

Werk

Label: Article Jahr: 1985

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0026|log60

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 26.4 (1985)

THE FARKAS LEMMA OF GLOVER Charles SWARTZ

Abstract: We use standard functional analysis techniques to establish a result of Glover which he employs to obtain a non-linear version of the classical Farkas Lemma.

 $\underline{\text{Key words}}\colon$ Farkas Lemma, convex functions, subgradients, Krein-Smulian Theorem.

Classification: 90C25

In this brief note we present a proof of a theorem which has been used in optimization to establish a nonlinear version of the Farkas Lemma ([1], Lemma 3) and to establish Kuhn-Tucker Theorems ([3] 2.1,[4] 2.3, 2.4). The proof given by Glover in [1] uses machinery from set-valued mappings; we present a proof below which only employs standard topics from functional analysis, namely, the Krein-Smulian Theorem.

Let X and Y be locally convex spaces with S a closed convex cone in Y. Let $g:X \longrightarrow Y$ be positive homogeneous, S-convex and such that $s' \circ g = s'g$ is lower semi-continuous for each $s' \circ S^*$, where $S^* = \{s' \circ Y': (s',s) \ge 0 \ \forall s \in S\}$ is the dual cone of S. As usual we write $\partial f(0)$ for the subgradient of a convex function $f:X \longrightarrow \mathbb{R}$ at O([7]). Glover shows that if $A = \bigcup \partial (s'g)(0)$, then $-(g^{-1}(-S))^* = \overline{A}$, where the closure is in the weak* topology of Y'([1] Lemma 1), and then uses this result to establish a

general nonlinear Farkas Lemma ([1] Theorem 1). Glover's Farkas Lemma contains the linear Farkas Lemmas of Zalinescu ([6]) and Schirotzek ([5]). In order to obtain a sharper form of the Farkas Lemma, Glover gives sufficient conditions which guarantee that the set A above is weak* closed ([1] Lemma 3). We state and prove a version of this result which uses only standard functional analysis techniques whereas Glover's proof uses results of Robinson on set-valued mappings. Our proof also covers the case when X is only metrizable and not necessarily a normed space, but we must assume that the range space is barrelled although not necessarily normed.

Theorem 1. Let X be complete, metrizable and let Y be barrelled and suppose that g(X) + S = Y. Then $-(g^{-1}(-S))^* = A$ so in particular A is weak* closed.

<u>Proof:</u> By Lemma 1 of [1] it suffices to show A is weak* closed and by the Krein-Smulian Theorem ([2], 3.f0.2) it suffices to show that $A \cap U^0$ is weak* closed for each closed, absolutely convex neighborhood of 0, U, in X. Let (x_y^*) be a net in $A \cap U^0$ such that (x_y^*) is weak* convergent to x'. It suffices to show that $x \in A \cap U^0$. Let p be the Minkowski functional of U. Choose $s_y^* \in S^*$ such that $x_y^* \in O(s_y^*, g)(0)$ and let $y \in Y$. By hypothesis, y = g(x) + s for some $x \in X$, $s \in S$. Then

- (1) $\langle s_y', y \rangle = \langle s_y', g(x) \rangle + \langle s_y', s \rangle \ge \langle x_y', x \rangle \ge -p(x)$. Also $-y = g(\overline{x}) + \overline{s}$ for some $\overline{x} \in X$, $\overline{s} \in S$ so $\langle s_y', -y \rangle = \langle s_y', g(\overline{x}) \rangle + \langle s_y', \overline{s} \rangle \ge \langle x_y', \overline{x} \rangle \ge -p(\overline{x})$ and
 - (2) (s, ,y) 4 p(x).

Thus, if $r = \max \{p(x), p(\overline{x})\}$, (1) and (2) imply that $\{\langle s_{y}^{\prime}, y \rangle\} \leq r$. Hence, $\{s_{y}^{\prime}\}$ is weak* bounded and, therefore, relatively weak* compact by the barrelledness ([2], 3.6.2).

Thus, is, it has a subnet, which we continue to denote by $\{s_y'\}$, which is weak* convergent to some $y' \in Y'$. Since $\langle s_y', s \rangle \ge 0$ for $s \in S$, $\langle y', s \rangle \ge 0$ so that $y' \in S^*$. For $x \in X$, we have $\langle y', g(x) \rangle = \lim \langle s_y', g(x) \rangle \ge \lim \langle x_y', x \rangle = \langle x', x \rangle$ so $x' \in \partial (y'g)(0)$ and $x' \in A \cap U^O$ since U^O is weak* closed.

In Glover's version he assumes that X is a Banach space and Y is a normed space, but there is no completeness assumption on Y.

If $f:X \longrightarrow \mathbb{R}$ is lower semicontinuous and sublinear and $x' \in X'$, then under the assumptions of Theorem 1 Glover's Farkas Lemma ([1], Theorem 1) is: $x' \in \partial f(0) \div A$ iff $-g(x) \in S$ implies $f(x) \ge \langle x', x \rangle$. For the case when f and g are linear, this yields the Farkas Lemmas of Zalinescu ([6]) and Schirotzek ([5]).

References

- [1] B. GLOVER: A generalized Farkas Lemma with applications to quasi-differentiable programming, Zeit. Oper. Res. 26(1982), 125-141.
- [2] J. HORVATH: Topological Vector Spaces and Distributions, Addison-Wesley, Reading, Mass., 1966.
- [3] S. KURCYUSZ: On the existence and nonexistence of Lagrange multipliers in Banach spaces, J. Opt. Theory Appl. 20(1976), 81-110.
- [4] J-P. FENOT: On the existence of Lagrange multipliers in nonlinear programming in Banach spaces, Lecture Notes in Control and Information Sciences, 30,1980, 89-104.
- [5] W. SCHIROTZEK: On Farkas type theorems, Comment. Math.Univ. Carolinae 22(1981), 1-14.
- [6] C. ZALINESCU: A generalization of the Farkas Lemma and applications to convex programming, J. Math. Anal. Appl. 66(1978), 651-678.

[7] C. ZALINESCU: On an abstract control problem, Numer.Func. Anal. Opt. 2(1980), 531-542.

Department of Mathematical Sciences, New Mexico State University Las Cruces, NM 88003, U.S.A.

(Oblatum 15.4. 1985)