)l 18 in Y(f). Then q(z) '{nk,i(ﬂ) | £ € ki, by
IV.3 Lemma. Since card q(z) = card K, card Keoy(k), so that
card K< g (k).

b) To prove the converse inequality let us denote

Uy = Xz whenever either Z 4 k or x, =0,

Uy = 5 2-10)y 2y whenever £ = k and x,6 1 2"1“)} x

£,1(2)

’

b3 2 e
"Z,1)
Choose m"‘“{"z.i(ikl Uy + X;% end put

U = Y(L) “L?ch) 'u,l .
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Clearly, 2 is a neighbourhood of x and card q(z) £card K for
every z € U with q(z)c M \410,...,m}. Consequently, g, (k) =

< card K.

IV.5. RNow, we inveatigate the invariants V(P), F(P) from
Definition 4.

Observations If Q is a clopen subspace of P, then
V(Q) = QnV(P) and F(Q)< F(P).

Proposition. For every A€S and f€ A,

V(Y(f)) consists precisely of the point with all coordinates
equal to & , F(Y(£)) = {2} and P(Y(A)) = A.

Proof. This follows easily from IV.4 Lemma.

Corollary. If A,B€S and Y(A) is homeomorphic to & clopen
subspace of Y(B), then

A = F(Y(A))<s P(¥Y(B)) = B.
Thus, we have proved (%) in III.3.

V. Some strengthenings of the Main Theorem.

V.1, The following strengthening can be seen immediately
from the proof of the Main Theorem: If S is a commutative semi-
group (not necessarily countable) such that there exists an em-
bedding

@:8 —> W
with bLeisq(s) countsable, then S has a productive representation
in the class CHSCW, This has e.g. the following consequences:

a) The additive group (R,+) of all real numbers has a pro-
ductive representation in CHSCW, (In fact, there exists an em-
bedding :(Q,+) —> W of the additive group of all retional
numbers with @ (q) nqa(q') = @ whenever q4q , by [12]. Then

y:(R,#4) — W  defined by
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y(r) -%‘éJa g (q)
_ ot
is an embedding of (R,+) into W and"‘tJR 4 (r) is countable.)
b) There is an X& GHSCN which bas 2'° non-homeomorphic
square roots. (In fact, put S = exp @ @and s+s’ = § for all
s,8 € S. Put S, =4seSlcard s£1}. Then there is an embedding
q:So——hiu with q(s)nq(s') = ¢ whenever s+s’, by [12].
Then y:8 —> W , defined by
y(®) = g
v (8) 'm,Le)/: ¢ (n) for seS, s+f,

is an embedding with »L‘Js y(8) countable. If {X(s)IséSt is a

productive representation of (S,+) in CHSCW, then the space X =
()

= X(#) has 2 ° non-homeomorphic square roots.)

Ve2. Let us describe another strengthening of the Main
Theorem: Let a space P in CHSCW and & subsemigroup S of W with
countable support be given. Then there exists a productive re-
presentation {Z(A)|AeS3% of S in CHSCW such that P is a retract
of each representing space Z(A). Iu fact, put

T = PxE,
where E ¢ CHSCW is a space such that the points x with id x>0
are dense in it., Define ¥ = {X Ik & @3 as in III,3 and, for
every fe supp S and A€ S, define Y(f) and Y(A) by means of &
ag in III.2, Finally, for every A< S, put
2(a) = LL ™ Y(A),

Clearly, P is a retract of Z(A). Since each Y(A) is homeomorph-
ic to & coproduct of y’.o copies of itself, we see that
Z(A) x Z(B) is homeomorphic to Z(A + B).
And we can recognize the set A¢ S from the structure of Z(A)
as in IV, In fact, no 72 Y(A) with n> O contains essential
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pointa (because of the factor E) so that only T°x Y(A) (which is
homeomorphic to Y(A) because T° is a one-point space) influences
the invariants Cxs 8y that

V(zZ(A)) = Y(Y(A)) and P(Z(A)) = F(Y(A)).
Consequently, if Z(A) is homeomorphic to a clopen subspace of
Z(B), then AESB.

Cormllary, Every space P in CHSCW is a retract of a space
*
in CHSCW having 2 o non-homeomorphic square roots or >f a space
X ¢ CHSCW homeomorphic to X hut mot to X2,

Ve3e The next strengthening of the Main Theorem is as fol-
lows: Given a semigroup S ¢ W with countable support and a spe-
ce P in CHSCW, there are 2$° non=homeomorphic productive repre-
sentations of S in CHSCW such that each representing space has P
as its retract. (We say that {Z(A)l Ac St and £Z°(A)IA€S? are
non-homeomorphic r.proaontationé if none of the spaces Z(A), A€S,
is homeomorphic to any of the spaces Z (B), BeS.) In fact, the
construction of the productive representation presented in III
depends on & given pairwise disjoint system M = -illklk € w? of
infinite subsets of @ . If we choose M = {llt'ik & w{ such that

Gl )N (G, M) s finite

then none of the spaces Z(A), A& S, of the prodnctive represen-
tation constructed by means of M is homeomorphic to any of the
spaces Z (B), BES, of the representation constructed by means of
M° (this can be seen using the method of IV. ) .

Ved4e Let us mention the following generalization of the
Main Theorem: In [1), J. Adédmek and V. Koubek investigate a sum-
productive representation of an ordered commutative semigroup
(8,+,4) in a category X with finite products and finite copro-
ducts (=sums). It is a colleotion {X(s)I se S% of objects of I
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such that

(1) X(sq)x x(sz) is isomorphic to X(s1+92) for all s&,,8,¢ Sj

(i) X(sy) is a summend of X(sy) 12f 8y« By

For X = CHSCW, being a summand is precisely being homeomor-
phic to a clopen subspace.

(Any commutative semigroup (S,+) can be ordered 'by the discrete
order (i.e. any two distinct elements are incomparable.,) Then a
sum-productive representation {X(s),s¢ S¥ in CHSCW fulfils (i)
and

if s,+ s, then neither X(s;) 1s homeomorphic to & clopen
subspace of X(s,) nor X(s,) is homeomorphic to & clopen subspace
of X(s4).)

The semigroup WU ¢ exp w® 1is an ordered semigroup, it is
ordered by inclusion. If S < W has countable support, we have
constructed its productive representation {Y(A)| Ac S} such that
(%) of III.3 is fulfilled., This means that {Y(A)lAe S} is a sum-
productive representation of S, where S inherits its order from
W . And, by (1], every countable ordered commutative semigroup
(S,+,£) can be embedded in U such that s % s, itf ¢(s) &

c g (sy) (vhere ¢ is the embedding). Comsequently,

every countable ordered commutative semigroup hes a sum-pro-
ductive representation in CHSCW.

Moreover, also some uncountable ordered commutative semi-
groups have a sum=productive representation in CHSCW - the exis-
tence of an embedding onto an ordered subsemigroup of U with a
countable support is a sufficient condition, One can see e.g.
that the ombedding ¥i1(R,+) —> WU from V.1 a) preserves the or-
der so that {¥Y(w(r))lre R} is a sum~productive representation
of the additive group of all real numbers with thelr matural or-
der in CHSCW, The strengthenings described in V.2 and V.3 can be
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done: also for sum-productive representations o ordered commuta-

tive semigroups.
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