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SPECIAL POLYNOMIALS IN ORTHOMODULAR LATTICES
Ladislav BERAN

Abgtract: In this paper the set MF‘n of all meet-Frattini

polynomials and the set of all join-Frattini polynomials ere
studied. In particular, it is shown that the upper commutator
belongs to M.Fn. Some properties of friendly pairs of polynomi-~

als are established. Also quite complete information regarding
the commutativity relation in the free orthomodular lattice R,

is given and, as a by-product, a simple description of the quo-
tient set corresponding to the equivalence relation defined by
friendly pairs of polynomials in two variables is obtained.

Ke* words: Commutativity relation, free orthomodular lat-
tice wo generators, commutator, Frattini polynomial,
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Classification: 06C15

1. Preliminaries

If a,b are elements of an orthomodular lattice ‘L =
= (Lyv, Ay »0,1), we say that & and b commute and write

aCb, provided a = (aab)v(aabd’).

Recall the following result (cf., e.g., [1]):

Lemma 1.1. In every orthomodular lattice,

(i) aCb & aCb’ <& bCa;
(ii) (aCb % aCc) = aCbac;
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(iii) (aCb & aCc) = aaA(bve) = (aab)v(aac).

For our purposes here, we need the fact that C has

an exchange property of the following type:

Lemma 1.2. For any elements a,b,c of an orthomodular
lattice,
(aCbAc % bCe) = aabCe.

For a proof, see [2].

Convention. In what follows, ‘L will always denote

an orthomodular lattice.

The 96-element lattice which represents the free
orthomodular lattice F2 with two generators was studied
in [4]. It should be noted that its elements can be
decomposed in a natural way in six different Boolean

algebras B1 - BG' where

1 = [0; com (x,y)],

B, = [x A v)Aalx' vy )y xvix'ay)vix'ay D],
By = [FA(F v A(F ' vx); vy 'ax) viy' ax’)],
B, =[y ' A(yvx)alyvx); ¥y vigax)viyax)],
By =[x’A(xvy)alxvy); x vizxay ) vixay)]d,
Bg = [com (x,y); 11

For more about this and the basic properties of F, the
reader may consult [1].

.

The set of all the polynomials in A,v and

of 1 variables x, »Xpy see X, Will be denoted by P,.

n
To simplify notation we shall denote the value p(n1 183y eoe

ol & ,an) of a polynomial p = p(xl,xz, o wie ,xn) in 8,

8y, +«s 5 8y €L by p(ay,0). A similar formalism will be
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retained also for P(X;,X5, ... »Xy). Two polynomials
p(xI ,0) and q(x1 ,8) of Pn are said to commute if and
only if for every ‘L and for every choice of elements

81,85, +.0 ,8 in L the element p(a1,o) commutes with

n
q(a,,e).
Let a be an element of L. We define a‘ = a and

a" = a’., Now it is easy to recall the concept of a commu-
tator due to [3]. The upper commutator of 31,a2', soe ,ane
€L is defined by

com (8,85, <. ,an) = N\ (af(”vag(Z)v ...va:(n)),

where e runs over all the mappings e:{1,2, ... ,n} —
— {-1,1}. The lower commutator of 8585, «c0 ,8,  is

n
defined dually, i.e.,

com (31 )32, see 95n) = v (a$(1)AB§(2)A cee l\a:(n))o

2. Frattini polynomisls

A polynomial fe¢ Pn is said to be meet-Frattini if
and only if it has the following property: For every p,

Q€ P and for every a,,a,, ... ,a  of any ‘L the

n
element p(aI ,0) commutes with q(a1 »0) A :t‘(u1 ,0) if and
only if p(a,,e) commutes with q(ea;,e). A join-Frattini

polynomial f is defined dually by the condition
p(n1,o)0q(a1,o)vf(a1,o) <> p(a;,0)Cq(a,,e).

We shall denote the set of all meet-Frattini polynomials
of Pn and the set of all join-Frattini polynomials of Pn
by Il’n and JFn, respectively.

Our first result is a technical lemma about polynomials
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in Pn which will be useful later.

Lemma 2.1. Let pePn and let 8,85, oo ,aneL. If

e maps {1,2, ... ,nf into {-1,1}, then either

p(ay,85, oo ,an) < af(”v ag(z)v ces v ag(n)
or
p'(a1,az, o ,an) < af“)vag(z)v e ¥ a:(n).
Proof: Use induction on the rank of p.
Lemma 2.2. For any e:{1,2, ... ,nf-{-1,14,
xf(”v xg(Z)V ees V xg(n)e MF
and

x$(‘)A 15(2)/\ ess A xg(n)eJFn.

Proof: First note that
(1) p(a1,o)Cq(al,o)A(af(”v °)
is equivalent to
(2) p’(a;,0)Cala,,0) A (a5 v @),

Now, af(‘)vo commutes with q(a,,e) and with pd(a“o),

where d =11. Thus, by Lemma 1.2, (1) is equivalent to
(3) 1>d(al ,e) A(af(”v e)Cq(a,,e).

From Lemma 2.1 we infer that (3) is equivalent to
(4) pd(a“o)Cq(a,,o).

Consequently, it follows by Lemma 1.1 that (1) is equivalent
to p(|1,o)0q(a‘,o).

Similar reasoning yields the remainder of the proof.

As a direct consequence of Lemma 2.2 we have the

following useful proposition.
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Proposition 2.3. For any ne¢N,

com (X9,X5, oo ,xn)iMFn

and

com (Xy,X5, +o. ,xn)eJFn.

3. Friendly pairs of polynomials

Let p,q,r,s€P . The pairs (p,q) and (r,s) are
said to be friendly (written (p,q)~ (r,s)) if and only if
the following condition is satisfied for any ‘L and any
8,,8,, «.. ,8 €L: The element p(el,o) commutes with
q(a,,e) if and only if the element r(a;,e) commutes

with l(a‘ ,0).

Our next lemma gives information regarding the

relation ~ .

Legwa 3.1. Let pyq,r,s€P . Then
(1) [p,q) ~(r,s)] < [(q,p) ~(r,8)] ©® [(r,s)~(p,q)].

(ii) The relation ~ is an equivalence relation on Pi.

Proof: Obvious.

Propositisn 3.2. Let p,q€P,, let oi,fj,nu,rv
(18162, 1€J6b, 1 §Susc, 1£v£d) Dbe mappings of
{1,2, «c. ,nf into {-1,1} and let a,b,c,d€N,. If
w,86{-1,1f and
2oe 1) e (2)
r(!"!z, ey ,5)'[P'(!I,!2,...,In)l\ ’Q‘(x‘i szi V eeo
b
o;(n) £.(1) f£.(2) £.(n)
cee V x‘i n v ["\_/‘(xlj A xzj A eee Axn"l )]
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c
Eu(1)

s(x, ,x2,...,xn)=[qz(x1,x2,...,xn)/\ /\1 (x, v X,
u=

E (n) Fv(l)

d
F (2)
...vxnu vV (x, A
v=1

F_(n)
A X, A ess AX.Y

T,
then the pairs (r(x],xz, 5 bd ,xn),s(x1,xz, ‘oo ,xn))

(p(xy,X5, oo ,xn),q(x‘ 1Xpy eee ,xn)) are friendly.

Proof: Let
a e;(1) a e;(1)
A= A (x v e), A= Al(s v e);
i=1 i=1
b f£.(1) b f£.(1)
B,= V(xJ Ae), 'B= Viad ae);
J=1 J=1
¢ E(1) c E (1)
c, = N (x, v e), = Als v e);
u=1 u=1
a F_(1) a F_(1)
D, = V ' A, ‘D= Via," A e);
v=l v=
‘P = p(a,,0), Q= q(ay,e).
Now, °‘BE@'PA‘A. This, together with the dual of

Lemma 1.2, implies that
(5) [C"Pa‘a)v*BlcI(*QAa*C)v D]

is equivaleant to
(6) (*PA*A)C(*QA"C)v° D¢ B.

From Lemma 2.2 we infer that (6) is equivalent to
(1) CPA'AC[(*QAC)v'Dv'BIA(*Dv'B)’.

However, (*Dv'B)C(*QA°C) and (‘Dv°'B)C(*Dv‘'B)’.

It then follows from Lemma 1.1 that
- 646 =
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[(*QAa) v *Dv BIA(*Dv'B) = (*Qa‘C)Aa(*Dv'B)".
Note that, by Lemma 2.2, D,vB,e MF . Therefore, (7) is
equivalent to

(8) (“Pa‘A)C(*Qa‘C).

But the polynomials 4,,C; are also meet-Frattini. Thus,
(8) is equivalent to ‘PC'Q.

4. The commutativity relation in the free orthomodular
;gss;ss__zz

Similarly as in [1], let x,y denote the free
generators of the free orthomodular lattice FZ‘

Given two polynomials p,q of the infinite set Py,
one can ask what means the condition "p commutes with q".
An answer to the question is evidently given, provided we
can characterize what means the condition

(9) p(x,y)Cq(x,y)

in F,. %

Since F, has exactly 96 elements, we have ( 2) =
= 48.95 = 4,560 possibilities how to choose the couples
(p,q) in (9). However, we shall see that no computer is
needed to give a complete survey of the corresponding

situations.

The next two lemmas are of critical importance for

what follows but are also of independent interest.

Lemma 4.1. Let péP,. If p(x,y)€B, uBg, then

p(x,y)Ca(x,y) for every qe€PF,.
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Proof: Suppose p(x,y)€B6. Then p(x,y) is equal to
e. A
a meet of some elements x ‘v y > (eg,f; cf-1,14, icI).

. e; Ty e, 1,
Since x “vy belongs to the center of Fz, X vy
commutes with q(x,y). By Lemma 1.1, p(x,y)Cq(x,y).

A similar argument can be used if p(x,y)e B,.

Lemma 4.2. Let p(x,y) and q(x,y) be elements of
B;, where 12i$6. Then p(x,y)Cq(x,y).

Proof: By Lemma 4.1, the assertion holds whenever
i=10ri==~6. In the sequel we suppose that 2si=5.
Using the information found in Figure 18 of [11],

we can see that

p(x,y) [zi/\m (x,y)]v d(x,y)

and

a(x,y) = [z; acom (x,5)] velx,y),

where d(x,y),e(x,y)e€ B, and where 1z, = x, 232, 24 =
=x’, zZg = y . Therefore, by Proposition 3.2, p(x,y)Cq(x,y)

is equivalent to zj_Czi which is always true.
Theorem 4.3. Let 23i<j£5 and let p(x,y)eBi,
q(x,y)ij. Then p(x,y)Cq(x,y) if and only if either
i=2 v j=5

or
i=3 ¥ =4,

Proof: Similarly as in the proof of Lemma 4.2 we have
(10) p(x,y) = [sAcom (x,y)]v d(x,y)

and

(1)  q(x,y) = [vacom (x,y)] velx,y),
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where d(x,y),e(x,y)€B, end {z,v}c{x,x’,y,y }. Hence
p(x,y)Cq(x,y) if and omly if 2Cv, i.e., if and only if

either {z,v{ = {x,x’} or {z,v}={y,y’}.

Remark 4.4. Figure 1 indicates all the relations of
commutativity in F2. The cdge Jjoining B3 and B4 means
that any two elements peB3, qGB4 commute. No two
elements P € BZ’ p2€B3 commute and, therefore, there is
no edge joining 52 and B3. The loop at Bi means that

]:30;94 whenever p3,p4<: Bi'

Theorem 4.5. Two polynomials p(x,,xz) and q(x,,xz)
of P, either commute or in any ‘L the element p(a,,az)

commutes with q(a1,n2) (a;,a, €L) if end only if a,Cay.

Proof: Suppose there exists an orthomodular lattice °T
and elements b‘ ,bze'r such that p(b,,bz) does not commute
with q(b,,bz). Then the elements p(x,y),q(x,y) do not
belong to B, UBg. Moreover, by Lemms 4.2 and Remark 4.4

neither {p(x,y),q(x,y)}cB; mor {p(x,y),q (x,y)} CBy.
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Hence we msy assume that p(x,y) and q(x,y) are of the

form given in (10) and (11). Therefore, if a;,a, €L, then
pla,,a,) = [zOA om (a,,a,)] vd(a,,8a,),
ala,,a,) = [vya com (8,,8,)] ve(a;,a,),

where {zo,voj c {ay,a,,85,8, } and v, # z, # vy. Without
loss of generality we may assume that z = a and vo =
= a,. From Proposition 3.2 it follows that p(al,az)Cq(aI,aa)

if and only if ZOCvo, i.e., if and only if a,Ca,.

As a direct consequence of Theorem 4.6 we have the

following result.

Corollary 4.6. For any p,q€P, either (p,q)~ (0,1)
or (p,a) ~(xy,x;).
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