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A NOTE TO E. MIERSEMANN’S PAPERS ON HIGHER EIGENVALUES
OF VARIATIONAL INEQUALITIES
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Abstract: An improvement of E. Miersemann’s result on
higher elgenvalues of variationel inequalities and some examples,
for which the obtained criterion is sharp, are given.
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1. INTRODUCTION

Let H be a real s;parable Hilvert space and KcH a closed
convex cone with its vertex at zero (see [3]). Let A:H—>H be
a linear, completely continuous, symmetric and positive operator.
Let A, 323, 2 23 2 ... >0 ©be the eigenvalues of the operator
A and let the corresponding eigenvectors UqslgsUsgpecs form
an orthonormal basis of H.

We are interested in the eigenvalue problem for the varia-
tional inequality

(1) uek: (Au - Au,v-u) 2 0 for all vek,

where A is a real eigenvalue parameter and we look for non-
trivial solutions u of (1).
We shall denote GK(A) the set of all eigenvalues to (1).
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2. E. MIERSEMANN’S RESULT

Denote E the linear hull of {u1,...,un} s L the eigen-

n n
space to hn, B={ueH; jun<1}, s = {ueH; Il =1},
Sn = Enn S. PFurther let P be an orthogonal projection of H
onto En'
In [1,2,3] the following assertions are proved:

Theorem 1. Let HcH be a closed subspace, Hc K. Denote
T the orthogonal projection of H onto H. We consider the

equation
u€H: PAu = Au
and assume that there exist at least n positive eigenvalues
~ = 5 ~
7\1 2 742 = e :an. Let
(2) an > an+1 =

Then there exists an eigenvalue ?\€6K(A) NCA 0 Ag) .

Theorem 2. Let V ={ve E: 3 u+véK for all uesn} be

nonempty and suppose

2
(3) Ap > Apyq 4 ?;fv {An+1 nvil s - (‘WV)} .
Then there exists A € GxA) N (A 02 Y.

Remark 1. The assumptions of Theorem 2 are fulfilled, if

e.ge U, € K° (= interior of K).

Theorem 3. Let the assumptions.of Theorem 1 or Theorem 2
be fulfilled and let, moreover, Ln¢ K.
Then there exists A€ 6K(A) NCAp10Ay) o

- 666 -



The idea of the proof is following:
Define N, the class of all compact sets FCKNS such
that

(a) ﬁienP(Au,u) 2 Angq + L

(b) P is not contractible within the set R = {ueH; Pu ¢ O} .

Using (2) or (3) it is proved that the class N, is nonempty
for a suitable o« >0 and then using some topological technique
(see [1]) it 1s‘proved that there exists u€KnS such that

(Au,u) = sup min (Av,v)
FeN veF

which is also a solution of the variational inequality (1) with
corresponding eigenvalue A€ < An+1 +o » ;|n>
(resp. A €<1n+1 +‘)kn) ).

3. IMPROVEMENT OF E. MIERSEMANN’S RESULT

We shall weaken conditions (2),(3) in Theorems 1,2.
A slight weaker version of Theorem 4 was obtained also by
prof, Miersemann (personal communication).

Lemma. Let Akzﬂ—bﬂ be linear continuous operators,
Ak—-’A in the operator norm (the operator A 1is supposed to
satisfy the assumptions from Section 1). Let wEe KNS .

ake {cqscy> (where c,,0, are positive constants) and
( Akl A.kuk,v-uk) 20 for all V€K .

Then there exists a subsequence (we denote it as before)
such that ak—>2, v*>u and

(Au - Au,v-u) 2 0 for all veK .
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Proof. We may suppose AX—> A, uf—~ueKnB .
Then }\k = (Akuk.uk)—)(Au,u) , hence

(4) A= (Augu)’ ug 0,
Further 0 £ ( ?\kuk- Akuk,v)—» ( Au-Au,v) for all veK, thus
(5) ( Au-Au,v) 2 0 for all veK .

Putting v=u in (5) and using (4) we get
Allull® 2 (Auu) =2 ,

thus u€KnS and uk—-»u .

Theorem 4. Suppose that E;n KNS # # and put

C =

” (Au,u) . Assume instead of the conditions (2),

sup
u€eE nKnS
(3) in Theorems 1,2 the conditions
(2*) 2. > ¢

n n
(3%

b
[

o 2 o+ 32‘1{“{0”'“"2 - (Av,V)},

where V¥ = {veE; ; u+tveK for all ue S; i
» 2 An=%n
Sp = {ueE-{0}t; Null®a= 2 }
(Y] n

and V¥ 1is supposed to be nonempty.

Then there exists A€ 6y(A) Nn<c , 2, >
(and A<A  if L ¢K ).

Remark 2. Obviously ¢, S A .,
VeV, hence (2) =>.(2%), (3) =>(3").
It V498 then E,nEnsS s+ 9.

and it can be easily proved
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Proof of Theorem 4.

1. First suppose (2%) or that in (3%) strong inequality
holds. Define N: the class of all compact sets Fc KnS such
that

(a") min (Au,u) 2 et
uekF

(b) F is not contractible within the set R= {ueH; Pu# 0} .

If (2%) holds, then Snﬁne N: for some o« > 0 (En- denotes
the linear hull of the first n eigenvectors of the equation
Pau = A u )e If in (3%) strong inequality holds, then the set

F= {]'3:—‘;', s uesy } belongs to Nf for a suitable veV*® and

«>0 (cf. [2,3]). Hence in both cases XN} # # for some «>0
and the remaining part of the proof is nearly the same as in [1].

2, If (3") holds and A, =c + ian“ { cnllvllz- (AV.V)} ’
ve

then put Au = (1+ é)APu + A(I-P)u , use the proved part of

Theorem 4 for ‘1: and then use Lemma,

Theorem 5. Let un¢l( and let the set V (see Theorem 2)
be nonempty. Choose ve&V and put

(6) a = » ingt 1 en(a‘) s, Where cn(a) = g:gl:?l( (Au,u)
< =
° 1+ivil Tn
Suppose

G A, > a4 + quvi® - (av,v) .

Then there exists A€ Gyp(A) n(4;,2A,) .

Remark 3. Obviously 4= c, = c (0).

Remark 4. The assumption v€V guarantees that the set
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{ue€esnk ; Pu = su; } 1is nonempty for all |slS S
1+Uvi

Remark 5. In (6) we could put d = inf sug (Au,u),
Z2€ En ue Snk

2 1 Pu=z

120" < T RFe

but then we would loose the estimate A S An .

Remark 6. There can be stated an analogous condition (2"*).

Idea of the proof of Theorem 53

There exists &€ <0, — ) such that

Visiwn?

an > cn(s) + cn(s)llvll2 - (Av,v) .

We define lc' the class of all compact sets Fc KNS such that

(a"*) min (Au,u) Z e (s) +«
ue ¥

(b**) P is not contractible within the set R(s) = {fueH; Purau,}_

Then the set P = ﬁ_g—- su€sS T belongs to N" for a

suitable o« >0 and one can use the technique from [1]
to obtain the desired result.

4. EXAMPLES AND REMARKS

Bxsmple 1. Let H = Ry, L([x1,x2,13])- [a,:,, A,x,, 23x3] >
A,22;5> A3>0, K= {uen; (n.w1)30. (u,wz)ﬁo} » Where
wie[M(a-1),-1,a], w,=[M(a-1),8,-1] (a>1, N>0) .
) Let us fix a>1, Using elementary calculus we get that
the problem (1) has an eigenvalue A # 21 if and only if
- 670 =



/ 1 22 .- A,-A
1 1 1 2
! 5 l(1 = O(A) :—tT - E ’ where C(A) = W

(and it has exactly two eigenvalues different from 31 ifre
M< ll,).

Theorem 5 is available (with n=1) 1if M< ¥,, using Lemme
we get the positive result also for M = ll.‘.

Theorem 4 is available if M $ M, = Vc(A) Ezf% - % (< M1),

Theorem 3 is available only for M < M3 = \/c(A) - % (< 12).

Unfortunately, using our variational approach we get
(for M< n,) only one of two existing eigenvalues different
from '/\1. We do not get the eigenvector u€ 2KNS, where
the functional (Au,u) attains a local minimum on 2 KNS
(9K denotes the boundary of K).

Example 2. Let H,K;A satisfy the general assumptions from
o
Section 1. Let ugy...,u €K, 2n> 2n+1 and

{u1.....un}"'n K° = ¢ (4> V=0). Suppose u ¢K for
k>n. Then the problem (1) has no eigenvalue A with A< J\n.

Proof. Suppose A<A, , uek, (Au-Au,v-u) 20 for
n
4
all v€K. Let us write u = Z -Ciui +w , where wenn .
i=1

Putting v = u+tu; we get (2-7«1)4130 , thus -(150
(1=1,.0.yn). Suppose &, < 0 for some 1, then
n
-tc(uelt’, v-u-Ze(u €K°,whichgivelus
- gt 11
i=1 i=1
& contradiction. Thus o4 = 0 forall i = 1,,eeyn , Uu=w ,
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Putting w-u+u1+?r', ?v'eE: arbitrary (but small), we get Au=Au.
Since uk¢x for. k>n, we have u=0 .

Remark 7. Let £:H—>R be a weakly continuous functional

of the class 02, f’(0)=0 and let the second Fréchet derivative
2" be bounded (on bounded sets). Denote A=f7(0) and suppose that
A fulfils the assumptions of Section 1. Then the eigenvalue A

to (1), which we get in Theorems 1-5, is also a bifurcation
point for the vaz:;lz‘ational inequality

(7 uek: (Au - £’Cu), v-u)2 0 for all vek

(see [1]). The following example shows that a general eigen-
value A to (1) (which is not an eigenvalue of the operator A)
need not be a bifurcation point for (7).

Example 3. Let H = R3, let A:H—>H be a symmetric

linear operator with eigenvalues 21 >/\2 >A,>0 aeand

3
corresponding eigenvectors Uqrlp,uge Put

K = {u€H; (u,uy)%0, (u,uJ-ua)ﬁo} s,  f(u) = %(Au,u)+|mll2(u.u1).
Then u = Uy, is an eigenvector to (1) with A = 2;_22 o
since ( Au-Au,v-u) = %( A 5= A3)(ug-uy,v) 2 0 for all veK .
Suppose uek, AS$ A, and (Au-2/(u),v-u) 2 0 for all veK.
Putting v = uH, we get
os (lu—!’(u),u.') = (au-Lu-Iullzu.l-Zu(u,u..),u.,) =

= - iut? + (u,u,)(2-24-2(u,uy)) § - gui? ‘

thus u=0. Hence A = ;'( A,+A3) 1is not a bifurcation point
for (7).

Remark 8. Suppose that the assumptions from Section 1 are
= 672 -



fulfilled. Then the set 6‘K(A) is nonempty and closed in

R*= {A€R;.A> 0}. It would be interesting to investigate
the general structure of & (A). Example 2 shows that this set
may consist only of one point (also for dim H = @ ), Theorems
1-5 agsure the existence of higher eigenvalues to (1). There
can be constructed examples in RB’ for which the set 6'K(A)

haes infinitely many accumulation points (see Example 5).
Nevertheless, it can be proved that for I-‘{-R3 the set GK(AKR
has Lebesgue measure zero (this is not true for A nonsymmetric).
It is also an open problem (to the author) to find reasenable
assumptions on A and K (for dim K = 00 ) which would guarantee
that the set GK(A) consists of a sequence of eigenvalues

which converge to zero (cf. the following example).
Exemple 4. Let H be the Hilbert space W)*2(0,X) with

(g
the inner product (u,v) = { uw/(x)v’/(x) d&x , let A:H—»H

T
be defined by (Au,v) = cs/'m(x)v(x) dx . Let ¥ g £0,%)

be & closed set and put K = {u€H; u20 on M} . Then it can
be shown that the eigenvalues to (1) form a sequence converging

to zero.

Bxample 5. Let H = R3 y let AsH—»H be a symmetric
linear operator with eigenvalues 21- 32 >A 3> 0 and corre-

spornding eigenvectors u1,u2.u3.
‘/' T 1 Ya * "n41
Put w,= V-7 vy +E“2 * Mt WY RGv, T

K= {ueH; (u.u,—wn) 2 0 for each n-1,2,3....} .
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. (Av_,v.) 2 A+ A(1+(w_,w__..))
Then anK. A = n’ n’ _ 1 3 n’ "'n+1

\ %(I]1+A )'
v, 3+ (wyw ) : 2

n Aq-A >
(A vn-Avn,v) s ™ (2u3-wn-wn+1,v) = 0 for all vEK,
n’ n+1
hence ;\ne G, K(A) and GK(A) contains & mon-zero accumulation

point.

M 1 1 "1
If we put 'n,k = rk 1- u1 + E+ u2 ’

where n>k2 and k> 1 are natural numbers, r2=1,

=] B

1 "ok * "n+t,k

2 2
T = 1 + and v = u, + T—t-—-‘—j-
k+1 k 8(k+-1.)-g ’ n,k 3 + 'n,k"n+1.k

K = {ueH; (u.uj-wn’k)zo for n>k2>1} s then again vn,k

is an eigenvector to (1) and GK(A) contains infinitely many
\
accumulation points A(k), where
A€ g+ T2 g 2% +2

k) = lim A™¥ . . 3
il T Zoper . 7 TZa

r® + 1

(r= lmr, ).
n-»eo

Similar example can be constructed also for 21 > 22 > )3

(we start with 'n', c V‘l- 1'1!“1 + ;—n u, , where c2(22-23)- 21-3\3).
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ARCHIMEDEAN AND GEODETICAL BIEQUIVALENCES
Jaroslav GURICAN and Pavol ZLATOS

Abstract: This paper contributes to the topological problema~
tics In the AST. The central role in it is due to the concept of a
biequivalence introduced in [G-Z 1] . A metrigation theorem for
biequivalences is established. Two properties of biequivalences
bearing upon the connectedness of galaxies named in the title are
formulated and characterized. The notions of a path and a motion of
point appear as powerful +tools in formulations and proofs of the
results. .

Key words: Biequivalence, path, motion, compact, connected,
metric, galaxy, Archimedean, direct, geodetical.

Classification: Primary 54J05
= Secondary 54D05, 54E35

This paper is a direct continuation of [G-Z 1] contributing to
the topological problematics in the AST. The central role in it is
played by the concept of a biequivalence introduced in [G-Z 1] .
The article joins results of two areas of "biequivalence problema~
tics" originally occurring rather independent,

The first part is devoted to the characterization of biequiva~
lences (:,&) such that for each mean bound R and each pair
x s y there is a finite R-path from x to y (Archimedean bie-
quivalences). The formulation and the proof of the result itself
are preceeded by a section dealing with paths and metions.

The second part of our work was iniciated by the unexpectedly

easy (using the results of [M 2] ) proof of the metrisation theorem

for arbitrary biequivalences. From this theorem some results, analo=-
- 675 =



gous to those from the classical topology, on embediings of a bi-
equivalence with a set domain u into the linear space RNY en-
dowed with the componentwise biequivalence easily follow. If one
would like to generalize these results to arbitrary biequivalences,
he will find unavoidable to extend suitably the field of rational
numbers. That’s why we sketch the construction of hyperreal numbers
in the AST.

Keeping the fact that every biequivalence is induced by some
metric, in mind, there arise several questions under what conditions
such a metric abundant in some further useful properties can be
found. One particular problem of this type is solved in the paper.
Namely, biequivalences which can be induced by a metric H such that
each pair of accessible points can be joined by a direct motion
with respect to H are characterized (geodetical biequivalences).

Both the notions of Archimedean and geodetical biequivalences
illustrate the "restriction principle to galaxies" mentioned in
[G-2 1] . Via the concept of a motion of point they bear upon some
questions concerning the connectedness of galaxies of a biequivalen=-
ce, as well.

The reader is assumed to be acquainted with (V] and [G-2Z 1] .
Most of the notions and results from these two sources will be used
even without any expli’cit referring to them.

1. Paths, motions and connectedness

Z denotes the set-theoretically definable class of all inte-
gers and FZ stands for finite integers. Variables d,ll.f,a,lu, Vyooo
(k,m,n) are used sometimes for arbitrary (finite) integers, not
Just natural numbers. The interval of integers between W is de-

noted by [r.v] -{th; pe 2&?} . In particular [f“”] =g
- 676 -



if w>v, (t“(”]=h‘} and v= [0,9-1] for esach  vyéN.

In the whole paper (é,aéo} denotes the usual biequivalence
on the class RN of all rational numbers (see [G-Z 1] Example 3).
For sny set u ¥ 1) denotes the biequivalence on
RNY = {f; dom(f) = u & rng(f)GRN} arising from (=,es) com-
ponentwise ( [G=2 1] Example 5). For rational numbers a,b we put
a<b=aclbvazb and a<-b = a<b&agb, The formila-
tion of the basic properties of the relations & and £+ is left
to the reader.

Let us record a result for the future.

Lemma. Let R be a ®-relation and u ¢ dom(R) be a set.

Then there is a set function f < R such that dom(f) = u.

Proof. If R is set-theoretically definable, the statement
can be easily proved by induction. Let {Rn' n € PN} be a de-
creasing sequence of set-theoretically definable relations whose
intersection is R. For each n there is a function f € Ry wiﬂ}

domain u. Then the result follows by the axiom of prolongation.

Let R be an arbitrary relation. A (set) function p such
that dom(p) = (4 ,+] is a nonvoid interval of integers is called
an R-path provided for each o € (7 ,V= 1] holds
(p(q.).p(u.n )) € R. Then the set rng(p) is called the trace of
p. If x = p(q) -and p@) =y then p is called an R-path from
x to Y. In most cases the domains of the paths considered will
be- of form [0,¥] = $+1 where <eN; in such a case p will
be called an R-path in the time V. Thus {(x,5) € R” iff there
is an R-path from x to y in the time V.

If £ is a S-equivalence then any (:)-path is called a

motion of point in £ 1¢ {Rn; n € m} is a generating sequen-
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ce of % then obviously p is a motion of point in I ifr P

is an Rn-pa.th for each n. We will frequently say "a motion" in-
stead of "a motiom of point in 1w, mainly in the case when the
X =-equivalence % will be clear from the context.

Prom the results in (V] it follows directly:

Theorem 1. Let f vea ¥=-equivalence and u be a set. The

following conditions are equivalent:
(1) for each nonempty proper subset v of u there are two
points x € v, y € u - v such that x:y;
(2) there is a motion p such that u = rng(p);
(3) for all x,y € u there is a motion p from x to ¥
such that rng(p) ¢ u.

According to Theorem 1 we addopt the following definition:
A class X 1is connected in the f=-equivalence L if for a1
X, ¥ € X there is a motion p from x to y such that rng(p)cX.

Theorem 2, Let = be a ¥=-equivalence eand X be a class. If
X is connected then Pig(X) is also connected. If X is a
%=class and Fig(X) is connected then X is connected, as well.

Proof. Let X be connected and atx, bﬁy where x,y € X.
If p is a motion from x to y in the time ¥ such that
‘rng(p) € X, then q=p y {(a.-1) s (B, T+1)] is a motion
from a to b and rng(q) ¢ Fig(X). Now, let X be a RK=-class
with comnected figure and x,y € X. There is a motion p from
x to y in the time ¥ such that rmg(p) ¢ Fig(X). Put

R= i'(X.O) ’ (i.ﬁ‘)} v (8,4} 3 0¢x<T2 3 ¢x2 sipa)}.
Then R is a ¥-relation and [0,V'] = dom(R). The choice func-

tion £ ¢ R with domain [0,9'] existing by the virtue of the

Lemma is & motion from x to y and rng(f) ¢ X.
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Each motion p in the %X-equivalence £ induces two N-equi-
valences on its domain. The first one seems to be prima facie more

natural: d’(%) p=plx) £p (p).

Theorem 3. Let p be & motion in %, e ¥=equivalence (1;)

is compa¢t iff rng(p) is compact in .

Proof. Clearly, é) is a -F-equivalence. Let #* be compact
and u € rng(p) be infinite. If for all «, A€p '™ =v
p(«) # p(@) implied p(«) F 1 p(p), v would be an infinite set
of‘pairw;tse discernible elements contradicting the compactness of
%. Thus there are «,pev such that p(x) # p(p) eand p(«) & p(p).
Now, assume that rng(p) is compact in * and v ¢ dom(p) is in-
finite. If p"v is finite then there are at least two elements
®,s€v such that even p(x) = p(B). If p"v is infinite then
there are two «,3e¢v such that p(x) £ p(p).

The second #%=equivalence induced by the motion p in i on

its domain is even of more importance:

« f [ :(Vr,ae[min{d o), max{e , 53] ) p(y) & p(8).
The motion p is called compact if the & -equivalence 3' is com=
pact. Obviously, % is finer than é), thus the compactness of 3'
implies the compactness of (:”.

Let us recall from [V] that a motion p oscillates between
points x and y (sets u eand v) if x %y (Fig(u) nPig(v) = &)
end there are sequences {w ; n € PN}, {A ; ne€ M}  of ele-
ments of dom(p) such that for each n holds "n‘ /An< o
and ply) x, p(B) &y (pley) € u, p(B) € V).

We omit the proof of the following slight generalization of
the result from (V].:

n+1

Theorem 4. The following conditions are equivalent for any
- 679 -



motion p in the x-equivalence & :
(1) p is compact;’

(2) the trace of p is comvact in f and for each point

x p'1 "Mon(x) is compact in % ;
(3) p has a compact trace and there are no points x and y
(sets u and v) such that p oscilates between x and

y (u and v).

Remark. Given a Z-equivalence % and any set-theoretically
definable function F the relation a(%)b = P(a) £ P(b) is
8till a ¥ -equivalence on its domain. Theorem 3 remains valid with-
out the assumption that F is a motion, as well. Similarly, if
F is a set-theoretically definable function and £ is a set-theo-
retical lattice ordering of dom(F), the definitions of the ¥ -equi-
valence § on ‘dom(F) and of the oscillation extend directly.

A careful analysis of the proofs in [V] shows that Theorem 4

8till holds for such an F.

Thus particularly Theorems 3 and 4 apply to arbitrary set
functions defined on intervals of integers (Vz-paths). Given such

a function p and & $-equivalence = we put for «,A€dom(p)

pomdipVed s and

o<
L¢P = acpl ‘;r p.

N s\t

2. Archimedean biequivalences

For each upper bound R of the ZX=-equivalence % the least
equivalence

(r] = U{r% n e m}

containing R raises to & biequivalence { *, tR]) . This con-
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struction was already used in the proof of Thecrem 10in [G=2Z 1] .
Similarly, for each mean bound R of the biequivalence (:,410)
one obtains a biequivalence (:, [R]) which is tighter than
(;"t,), A biequivalence is called Archimedean if for each 1its
mean bound R holds ([R] = (&h).

Theorem 5. Let (3,(1'0) be a biequivalence. The following
conditions are equivalent:

(1) i,&) is Archimedean;

(2) for each mesn bound R of {Z,&) and all x,y such
that x ¢» y there is a finite R-path from x to y;

(3) for all x,y such that x ¢y and each infinite natural
number Y there is a motion p from x to y such that
P32 ;

(4) & is the least € -equivalence with respect to inclusion
containing -4 H

(5) < is a minimal ¢=equivalence with respect to inclusion
containing ¥ .

Proof. (1) m (2) and (1) = (4) =(5) = (1) are trivial.
(2) »(3): Let x«b»y, veN-FN and {R; né€ P2} be a bie

generating sequence of {(&,&5H). For each n ¢ 0 there is a fi-
nite Rn-pe.th Pn from x to y. By the prolongation axiom there
is amotion p from x to y such that p 3 v.

(3) = (2): Let R be a mean bound of (Z,») end x b y.

Then the set-theoretically definable class {ve€N; {x,y) € R’}
contains all infinite natural numbers. Hence it contains also a fi-

nite n.

None of conditions (4) and (5) ensures that for an Archimedean

biequivalence ( #,&») there does not exist any biequivalence
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strictly tighter than (3,@3) . The reader will easily find
examples of biequivalences on RN which are strictly tighter than
the compatible Archimedean biequivalence {=,es») .

Condition (3) suggests that the Archimedean property is a kind
of compactnesi‘concerning connectedness of galaxies of a biequiva=

lence.

Theorem 6. Let (:,4—"'0) be a biequivalence such that for any
accessible x,y +there is a motion with compact trace from x to

y. Ten {%,%) is Archimedean and has connected galaxies.

Proof. We will prove that (#,&4) satisfies condition (2) of
Theorem 5. Let R be a mean bound of (%,&) , xesy, and p be
a motion with compact trace from x to y in the time V. We put
G(0) = x and G(u+l) = p(t«) where = max &'[“v; <G(¢),p(f»€ R}
if G(x) ¢y, and G"{«a+1} =g if G(p) = y for some A<, Then
G is a set-theoretically definable function and its domain is a
section in the linearly ordered class {(N,4) . For any o,B€Edom(G)
d&p implies G(ex) F 4 G(p) (with perhaps one exception p=«+ 1
and G(p) = y). Since mg(G) € rng(p) and the latter is compact,
the former has to be a finite set. As G is one-one, it is a finite
set function and a finite R-path from x to y. Essentially the
same argument works to establish that for any motion p with compact
trace and for all «,s ¢dom(p) holds p(«) ¢ p(p). Tus (%,&)

has connected galaxies.

Corollary. Every compatible biequivalence with connected gala~
xies is Archimedean,
As a byproduct of the proof of Theorem 6 one obtains:

Theorem 7. Let (&,4) be a biequivalence and X be & pseu-

docompact conmected class in i, Then for all x,y € X holds
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X & Y.

Notice that both the notions of pseudocompactness and connect-
edness are defined purely in terms of the &£=equivalence L. Thue

Theorem 7 applies to any &-equivalence (eb) 2 (£).

Exemple 1. Put A = | {x,y) € RN’; x°y° = 1} . Then the bi-
equivalence (éer,ézf‘A) is compatible, Archimedean and its do-
main A is connected. However, Gal( (1,1) ) 1is not connected. Mo~

reover, there is no motion with compact trace from (—1,1) to

(1,1 .

Example 2. For every set u the biequivalence {=%,&4") on
RNY is Archimedean with connected galaxies and for any pair
£ Y g there is even a compact motion from f to g (it can be
defined for any ve€N-FN by p(e)(x) = (2/9)£(x) + (1-4/v)g(x)
for o € v+ 1, x € u). Nevertheless, for infinite u {=%,&%)

is not compatible.

Example 3. Let « be an infinite natural number. Put
R, = [ {x,y) € RN‘z; |x=3l« d,n} for each n € PFZ. Then the
biequivalence with the bigenerating sequence {Rn; n € FZ} has
connected galaxies, connected domain and is neither compatible nor

Archimedean.

Example 4. Let Y € N-FN. Let us endow RN’*' with the
structure of a linear space over RN in the obvious way defining
the vedtor addition and the multiplication by scalars componentwise.
Put

A= (fem™*; 23) =1 & ma(r) ¢ {21,1}} ,
B= {tf+ (1-t)g; te RN & 0¢t¢1 & £,86 A

2 [(24v; tQ) Fe(} X 1],
- 683 -



T= {<g£> € RN xrN"*; g(v) 21 2
(¥Y2<v) gd) gly) = 11} .

Then the set-theoretically definable class X = BuvuT"A consists of
the edges of the v-dimensional hypercube with vertices coordinates
*{ situated in the hyperplane f£(v) =1 in RN™' and of parts

of arcs of the hyverbolas running through the vertices of the cube
to the common assymptote f(0) = ... = f(y=1) = 0. Then the biequi=-
valence ('s‘”l‘x,é'“rx) is Archimedean with connected galaxies
and connected domain. However, there is no motion with compact tra-

ce from 11} x (v + 1) to ({-1} x ¥) v {(1, v)} in X.

Example 5. In this Exemple [a,b] = {x € RN; a 2 x< b}
always denotes the interval of rationals botween a,b € RN. Put
Io= [0,1] x {0} and 1, = [0,1]1x {1/a] for aeN -{0},

{0} x [1/(u41), 1/a] for even o« €N -{0}
Iy =

Y * [1/@er), 1/«1 for odd « €N - {0}

Pinally A= I,v U{I v J ; «€N ~{0}} 1is a set-theoretically
definable class. Then i-zl‘A ‘is a compact f=-equivalence (the biequi-
valence ('-2M,12) is compatible) with connected domain A (its
single galaxy). Thus each motion in 52“ has a compact trace and,

in particular, (u'-zl‘A,Az) is an Archimedean biequivalence.
Nevertheless, there is no compact motion from (0,0 to {0,1)
in izu since every such & motion has to oscillate between the
points (0,0) and {1,0) .
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3. The metrization theorem and

embeddings of biequivalences

For the rest of the article Sd; denotes a fixed revealment
of the codable class de of all set-theoretically definable class-
es (see [S-V 2] ). Everything one needs to know is that Sd; is
a fully revealed codable class (i.e. there is a code (K,S) of
Sd; such that the class K x {0] v S x {1} is fully revealed)
satisfying the following conditions:

(1) S4, s Sd"; and each class X € Sd; is fully revealed;.

(2) for each set u and each X € Sd7 u n X. is a set;

(3) for each normal formula ?(x5sXy) of the language FL,
end each X € 5ay holds  {x; ¢ (x,X)} € sdy;

(4) if X e Sd"; and X n N #¢g then there is the least ele-
ment of X n N in the natural ordering of N;

(5) if xasa",’, gex and (¥x,y)(x€ X =m» xv {y}e X)
then X = V (induction);

(6) if X esSd; end (Vx)(xcX = x€ X) then X =V ( €-in-
duction);

(7) it {X;; n ¢ PN} is a sequence of classes from SdJ
then there is an R € Sd; such that R"{n} =X  for
each n € FN (prolongation).

According to (1) - (7), Sd; should be understood as a "well beha~
ved® system of “well behaved” classes conveniently extending de
admitting “well behaved” prolongations of countable sequences of
its members.
On the base of sa‘; such notions as “f-class, *“e¢-class,
“%- end “¢-equivalence, “generating sequence of a **- or of

a “gwequivalence, "bigenerating sequence, et cetera, can be de=-
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fined in the obvious way. (E.g. X is & "¥-class if there is a
sequence {X ; n € PN} of classes from Sdy such that

X= fl)%; n€ M}; or a “bigenerating sequence is a sequence
{Rys n € FZ} of reflexive and symetric relations from Sd;
such that for each n holds R °R, € R .) The reader should
think over that any result concerning the "star-free™ notions from
(v, [G—-Z 1] or from this article remains true under an appro-
priate "starification®”. Finally, notice that the restriction of a
*biequivalence to a set is always a biequivalence.

For the sake of transparency we shall deal also with “biequi-
valences with domains different from V. A triple { X,%,&) whe-
re (%,&) is a "biequivalence and g £ XE Sd; is its domain
will be called a *biequivalence space.

Let {Rn, n € FZ} be a *bigenerating sequence (of some "bi-
equivalence { %,&4) ). The sequence {Ry; ve[r’t]} where
-0, ¢ € N-FN is called a prolongation of the ™bigenerating sequen-
ce {RyjneFz} in SAy if the class S = [ Ryx {v); velo,2]]
belongs to Sd;, for each yel[e,?) Ry € Sd; is a reflexive
and symetric relation and R,°R, ¢ Ryyqr S"{n} = R, holds for
each n € FZ, and Ry = Id, Ry = V2.

The following theorem is a direct consequence of the prolonga~
tion condition (7):

Theorem 8. Bvery *bigenerating sequence has a prolongation
in Say .

Let X be a nonempty class, H be a function with domain 12
and rmg(H) ¢ BN, Then H is called a metric on X if for all
x,¥,% € X holds H(x,y)>» 0, H(x,y) = H(y,x),

H(x,y) + H(y,2z) > H(x,%) and H(x,y) =0 m x = y. The weakening
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of the last condition to mere H(x,x) = O leads to the notion of
pseudometric. When also metrics taking values in other ordered
fields than RN will be considered, we will refer to the notion
just defined as to a rational metric.

If H is a metric on X then the pair (X,H) is called a
(rational) metric space. Given a metric space (X,H) we put for
x,y € X

xéHy = H(x,y) =0 and

X ey v m H(x,y) & 0.

The next theorem shows that the AST succeeded in a natural way
completely to exclude the pathologies of nonmetrizable spaces from
our study and to recure the balance between the topology and "mea-
suring of distances” both on the discernibility and accessibility
horizons. From this point of view the indiscernibility and accessi-
bility equivalences occur as mere certain invariants of metric spa-

ces.

Theorem 9. If (X,H) € Sdy is metric space (i.e. H € Sdj
is a metric on X) then <%1";'H> is a "biequivalence with do-
main X. Conversely, for every ™biequivalence space (x,i,i'-'o)

there is a metric H € Sd; on X such that {Z,é&h)= (=H,4Laﬁ) .

Proof. The first assertion is trivial. The converse follows
directly from the existence of a *bigenerating sequence for
{E,&) (see [G-2 1] ) and from the ¥~ and/or €-valuation
lemma ( [M 2] ). All one has to do is to take a suitable prolonga~-
tion of an appropriate ®bigenerating sequence of (:,i"—’) in Sd;.
We omit the precious proof which is, in fact, implicitly contained
in (M 2] . The reader will be made amends in the next section where

for a more specific class of (")biequivalences a metric subject to
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some additional properties will be constructed using ideas similar
to the dropped ones.

The *biequivalence (=H,¢~H> will be called the ®biequi-
valence induced by the metric H € Sdj (of courss, { y,¢#)
can be induced by many different metrics). Obviously, every metric
H € de induces a biequivalence on its domain, though the converse
is not true: there are biequivalences which cannot be induced by
any set-theoretically definable metric.

The. reader can easily verify that for any set u the biequi-
valence {=",&»") is induced by the set-theoretically definable
metric

D(f,g) = max {|£(t) - g(t)l; t eu}.

A function E: X—X  is called an isometry of the metric
space (X,H) into the metric space {(X,H’) if for all x,y € X
holds H(x,y) = H'(B(x),E(y)).

The following result is fairly expected in the light of the
classical topology:

Theorem 10. Let (u,h) bs a metric space (u and h are
sets). Then the function e: u —RN' given by e(x)(t) = h(x,t)
for x,t € u is en isometry of {u,h) into (BRN%,D), and for
each x ¢ u the function e(x) € RN' satisfies

ta z = e(x)(t) = e(x)(z),

tes z = e(x)(t) & e(x)(z)
for all ¢,z € u.

Proof. The fact that e is en isometry follows from the com-
putation

D(e(x),e(y)) = max {|n(x,t) = h(y,t)|s t € u}
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<$h(x,y) = |e(x)(y) - e(y)(¥)|
€ D(e(x),e(y))

The rest of the Theorem follows from the inequality
le(x)(t) - e(x)(z)| & e(t,2z).
Thus in particular according to the results from [G-2 1]

each function e(x) is uniformly continuous from 'h to = .
Let (X,%,&),

{x’,=,64) be two *biequivalence spaces.
A one-one map E: X~—X " is called an embedding of
into £X’,=,¢

(x,5,&)
iff for all x,y € X holds

xfy wm E(x) = Ey)

and
xéhy =

E(x) = E(y).

An embedding of a “¥-equivalence space <X,%) into another
*¥-equivalence space (X ,=) can be treated as an embedding of

the "biequivalence space (X,:,XZ) into the *biequivalence spa-

ce (x',-’,x"") . Obviously, every isometry of the metric space

(x,H) € Sd; into the metric space (X ,H ) e Sd; is an embedd-
ing of the “biequivalence space

{X,5y,«%;) into the "biequi-
valence space (X’.ﬁ;'ﬂ-’ﬁ;') .

Then Theorems 9 and 10 have the following consequence:

Theorem 11. For every biequivalence space (u,t,&) there is
en embedding e of (u,%,&») into
the functions

{R*,a%,¢4%)  such that all
e(x) € RNY (x € u) are uniformly continuous from
f to =
Let =

be the X-equivalence on RNxu given by

{a,x) £ {(b,y>) = a=b & x%y. We also put for f € RN"

Nl = 2|£(t)|/card(u).
ten

The function e

from Theorem 10 can be also regarded as an
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embedding of the X =equivalence space (u,:) into various
¥ -equivalence spaces with domzin RN% using the results from

le-z 1] .

Theorem 12. Let { u,f) be a W¥-equivalence space. Then there
is a one-one set-function e: u-—RN” such that for all X,y € u

the following conditions are equivalent:

(1) xZy; (2) e(x) =¥ e(y); (3) Fig“(e(x)) = Fig"(e(y)).

If ueN and afp = &/u=p/u holds for all «,m€u then
the conditions (1) = (3) are equivalent to

(4)  Ve(x) = e(y)] =o.

If one would like to generalize the above embedding results
to arbitrary *biequivalences (however, to deal with biequivalences
with domain V is quite sufficient), he will find unavoidable to
extend the ordered field of all rational numbers in such a way that
every nonempty subclass of RN belonging to Sd; which has an upper
bound in RN had the supremum in the extension.

A nonempty proper subclass C of RN 1is called a cut of
{RN,¢) if it is a section of {RN,%) without the greatest
element.

Then the fully revealed codable class HR of all cuts in RN
belonging to Sd;' can be given the structure of an ordered field
in the obvious way. It will be called the field of all hyperreal
numbers. Using an appropriate coding of HR, of the equality rela-
tion on HR &and of the operations and order relation on HR, one
can work with it as if it were a class from the extended universe.
RN can be naturally embedded as an ordered subfield into HR. Like-

wise iR can be endowed with a pair of relations {& ,«»» behaving
as a biequivalence with domain HR prolonging the biequivalence
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from RN denoted by the same symbol in such a way that

HR = Fig(RN). A hyperreal number will be called set-theoretically
definable if it is determined by a set-theoretically definable cut.
The set-theoretically definable hyperreals contain all rationals
and form an ordered subfield of the hyperreals. Each nonempty sub-
class of RN with an upner bound belonging to sdv has the supre-
mum in that field. The reason why the field of all set-theoretically
definable hyperreal numbers is an unsatisfactory extension of RN

is that one cannot apply the prolongation technics in it. HR can
be also obtained as a revealment of the field of all set-theoreti-

.

cally definable cuts in RN.

Each nonempty class X € Sd;, X € RN, with an unver (lower)
bound in RN has the supremum sup X (infimum inf X) in HR. The or-
dered field HR is determined by its properties with respect to
Sd:, uniquely up to an isomorphism. Also the hyperreal numbers con-
structed on the base of another revealment of de, say Sd';;, are
isomorphic to "our" HR via the automorphism of the universe mapp-
ing Sd; onto Sdy (see [5-v 2] ).

Let us denote just for a moment

RNS = {F ¢ Say; dom(F) = X & mmg(F) ¢ RN &
(3aeRN)(V¥xeaX) |F(x)<a}

the codable class of all bounded rational functions with domain X
belonging to Sd; (clearly RNx;‘ g iff Xe Sd;). Then for each
X € Sd; ’ Rﬂx‘ can be converted into a metric space endowed with
a hyperreal metric

D(F,6) = sup {|P(x) - &(x)|; x € X}
Notice that for X being a set Rﬂx and D coincide with the
original ones.

The generalization of Theorems 10 - 12 to arbitrary *biequiva~
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lences using the hyperreal numbers is quite gtraightforward, now.
It is left to the reader.

From the matter just indicated it should follow that the hy-
perreal numbers will play rather an auxiliary role of a technically
convenient extension of the rationals in our study. From this point
of view the irrational numbers in HR, and the more, the not set-
=theoretically definable ones, seem much more curious and odder

than the infinitegimally small and infinitely large rationals.

4. Geodetical biequivalences

Let {%,&) bve a biequivalence (with domain V). We already
kmow that there is a metric H € Sd; on V inducing (%,H).
Using the metric H a ternary relation "t lies between x and y"
can be defined by the equality H(x,t) + H(t,y) = H(x,y). Similar-
ly, one can define the ternary relation "t lies .nearly between x
and y" by H(x,t) + H(t,y) = H(x,y). According to some results in
[G] concerning classical metric spaces one can show that the bi-
equivalence {%,%) can be induced by a metric H ¢ Sd; such
that for all x,y,t holds +t lies between x and y iff t = x
or t=y, and t 1lies nearly between x and y iff t % x or
t 2 ¥. The reader will probably agree that such a metric is rather
a8 "bad"” one. According to a "good" metric H at least for any
accessible pair x,y +there should be a connected set u contain-
ing both x and y such that each t € u lies between (or at
least nearly between) x and y. This section is devoted to the
precisation of the notion of a "good" metric and to the characteri-

gation of biequivalences which can be induced by such metrics.

Let H € Sd; be a rational metric on V and p be a path

f1.e. @ V2_pqtn) with domain [4s9] . The rational number
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Ly(p) = zﬂ(p(u).p(ﬁﬂ))
is called the length of the path p with resvect to the metric H.
Then p is called a direct (nearly direct) path with respect to H
if Iy(p) = H(p(4),p(™)) (Ly(p) = H(p(q),5(?)). When the metric
H is clear from the context the attribute "with respect tq H" can
be omitted from the notions just introduced. The length of the
path p will be denoted L(p) in such a case.

In the following three theorems H € de denotes a fixed
metric on V and (;,ltO) is the "biequivalence induced by it.

Theorem 13. Let p be a path in the time ¥ .
(1) p 4is a direct path iff for all « & A<4 holds
H(p(«),p(p)) = L(pP[=, p));
(2) p is & nearly direct path iff for all «& A< " holds
H(p(«),p(p)) = L(p} [«, A) ).

Proof. We will prove only the second claim which is a bit less
trivial. Let p be nearly direct. Then H(p(«),p(p)) £
L(pP [e,p])) for all w¢ p". Assume that H(p(«),p(p))<-
L(p (¢« ,p)) for some o,B. Then

L(p) = L(p }[0,«]) + L(pP{e,]) + L(pt (B, 1)
“>H(p(0),p(a)) + H(p(),p(p)) + H(p(p),p(M)
»H(p(0),p(¥)).

Thus p were not nearly direct. The remaining implication is tri-
vial,

Corollary. If p 1is a (nearly) direct path from x to ¥y
then each t € rng(p) 1lies fnearly) between x and y.

Theorem 14. Let p be & path in the time ¥ and «,p e 41,
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(1) If p is a direct path then
a&p = H(p(0),p(a)) & H(p(0),p(p))
d = 3 = H(p(0),p(«)) = H(p(0),p(p)).

(2) If p is a nearly direct path then
« % p = H(p(0),p(¢)) £ H(p(0),p(pn))

ac?g A = H(p(0),p(«)) = H(p(0),p(p)).

Proof. #e will prove only (2) again. Let p be nearly direct
and o % A . Then either d & /3 and by the preceeding Theorem

H(p(0),p(>)) ¢ H(p(0),p(«)) + H(p(x),p(p))
= L(p MO, a]) + L(pl[=, £])
= L(p}[0,]) = H(p(0),p(p)),

or &>p, p(e) £ p(p) and

H(p(0),p(«)) = L(p } [0,«]) = L(p} [0, p]) + L(pM[A,x])
= H(p(0),p(R)) + H(p(a),p(=))
= H(p(0),p(p)).

Now assume that H(p(0),p(«)) % H(p(0),p(p)). If o & p, there is
nothing te be proved. So let « >3 ., Then as already proved also

H(p(0),p(p)) % H(p(o),p(s)). If there were a ye[A,e] such that
p(p) F{ p(f), the following computation would yield a contradiction:

H(p(0),p(P)) = H(p(0),p(«)) = L(p } [0, «])
= L(pt[0,]) + L(pM A, 71) + L(pM [, ])
> H(p(0),p(p)) + H(p(#),p(y)) + H(p(y),p(«))
*> H(p(0),p(p)).

The second equivalence in (2) is a direct consequence of the first

one.
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Corollary. Let p be a nearly direct path. Then
(1) the equivalences (%) and ; on dom(p) coincide;
(2) p 1is a compact path (i.e. % is compart) iff p has a
compact trace iff L(p) = O.

Theorem 15. Let p be a nearly direct path. Then rng(p) is

a connected set iff p 1is a motion.

Proof. Obviously, the trace of a motion is a connected set.

Assume that p is a nearly direct path in the time 4" which is not
a motion. Then there is an « <" such that p(«) £ p(«#1). Then
for all pB,y4y A<o and «<y  imply /J%T.By the pre-

vious results p(p) £ p(y). Thus rng(p) is not connected.
B T

Theorems 13 - 15 and their Corollaries justify the following
definition:

A metric H € Sd; is called (nearly) geodetical if for all
X,y such that x «; y there is a (nearly) direct motion (with
respect to H) from x to y. A biequivalence (§,¢o) is called
(nearly) geodetical if it can be induced by a (nearly) geodetical
metric.

An immediate consequence of this definition and of the preceed-
ing results is the following:

Theorem 16. Let (:,cto) be a nearly geodetical biequivalence.
Then for every pair x (-'-'oy there is a comnact motion from x to

y. In particular {%,&) is Archimedean and has connected galaxies.

Theorem 17. i.et 3,4‘-’») be a biequivalence. The following
conditions are equivalent:
(1) (%,&) 1is geodetical;
(2) 3,.1.) is nearly geodetical;
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(3) there is a *bigenerating sequence {Rn, n e FZ}
of (3,410) such that for each n hold
Ryyq & RpeR o (f) and (¥)eR =R e (3);
(4) there is a ™bigenerating sequence {Sn; nerz}
of {%,&) such that for each n holds § °S, =S .4 ;
(5) for some d € FN, d » 2, there is a ™“bigenerating sequen-

ce [S,; neFZ} such that for each n holds 83 =8, 41-

Proof. (1) = (2) eand (4) => (5) are trivial.
(2) = (3): Let H e Sd; be a nearly geodetical metric inducing
(%,&). We put R = ’,(x,y) ; H(x,y) £ 2“} . Obviously,
{Rn; n € FZ} is a “bigenerating sequence of {Z,éh). Let
{(x,y) € R,y &d p be a nearly direct motion from x to y
in the time & . Let & £ ¢ be the greatest natural number such
that {x,p(«)) € R, and pé€ [«,?] be the greatest natural
number such that {p(«),p(p)) € R . It is routine to check that
p(p) p s y since p 1is a nearly direct motion. Thus
Ry, & Ry°Rye (). Now, assume that {x,¥) € (:)"Rn. Let p
be a nearly direct motion from x to y in the time ¥ and
o 4 9 be the greatest natural number such.that {x,p(«)) € R..
The reader can easily verify that p(«) £ y. Thus (%) R SR ° .
The remaining incl_usion follows by a symetric argument.
(3) =» (4): One can easily verify that

K K
(fnem)Vkem) B2 & R, & B o).

Therefore

(Von€ P)(m & n B 2Tt

€ Ry &Ry
Hence the‘re is a prolongation {R,; ve [o-1 ,t‘+‘l]} of the

*bigenerating sequence Elln, n € rz} in Sd; such that for

each VY € [o,?] holds
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7=y V"%
R < R, € Ry .
on=¢
Finally, we put Sn = Ry for each n &€ FZ, Then {Sn; n € FZ}

is a “bigenerating sequence of {Z,%») and for each n holds
Sn®Sp = Spere

(5) = (1): Let {Sn; ne€ FZ} be a “bigenerating sequence of
(%,&) such thet (¥n) Sg =S .4 where a4 € FN - {0,1} , and
’ls,; ve [e-1, t'+1]} be a prolongation of this sequence in

Sdy such that for each vy € [e,t-1] holds Sdas . .

Vv
Then for each Yeé[e, t] holds 83 = S,. Then the function
H(x,y) = a" min({p; {x¥) € ¥} o {4}

obviously belongs to Sd; and is a metric on V. Let us show that
the ™*biequivalence induced by H is indeed {(Z,&b) . Por all
x,y the following conditions are equivalent:
x3y; (W) (xy) € 5 = 75 () By € &% HGey) S o
Similarly, changing "¥n" to "In", one obtains
(Vx,y)(x é» y = H(x,y) «» 0).

It remains to prove that H is geodetical. But from the con-

struction of H it follows even more. Namely, for every pair

(x,y) € S there is a direct S_=path ﬁ'om x to y.
4 v

References

[e] J. GURIGAN: Strengthening of the triangle inequality
(unpublished)

[6-z 1] J. GURISAN, P. 2LATOS: Biequivalences and topology in
the alternative set theory, Comment. Math., Univ.
Carolinae 26(1985), 525-552,

- 69T =



[u 2] Je

(s-v 2] A

(vl P.

KATS MFF UK,

MLCEK: Valuations of structures, Comment. Math,
Univ. Carolinae 20(1979), 681-696,

SOCHOR, P, VOPENKA: Revealments, Comment. Math.
Univ. Carolinae 21(1980), 97-118,

VOPENKA: Mathematics in the Alternative Set Theory,
Teubner, Leipzig 1979; Russian translation, Mir,
Moskva 1983.

Mlynskéd dolina, 842 15 Bratislava, Czechoslovakia

(Oblatum 12,2, 1985)

= 698 =



	
	Article


