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SIMPLE ESTIMATORS OF THE PARAMETERS OF GENERALIZED
TUKEY’S 2 -FAMILY
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Abgtract: Tukey (1960) introduced & one-parameter family of
symmetric distributionswhich appeared useful in the representation
of data when the underlying model is unknown.

Ramberg and Schmeiser (1972, 1974) extended this family to a four-
-parameter family containinf distributions both symmetric and skew-
ed (to the left or to the right).

In the present paper simple estimators of the unknown parame-
ters based on order statistics are developed and their asymptotic
properties are investigated.
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statisﬁcs
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1. Introduction. Tukey (1960) introduced the family of dis-
tributions {P(.,‘A);%CRJ defined by their quantile function

€1.1) FluN = (P-(1-u)*)/2 ue(0,1),

where A € R, is a parameter. This family is known as (Tukey’
ﬁ-familx and is useful in the representation of data when the
underlying model is unknown. It conteins distributions ranging
from light-tailed ones (A>0) to heavy tailed ones (A<Q); A= O
corresponds to the logistic distribution, A = 1 or = 2 corresponds
to the uniform distribution, A = 0,135 corresponds to the
standard normal distribution.

Remberg and Schmeiser (1974) considered a generalized
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Tukey’s A-family to a four-parameter family {F(.; 21,22,23,34);
A€Ry, (25,4, )€} with A ={a;>0,i=2,3,4}u{2;<c,i=2,3,4}u{a »1,
A3<-1,2,<0bufA ,¢-1,2>1,3 <0} ufa, 0,232 >0}u{a;=0,2 A >0}, definec
through the guantile function F'l(.;ﬂ ,32,23,34) as follows:

A
(1.2) PN 0 %0 ) = A +u Z-(1-u) D) Ay, ue(0,1)

where A€ R, is the location parameter,lﬁ4l is the stale para-
meter, %2 = Q, are the shape parameters. This family con-
tains the origiral Tukey’s A-family and, moreover, distributions
skewed to the right and to the left.

The concept that the distribution is defined by its guuntile
is convenient in Monte-Carlo simulation studies (if U is a random
varieble with the uniform (0,1)-distribution and F is a distribu-
tion function then F~'(U) has the distribution function .

Moreover, it can be useful in nonparametric statistics, e.g.
in constructionadaptive R- or l-estimators.

One should remark that generally the distribution function
F(.;ﬁ1,12,%3,24) corresponding to F'1(.;ﬁ1,12,%3,%4) defined by
(2.1) is not expressible in a "simple closed form".

Tukey’s A-family was studied by several authors, e. g.
Joiner and Rosenblatt (1971), Ramberg and Schmeiser (1972, 1974).

The properties of generalized Tukey’s A-family were treated
e. g. by Ramberg and Schmeiser (1974). It wasshown how to determi-
ne the perameters of the digtribution using the first four moments
and how to fit the resulting distribution. For selected values of
skewness and curtosis with expectation O and unit dispersion the
tables of h1,...,ﬁ4 are given.

The problem of estimation of the location parameter A1 was
widely studied. Filiben (1969) proposed to use the trimmed mean
and the Winsorized mean where censoring proportion was suitably
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chosen. Chan and Rhodin (1580) developed a robust estimator of 741
expressible as a linear combination of a finite number (& 5) of
order statistics with coefficients suitably chosen.

Jones (1979) considering Tukey’s A-family proposed an esti-
mator of A based on the ordered sample and utilized it to deve-
lope the adaptive rank test for the symmetry problem.

The aim of this paper is to develop simple estimators of
%1,...,7‘4 based on the ordered sample, to investigatie their pro-

perties and to discuss the possibility of applications.

2. Estimators of the unknown parameters. Let X1,...,Xn be
a random sample from the distribution function {F‘(.,M,%Z,XB.M);
A€ Ry, Ay, %) e } with the quantile function
F"(u.').1,‘hz,’x3,m4), u€(0,1), given by (1.2) and let 2,6 ... &%,
be the corresponding ordered sample.

We shall focus on the problem of estimation of '12. The esti-
mators of 'AB can be developed quite analogously. These estimators
will be utilized to construct estimators of 7«1 and 'A4.

Jones (1979) towards construction of an adaptive rank statis-
tic proposed to estimate the parameter A of Tukey’s A-family de-
fined by (1.1) with A< 1 by the statistics:

A 1 Z,u~2Z
(2.1) ﬁ=mlogﬁ,
where M is suitably chosen and showed its consistency.

A slight generalization leads to the estimator &Z(H;a,b,s)
of A, in the family (P(.;M,'Az,’k,.‘h); N ERys (A4,%,4,) <A,
24<0 4 ﬁ\l<1};

A Z -2
(2.2) AM;a,b,8) = —1v 1 Zﬂﬂ_sz
D8 log 3 °8 [asM] ™ [baM]
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where
a,b,8>0, 8 £ 1, U is a positive integer fulfilling
max(a,b,as,bs) <n/2), a £ b,

(2.3)

and [A] denotes the largest integer not exceeding A.
Similarly, the parameter A; in the family {F(.;A1,ﬁ2.a3.a4);
A\ €Ry, %341, (42,ﬁ ,24)4_.,{}can be estimated by

(2.4) '7‘\3(ll;a,b,s) = 10—;—34103 %‘—@-i%'—n’—m——

n- [asM] ~“n- (bsM]’

where a,b,s,M fulfil (2.3).

According to Theorem 4.3 88 N-+e , Mws e , M/n-see
(2.5) A (Mse,b,8) = % + Op(max(i™ /2, (w/n)""2),

which means that this is a consistent estimator of 12 if 124-1.
The highest order of consistency (in the considered class of esti-

mators) is reached for

2(1-%)
(2.6) M=M = 0n 2% )
»
the corresponding rate of consis:,ency is
(2.7) n-s'z"Z i

Another class of simple estimators of 7«2 of the family
{F("N"‘z-’b-"ﬂf’&‘xv 1= 1,35 %42, & >0} cen be defined
as follows:

Z =2 +2Z -2
(208) &z(l;a,b,c,d'g) = 108 A mz Ml [cu] [dm_}
TasM)~ 2 baM1*Z [oadd =2 [aaM]

og S

where
a,b,¢,d,8>0; 8 # 1, a~bsc-d = 0; ¢ # b,d; & £ b,d,
(2.9) M is a positive integer fulfilling
max(a,b,c,d,as,bs,cs,ds)M<n/2.
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According to Theorem 4.4
(2.10) az(lﬁ;a,b,c.d,a) " 32+0P(m(u"/2.(u/n)z“Z.rvz(n/n)""Z))

as n—+e , M=~ , m/n -+ 0, hence it is a consistent estimator of
%2 if %25 0.

The choice

(2.11) M= M
L}

2§ 2-2‘

= O(max(n 2~2%, n2/3))

leads the highest order consistency (in the considered class of
estimators) which is

-1
(e-a)/3, (B (520

(2.12) OP(min(n ).

Table 1 below presents choices of M and the highest rate of

consistency for some particular value of ‘Az

Table 1
2, M corr. rate of conv. l(: corr. rate of comv.
e300 A 2
0 n?/3 a=1/3 nd/5 o~2/5
1/2 n1/2 n"‘/4 n3/4 n‘3/8
. . - 2?3 a1/3

If A, is unknown we camnot find optimal choice of l‘z and

l(: . But we can proceed as follows:
2

1. choose M satisfying (2.3) and compute az(l;a,b,s) (which is
consistent);
2. compute ll.AZ according to (2.6) with A, replaced by
iz(ll;a,b;a).;
3. compute 12("%1(l;a.,b,s)'°’b”)’
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None of the introduced classes of estimators attains the
highest possible consistency (n"V2 if the Fisher information is
finite). This rate is reached e. g. by the class of estimators
(iz.":\J) defined implicitly as tﬁ‘e golution of the equations:

& A
(2.13) Zagml logm)  ay2-(1-ay) 30121

i=1,2
]2 13 ‘2 13' L
Z [cin] =2 [din] 01 -( 1-01) -di +( 1-di)

where 1>&4,b;,¢;,d4 >0, (ag,by) # (cy,44),(d4,c4), 1 =1,2,
(811bq5042d,) £ (85,b5,05,d5),(c5,d5,85,5)5 85 £ by, oy # 4.
To find the estimators means in fact to solve transcendent equa-
tions which can sometimes bring computational problems.

Now, we turn to the problem of simple estimators of the scale

parameter '}‘4. By Lemma 4.2 one has

Z -2
(2.14) -T—[%-—r%]———‘j = }4 + OP(n—1/2) a8 N-—ve
a “~(1-a) “=b “+(1-b)

where a # b€(0,1), and for 7‘2’ o, ’)\3>0
Z 2 A
(2.15) 2M N oy + op(max(X, ()28, (8)"3))

n
as n—+~ , M/n -0, N/n—0 (M and N can be as fixed as tend to

infinity). Hence we can introduce the following estimator of A,:

4
 J
& bn] ~
(2.16) A\, (a,b) = .h__lég*r__l_ﬂ
4" a “=(1-a) “+(1-b) -l?‘z

A
where a £ b €(0,1), iz. 7\3 are some of the estimators of 12 and
'A3, respectively, introduced above. If 12 >0 and \3> 0 simpler

estimator of ‘A4 can be proposed:
3 Z
(2.17) A (M, F) = _n:{_z! .

At last, the parameter Aq can be estimated by (for motivation see
Lemma 4.1):
- 732 =



s . A 3, 5 A
(2.18) A (8,b) = KBrau+Bppm) = Myla 2-(1-8) 24b 24+(1-b) )

A A
where a # be(0,1), “;\2, 7‘3’ 'A4 are gsome of the estimators of the
respective parameters introduced above. If we succeed to find &, b

€(0,1) such that

A X2 A A
(2.19) a2 _ (1) +b2-1- 3 =0
then

~ A 1

(2.20) A(E,D) = HZgay+ Siny-
If 12> o, AB'» 0 then

R
(2.21) A LN = K2 gy + Zy)
can be used as an estimator 'A.l. .

A1l considered estimators of 'A1, ‘).2, ‘k3, 7«4 are very simple,
eagsy to compute (except, may be, 12, &3). In practice one should
choose M and ¥ small with respect to n; around 0,01n to O,1n accord-
ing to how large is n.

As for the asymptotic properties of these estimators, they
are consistent of order n“, o« >0 but in case of finite Fisher’s
information are not asymptotically optimal (i. e. asymptotically
unbiased with the agymptotic variance attaining the Cramér-Rao
lower bound). To obtain such optimal estimators the developed esti-
mators as (52,&3) as (&2,"‘3) can serve as preliminary estimators.

The estimators (3\2,%3) (or (&2.&3)) can be also utilized to con-

struct various adaptive rank statistics along the line done by Jcnes.

In case of A,, A;>1/2 the estimtors "’A,(u,n) and M(n.n) are
quite satisfactory for they attain the highest order of convergence,
i. e. n~min(22,23) 4o min(A,,%4) € 1 and o' ir 525 31,and coin-
cide. with the estimators considered by Akahira and Takeuchi (1981).
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3. Estimators in case A, = 13 = A. When 1, = %3 =2 the
corresponding density is symmetric around ’A.l. One can use the es-

timators suggested above or utilizing the symmetry property and
apply the following ones:

(3.1) fu,e,p,8) = %(iz(uga,b,s)fg(m;a,b,a)), Ael,

where a,b,s,M satisfy (2.3), %, and 33 are done by (2.2) and (2.4),
respectively, or & a
(3.2) 2A(M;a,b,c,d,s) = %(\2(M;a,b,c,d,a)+B(H;a,b,c,d,s)), 222,

where a,b,c,d,s,M satisfy (2.9) and ), is defined by (2.8). At last,
putting &, = 1-b,, ¢, = 1-4; in (2.13) one can define the estimator
"'iz(a‘,c1) of 2 as the solution of the equation:
z[a1n]'z[( 1-a4)n] a: - (1-a..‘)a
Z[c11'.1“|'f[(1-c.|)n] B c}- (1—01)l

where a, # c1‘(0.1)'.

(3.3)

Similarly, the parameters A4, , ‘A1 can be estimated by

a 2ean1 =% 1-a
(3.4) Na) = -%ﬁﬁ:;*;ﬂ
and
(3.5) A(8) = (Brgn+2((1oa)m)/2

respectively, where a€(0,1). If A>0 then one can also use

.
M) = (2 oy -2y)/2

or
A
'M(Il) = (zn_fzn)/z,

where M<n/2.

We cquld observe that the estimators of the unknown parame-
ters are simpler when we have the situation ’Az = 'A3 =2, i. e.

when the distribution in symmetric around the location parameter
- 734 -



%1. Hence it could be of interest to have a test for testing

problem:
H: %2 = 13 =N against A A, £ %3.

By Theorem 4.6 one has

Zry1-2
(3.6) 04T, = [[:f]_ n il

A=
opl(w/m) 2 3)

140p(1) 12 Ay = Ay =
as n—>e , M—ow , M/n —»0, which means that the values of Th
close to 1 indicate the validity of H and the values either
close to 0 or large values indicate that H fails to be true.
According to the results in Section 4 under H \H( Tn-1) has
asymptotically normal distribution with the parameters
(0,2222* 1| a~b(a~1(a?-b*)"2) and (0,2ba~"la-b|~") 1f A1 and
A >1, respectively (notice (4.12)).
If we establish the test on the asymptotic distribution of
Tn we reject the hypothesis H on the level &« if

A A a
(3.1 |V 7-1) 2 7 (1-w2) v et -bM (2 la-bfa~ b 1) /2

where @'1 is the quantile function of the standard normal distri-

bution and

A = Ayane,m) + Aaa,n))/2

4. Properties of the proposed estimators. If Z,4 ...&Z,
is the ordered sample from the distribution F(x;?«1,xa,ﬁ3,ﬁ4) defined
by its quantile function (1.2) then

% L5
(4.1) Zy = N+ "4("1 -(1-0y) °), 1s2i4n,

(o 00 2y = F (U %,%,050 ), 1414n), where U;,...,U, is the
- 735 -



ordered sample (of size n) from the uniform (0,1)-distribution.
It is known that

7 i i(n-j+1
(4.2) EU; = 257 cov(Ui,Uj) = (—n-i.l—)-g-z—n-)ﬁ—) , 1€i<jgn,

(4.3) Uy =k opc(ﬁL;jﬁl)‘/%.

Further, the random vector (1[1....,1[“) has the same distri-

bution as the vector

Uy pmoe oo UeVae g p g0 Uy Ty U)Wy g qseees

Uyt (U= I Wog_yg g, oyt 1o 8o At =YYy e e Uyt O1=8)Y 1 ag)s

where 04M&N&n+l, %y = 0, % . = 0, the vectors W1,M—1"“VM-1,M-1)
(w1,N-l(-1"‘"WN-M-1,N-M-1) and (Y1,n—N""’Yn-M,n-H) are given

(ZM. Z'N) the independent ordered samples of size M-1, N-M-1, n-M,
respectively, from the uniform (0, 1)-distribution.

In the following we shall omit the second indieces in Vi M1
’
wj.N-M—‘l' Yk,n-ll’ whenever it causes no confusion.

Combining suitably these results one directly obtains:

Lemma 4.1, &) For a6€(0,1), n»e

Z =2 -1 Aq-1
(4.4) ‘“’1 1=Baz-(1-a)a3+(Ut&n]-a)('A2512 #201-8) 2 )+0p(n™h)

LY =
=a?4 1-313 + Op(n 1/2).
b) For n*e , M—ew , M/n—0

(4.5) 2%
L

A2 2
= =1+ 2y Uy + U + 0p((Wm) D)
A
= =1 + Op(max((W/n) 2,W/n))  1f 4,30
= Wh2 + 05(1) 1£ 2,20 .
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¢c) For n—>» , > , M/n -0

-2 A
(4.6) Zn’,{z oo =U ) 2 w1+ AU 1)+ o))
A
= 1 + Op(max(W/n, (Wn) 2)) 25320
- - Gy 4 o)) 2,40

Lemma 4.2. &) For A>a, b>0, N e, N>e , M/n -0

) A A
(4.7) (z[BM]_Z[‘bM])/'All = UB’:M]{A 2{8. 2-b12 +
2

a-1
2 b 2
+ (Vag, paug-1m222 @ A = (Vppyg, pang-17E0 220 8y
1- 1-
+ ')3 U[M:% (a-b)/A + OP(max(M"1,(Wn) % M'1/2)}.

b) For A>a,b,c,d>0, a-b+c-d = 0, n>e , N> , M/n—0

(4.8) (Z[aLO‘zth]“tcm'z[dm)/M =
2 DA, N, N D
- U[imil\ 2{a"2.p 240 2.0 2 +

31 by, A2~
+ Aﬁz(vtm’[m]_1-%)a - A%V o], paug-1R®
AA(V 2) At (v ‘l)a‘x‘?-1
+ A%V e, pang-17R)© 20V g, tam1-17X

2-9 2-2
b Ay(Ag1) UpgdC-a2ib?-c?-a2)/2 + Optmax(uGw/m) 22,

Proof. Clearly,

“2 ')3 A2 13
(4.9) (Ztm]-Z[bM])/'A4 = h]-(1-utm) "Um+(1-0[b“]) =

2 A A
- U[im(vmé{] -vré%ﬂ)-u-u[m]vm]) 3*“'“[1\1«]"&15]) 3,

Applying the Taylor expansion together with (4.3) and (4.3) implies

the assertion a).

b) It can be proved quite analogously noticing:
that a-b+c-d = 0 together with (4.3)end (4.4) implies
- 737 -



—1/2
Viamd = Vromd * Vw3 - Viaw] = Op(M /) asure .
Q.E.D.

Now, we are in a position to state the main theorems on pro-
perties of the estimators of '1\2 (those of 7\3 are quite analogous
thus they are omitted).

Theorem 4.3. If (2.3), 2241 holds then

(4.10) =1y ( )-1,) *2_p"2)-1
4.10 (log 8 o(M;a,b,s -12 = (a ¢-b 5 A‘Az

=1 b )2-1
Vg, -1 P 2 - o, Gad1 PP © -

=1 Ao=1
- b 2 -
= V), -1108 2 & Ve, 13000 2 o)

1= 1=-2 2=
(Wn) 23, + op(max(u/n) 2 a2 (/m)” " 2))

+

as n—»e , M—>e , M/n - 0, where 32 is defined by (2.2) and

1-2 2
(4.11) 1 =208 2)(a-b)(a'2-b D)7,
then
A 1-4
(4.12) €U/ 22 (Msa,0,00- -y (W/m) P30 8707160 N0, 1)

2
85 N %e , M—e , N/n —0, where

2%,-1 2%,-1
(iz = (log 3'1)'2131(3 %2 + 2 )|1-a'1‘-(1+s'1)m1n(a,b) +

-;- s"min(a,bs) mm(b.aa)} (a‘lz_b'lz)-z.

Proof. Applying the Taylor expansion (of the function
h(x,y) = log §) and Lemma 4.2 we easily obtain the first part of
agsertion.

As for the latter, according the proved part theorem it suffices

to show that
- 738 =



. A M L
62 - (log 8712 (a 2-b )72 p22 ,
A, 2

=1

An=1
variVeg- P e’ - Upy-Pove -
'A -1 - 2\ -1 . |
- (V[asm] %5) al g4 (Vepeml~ %?) b2 @ }.
The assertion can be concluded from this relation end (4.2).

Q.E.D.

Going carefully through the proof of Lemma 4.2 and Theorem
4.3 we find that

(4.12 A(Ma,b,8) = &, + op(1) A at

1+ op(1) 251
as n—%>oe , Mo , M/n -+ 0.
Theorem 4.4. If (2.9), %242, A, # 1 is fulfilled then

L) 2% N 2
(4.13) (log 5'1)(*%2(M;a.b,c,d.s)-’)?) = (a 2-b 24 2-a )~

a ‘A\2-1 b 12—1
-Wz“"cam,tm-rx)a =(Vipu, pn1-173) P +

‘12-1 52-1
+ Van, pg-19e ° ~Otag, ag-Pe - -
= Ao byp 2!
- Moe” (Vg pag-1750 ° ~Vipa], lad-1-T®
Ao~ dy .M~
+ Vpoan], md-171°¢ © ~(Vpaan, can-1-104 )}
2- 2-1
s /m) 2 1, + omax(e ), (wm) 2 W 1/2))
as n>ew , M->e , M/n —» 0, where 42 is defined by (2.8) and
A, A, A, 2
12 = 270 -16%-b24c®-a%) (148 2)(a 2-b 240 2_4"2)1
then
R 2-%
2(!‘1/2!\2(11:&».c.d.s)-hz-(ll/n) 2 fx(108 5-1)-1)/6-:1) ~¥(o,1)
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as n-»e , where 6;2 is the variance of the linear combinations
of order statistics from the right hand-side of (4.13) which under
the additional sgssumption s> 1 and

for every pair («,B), «,3 € ia,b,c,d} o<pB implies

8 ‘P

can be expressed as follows:

20,-1 281 2%=1 2%-1 A, A, A, A
u;i.zgh-g"l(a A B P T R e

The proof is quite amalogous to this of Theorem 4.4 (but more

tedious computations are needed) hence is omitted. Q.E.D.

Corollary 4.5. a) For a,b € (0,1)

(4.14) Ay(a,0) = 0p(n"2) 4 03,0, + 05(hy-1y)
and

~1/2 A a
(4.15) }A,(a,b) = Op(n ) + oP('AZ-‘Ab) + oP(mS_x}),

A
where 54(a.b)’e.nd 'A1(a.b) are defined by (2.16) and (2.18),

respectively.
b) If 4,> 0, 7«3>o and n e« , M/n -0, §/n —0 then
* A3 2
(4.16) AW = H2-(1-0, ) PP an(U, ym1-U) 05 (W/m)?)

’ L5 L}
= 1 + Op(max((K/n) “, (¥/n) ©, M/n, N/n))

and

A, A
o R, 0Lm = JHoa (120, Ban2eag(u, 140 105 (/m)?)
1, 2,
= A + Op(mex((M/n) 7, (N/n) ©, M/n, ¥/n)),

where i,'(n,m and &1(I,N) are defined by (2.17) ana (2.21),
respectively.
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Theorem 4.6. Under H

Q(W(Tnﬂ))—. N(O,‘z) as M—»e , Nve , M/n —0, N/n—»0

where T  is defined by (3.6) and
2 .2
2 _ 2% b la-bl

if Né 1
ab(aP-b?)
= 'a—"é;grl if Ay

Proof. By Lemma 4.2 and the Taylor expansion one can

easily arrive at

U
[AM] AN
T = (TU—_ 1 -5
2} ““n- [AM]),\ i a’-b

et by A-1
i(vtaM] ’ [AM]-‘V-%)a’ - (v[bM], [AM]—1T)b -
A=l Brie1
Gy, pa- 102+ g, pad-r 20+
')
A =b 1-—" 1_1 -1 1= 475
+ aﬁ_b'f,"'aj— (U(AM]-“-Un-[AM]) ) + Op(m(u ,(M/n) M / ))}-
Clearly,

U
AM M,-1/2
T:U;{"‘L g -t oM 2.

Hence for A\ <1

LY\ A-1
To = 1 Ve, (-1 - Yramd, fwPe -
- Vo], g1 = Yo, L P ) +0p(max(a ", (u/m) 1=hr 172y

The result for A <1 follows directly recalling (4.2) and that the
vectors i"i,[m]-v 1=1,...,Lua]-1] and ‘ Yj. Q) 3=Teeees [AM]}
are given U[AM] and U, _ [ea) independent.

As for A >0, by (4.5), (4.6), (4.16) and (4.17) ‘one has

e Vel UL Opmex(Cwm) 2, n))
U [o] - g ] * Op(max( (W) 2, (wW/m)™
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which ,using the Taylor expansion,can be rewritten as follows

1
=1 -F% i iUl'all]' Urou]™ Un- [om]* Un- [aa]*
+ Op(max((Wn)2, (Wn*)} + op(a).

Hence T, is asymptotically equivalent t6 the linear combination
of order statistics and regarding (4.2) the assertion follows
also for A 3 1.

Q.E.D.
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