

Werk

Label: Article Jahr: 1985

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0026|log65

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

26,4 (1985)

AN APPLICATION OF A FIXED POINT PRINCIPLE OF SADOVSKII TO DIFFERENTIAL EQUATIONS ON THE REAL LINE Bogdan RZEPECKI

Abstract: In this note we consider the existence of solutions for the differential equation x'=f(t,x) on the half-line $t \geq 0$ via a fixed point theorem of Sadovskii. Here f is a continuous function with values in a Banach space satisfying some regularity condition expressed in terms of the measure of noncompactness ∞

Key words: Differential equations in Banach spaces, existence of solutions on the half-line t $\succeq 0$, measure of noncompactness \iff , fixed point theorem.

Classification: 34G2O

Let $J=[0,\infty)$, let E be a Banach space with norm $\|\cdot\|$, and let f be an E-valued function defined on $J\times E$. Suppose f is continuous and $\|f(t,x)\| \le G(t,\|x\|)$ for $(t,x) \in J\times E$, where the function G is continuous on $J\times J$ and monotonically nondecreasing in the second variable.

Let $\mathbf{x}_0 \in \mathsf{E}$. By (PC) we shall denote the problem of finding a solution of the differential equation

$$x' = f(t,x)$$

satisfying the initial condition $x(0) = x_0$.

Using the fixed point theorem of Sadovskii (£61, Th. 3.4.3)we shall prove the existence of solutions of (PC) provided some regularity condition expressed in terms of the Kuratowski measure of noncompactness &.

The measure of noncompactness •c(A) of a nonempty bounded

subset A of E is defined as the infimum of all $\epsilon > 0$ such that there exists a finite covering of A by sets of diameter $\epsilon \epsilon$. For the properties of ∞ the reader is referred to [2] - [4], [6].

Denote by C(J,E) the family of all continuous functions from J to E. The set C(J,E) will be considered as a vector space endowed with the topology of almost uniform convergence. Further we will use standard notations. The closure of a set A and its closed convex hull be denoted, respectively, by \overline{A} and $\overline{\text{conv}}$ A. For $X \in C(J,E)$ we denote by X(t) the set of all x(t) with $x \in X$.

Let S_{∞} be the set of all nonnegative real sequences. For $u=(u_n)$, $v=(v_n)\in S_{\infty}$ we write u< v if $u\le v$ (that is, $u_n\le v_n$ for $n=1,2,\ldots$) and $u\ne v$.

Let us state our fixed point theorem in the following form.

Sadovskii s fixed point principle. Let Q be a closed convex subset of C(J,E). Let Φ be a function which assigns to each nonempty subset X of Q a sequence $\Phi(X) \in S_{\infty}$ with the following properties:

 1^0 $\Phi(\{x\}\cup X) = \Phi(X)$ for $x \in \mathbb{Q}$;

 $2^0 \Phi(\overline{conv} X) = \Phi(X);$

 3^0 if $\Phi(X) = \Theta$ (the zero sequence) then \overline{X} is compact.

Assume that $F:Q\longrightarrow Q$ is a continuous mapping satisfying $\Phi(F[X]) < \Phi(X)$ for an arbitrary subset X of Q with $\Phi(X) > \Theta$. Then F has a fixed point in Q.

Our result reads as follows.

Theorem. Let

 $\propto (f[I \times X]) \leq \sup \{L(t, \propto (X)) : t \in I\}$

$$g' = G(t,g), g(0) = \|x_0\|$$

has a solution g_0 existing on J. Assume in addition that $L(t,0)\equiv 0$ on J, $t\longmapsto L(t,r)$ is continuous on J for each fixed r in J, and

(+)
$$\sup \left\{ \int_0^t L(s, r) dst \ t \in J \right\} < r$$

for all r > 0.

Under the above hypotheses there exists a solution of (PC) such that $\|x(t)\| \le g_0(t)$ for $t \in J$.

<u>Proof.</u> Denote by Q the set of all $x \in C(J,E)$ such that $\|x(t)\| \not = g_0(t)$ on J, and $\|x(t') - x(t'')\| \not = \|\int_{t'}^{t''} G(s,g_0)) ds\|$ for t',t'' in J. We define a continuous map F of Q into itself by $(Fx)(t) = x_0 + \int_0^t f(s,x(s)) ds$ for $x \in C(J,E)$.

Let n be a positive integer and \boldsymbol{X} a nonempty subset of \boldsymbol{Q} . We prove that

(*) $\sup_{0 \le t \le n} \alpha((F[X](t)) \le \sup_{t \in J} \int_0^t L(s, \sup_{0 \le t \le n} \alpha((X(\mathscr{C})))) ds.$

To this end, fix t in [0,n]. Put $Z = \bigcup \{X(\mathscr{G}): 0 \leq \mathscr{G} \leq n\}$. Since $s \mapsto L(s, \infty(Z))$ is uniformly continuous on [0,t], for any given $\mathfrak{E} > 0$ there exists a $\mathscr{G} > 0$ such that $|s' - s''| < \mathscr{G}$ with $|s', s''| \in [0,t]$ implies $|L(s', \infty(Z)) - L(s'', \infty(Z))| < \mathfrak{E}$. Now, we divide the interval [0,t] into m parts $|t_0| = 0 < t_1 < \ldots < t_m = t$ in such a way that $|t_1| - t_{i-1}| < \mathscr{G}$. Denote by $|t_i| = 1, 2, \ldots, m$ the interval $|t_{i-1}| < t_{i-1}| < t_{$

For continuous vector valued functions the integral mean value theorem may be stated as $\int_a^b h(s) ds \in (b-a) \overline{conv}(\{h(6): a \leq 6 \leq b\})$. Therefore

Since $X|_{[0,n]}$ is equicontinuous and bounded, we can apply Lemma 2.2 of [1] to get

$$\alpha(F[X](t)) < \epsilon t + \int_0^t L(s, \sup_{0 \neq 0 \neq m} \alpha(X(6))) ds$$

and our claim is proved.

Define:

$$\Phi^{(\chi)} = (\sup_{0 \le t \le 1} \kappa(\chi(t)), \sup_{0 \le t \le 2} \kappa(\chi(t)), \ldots)$$

for any nonempty subset of Q. Evidently, $\Phi(X) \in S_{\infty}$. By the corresponding properties of ∞ the function Φ satisfies the conditions 1^0 - 3^0 listed above. From (+) and (*) it follows that $\Phi(F[X]) < \Phi(X)$ whenever $\Phi(X) > \Phi$. Thus all assumptions of Sadovskii's Fixed Point Prinxiple are satisfied, F has a fixed point in Q and the proof is complete.

References

- [1] A. AMBROSETTI: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova, 39(1967). 349-360
- [2] J. DANEŠ: On densifying and related mappings and their application in nonlinear functional analysis, Theory of Nonlinear Operators, Akademie-Verlag, Bwelin 1974, 15-46.
- [3] K. DEIMLING: Ordinary Differential Equations in Banach Spaces, Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977.
- [14] R.H. MARTIN, Jr.: Non linear Operators and Differential Equations in Banach Spaces, John Wiley and Sons, New York, 1976.

- [5] B. RZEPECKI: An existence theorem for bounded solutions of differential equations in Banach spaces, Rend. Sem. Mat. Univ. Padova 73(1984).
- [6] B.N. SADOVSKII: Limit compact and condensing operators, Russian Math. Surveys 27(1972), 86-144.
- [7] A. STOKES: The application of a fixed-point theorem to a variety of nonlinear stability problems, Proc. Nat. Acad. Sci. U.S.A. 45(1959), 231-235.

Institute of Mathematics A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland

(Oblatum 19.2. 1985)

