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The 'l‘ychonoff'ltheoren (l12]1) stating that a product of
compact spaces is compact is well known to be equivalent to
the axiom of choice (see [10]). A surprising result was obtain-
ed by P.T. Johnstone in [8]: 1if we consider compact locales
(1.e., spaces represented as lattices of "open sets" - with
points disregarded and, indeed, often not present in any form),
the analogon of the Tychonoff ‘s theorem can be proved without
the axiom of choice., This is particularly interesting in con-
nection with the faot that compact locales are always spatial,
i.e. open-sets lattices of classical topological spaces ([2];
thus, the use of AC is localized in the formation of points,
not in the preservation of the compactness property).

The proof in [8] conteins & non-constructive element, na-
mely the axiom of replacement, P.T. Johnstone formulated the
problem whether one can get rid of this, too (for the special
cage of the locally compaot locales he presented a positive
answer himself). In this article, this problem is solved in
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the affirmative in full generality. The procedure is based on
e new description of the product of locales, considerably more
oconstructive as compared with the usually used ones ([5],[8]).

1, Locales., The basic theory of locales has been develo-
ped by Bénabou (1], Dowker and Strauss [3, 4, 5], Isbell [6]
and Simmons [11], There are nonsiderable differences in the
terminology; we follow that of Johnstone [8), A frame is a
complete lattice A in which the infinite distribution law
aA(VS) = V{ans|ses}

holds for all a€ A, SSA. We shall denote the maximal resp., mi-
nimal olouont'of A by 1 resp. O. A frame homomorphism A —>B
is a map preserving finite meets and arbitrary joins (i.e.,
in particular, the elements O, 1), Thus, we have a category Frm
of fremes. If X is a topologicel space, the lattice .2(X) of
its open sets is & frame, If £:X-— Y is a continuous map,
then £=1; 0. (Y) — 0.(X) 1s & freme homomorphism, Thus L. is
a contravariant functor from the category Top of topological
spaces to FPmm,

Pollowing Isbell [ 6] and Johnstone L8] we shall write Loc
for the opposite category rm°P, and call its objects locales.
This dual terminology enables us to make fL ;Top —> Loc & co-

variant functor and, in consequence, to generalize familiar
concepts from topology to Loc (see [71,[8)).

2. Products of locales. Products in the category Loc
(sums in Prm) were defined by Dowker-Strasuss [5] and Johnstone
{81, Their description is elegant, but rether non-constructive.
It does not give any explicit formula for the Join operation
in the sum }Y:l Xy of fremes X;. Johnstone {71 suggests to
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construot the sum of xd (j€J) as a free frame over the cartesi-
an product &UD IJ of the sets xd. factorized through a congru-
ence generated by certain relations. (In the case of an infini-
te J, it 18 of an advantage to exclude from éUD xj those
(‘j)jeJ in which we have aj<1 for infinitely many j.) This
shows an analogy between frsmes and commtative rings (see [91).
However, frames, being 00 ~ary algebras, turn out to be in this
respect much more complex.In fact, the congruence generated by
the obvious relations is rather obscure.

In this s?ction we give a quite expliocit description of the
congruence generated by the relations [7], which enables us to
describe the structure of é\e/J Ij, explicit formulas for finite
meets and arbitrary joins included.

Let J be a set. We call a J-connector a system (M, :R.;. R’;’)
(Jed), uy,My), where My M6 M, Ric2¥xu, RYcux2M for je 3
such that the following condition holds:

Let K& M, Whenever
(e K) L L(FR] x) L (NGK) =>

-(1
A4 éxsK]&[(x?% N) & (x €K) = NEK)
(¢c) lor
?
2) (HZSK)&[(IHLJ x) & (xeK) =

= FeK) & [(x ) M&(NeK) = xeK)

holds, it is K = M,

Now let X, (Jc J) be a system of frames. Denote by B the carte-
sian product J'T;LJ xj. There is a natural ordering "< " of B,
making —;JeTa Xy & Pru-product of Xy (see [51). Let B'C B be the
subset of all x -‘}T;TJ aisB such that we have ai<1 for at most
finitely many Je J. It is easy to see that B® is a sublattice
of B, preserving finite meets and non-empty joins, but it is

not & locale: There is no minimal element in B’, Denote by Z
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the lattice of all subsets of B ordered by inclulioxi.
We call m,,m, € Z strongly equivelent (m, ~g W), 1f there exists
an me Z and & J-connector (m, ’.R;. R;’,m1 »m,) (in the sequel cal-
led simply the comnector) such that it holds -
) (x 51; m orm’ Jf,; x) = (Ai '@Ym’%q) %
&(af = aF for k+j, yeu) &(n'+9).

We will call a kernel of mec Z the set

s(m) ={xem | (VJeJ) ai>0§.

We set u~v=4, s(u) ~g 8(v). The element u is called standard,

if u = s(u).

2.1, Obsgervation: "~ " is an equivalence relation, con-
taining " ~J ",

Proof: It suffices to show that un~, v = s(u)~, s(v).
Let (m, .‘R,;, a;,u,v) be & connector. Denoting by :.R-,;, 52; the
restrictions of ﬁ; (.R.‘;) to s(m)x 2'("'), 2’(")>< s(m), respec-
tively, we obtain a connector (s(m), 3. ﬁ;,l(u).s(v)).

Denote by [ml the class of m€¢Z in (Z/~ ).

2.2, Further observations: 1. Assume x,y,z€Z, xSy, X~ Z
Then there exists a te Z such that zct, y~t. Thus, we cen de-
fine a cenonicel ordering on (Z/~ ) by the formula Lxl<lyl=,,
(3zez2)(znvykxcz),

Proof: Let (m.RS,Rz,a(x),s(z)) be a connector. Putting
t+ = (y\x)U 2, we obtain an obvious connector (mus(t), J’l;, :R,*.
s(y),s(t)). O

2, If uSvcwand uvw, then unvv. Hence, " £ " ig a par-
tial ordering.

Proof: It suffices to show that yww. But if (m, a,;,a‘a'.
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s(u),s(w)) 1is & connector, then (m,(R?, R‘s.l(v).n(w)) is & ocon~
nector, as well, O

3, Let u,vé2, usv, Then (VYyev)(Ixeu)(x< y)=pu~v,

Proofs Por ueZ put d(u) ={xeB | (Iyeu) x« yi, Bince
evidently (Yyev)(Ixcu/(x< y)&kusv «=> d(u) = 4(v), 1t sut-
f1ces to show that ur~, d(u) for ueZ, Let R, RY be meximal
relstions on 2% x a(u), a(w)x 2%, satiatying (3).(The con-
dition (3) 1s obviously preserved by the union of relations,)
Prom the fact that for x€B  thers are only finitely many J with
el<1, we easily obtain that (a(u), 3;. ®7,u,4(u)) 1s a connec-
tor. O

4. Por any us€ Z we have {'t}/l 4l 2\ Cugd,

Proof: The union t(co¢ ) of all elements of & given olass
o € (Z/~) belongs to o¢ , since & union of connectors (in
the obvious meening) is & comnector., Moreover, the mapping
t:1(Z/~)—> Z preserves ordering and for arbitrary z€?Z,

o € (2/~) 1t bolds zSt(ox) = [2z1&oC , Thus, "L 1 " is &
left adjoint %o t eo that it preserves joins. [

5. Demote by Ag, the meet operation in B ., Por u,ve?
let uAY ={x AB,yl xeu,y€ v}. Then [uAv] depends only on
ful, vl

Eroof: Aesume that (n(i)..ﬂ,; (1).5'1;' “‘),n(i),v“;)) are
connectors, i = 1,2, Put 3.’3’ = {(xay,m Aiy}) e B x 28 |

\(xﬁ; ) -&y'cn(z)) or (33; (2) u&yen‘”)} i :R,'; -

= {(nxiyl.xtxy)ean’x 3 0(m RT(1)g yen‘?)) or (m gty &
3

&yea(”)}. 14 is easy to see that (-(‘)7\ n‘z’.a},xg.u“’x

Kﬂ(z,o ¥ )K 7(2)) is a connector, 0J
6. The operstion " A " in (Z/~ ) defined by [ulA [ v] e
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= LluR v] 1s the ordinary meet (= infimum in £ ) in (Z2/~ ).
Proof: By 2, 4, (2/~ ) is a complete lattice. Denote by
" A(g/~ )" the true meet in (z/~ ). By 3, we have

(+) (Vxeu)(yev)(x<3 y) =>Lulslv],

and hence trivially [ul A(y/ ) [vlZzlulAlv], Moreover,
[ul Na/n~) [vl4(ul,[v], by definition. Thus, by 1, there ex-
ist s~u, t~v such that for some representative uv of the
class [ul Mzt ) [v] it holds uv&s, uv<t, By 5, (+), we ha-
ve now [ul A(Z/N)[VJ £18At) = [ulAalvl,

7. Given a system szxj —> C of Join-preserving mappings,
there exists a unique join-preserving mapping f£:(2/~) — C
such that it holds that

) £(14%31) =, /\) £y(ad) for eny xeB”.

Proof: By 4, the mapping f is uniquely determined by the
formula £(I{m}) -x\e/m £(f{x2?]), and 1t obviously preserves
Joina. Our only task is to show that £ is correctly defined.
Let (m, ﬁ‘.g. a’;,u,v) be a connector. We will show that, by our
definition, £([ul) = £([v]). (This will be enough, since the
definition obviously gives £(lul) = £([s(u)l).) In fact, since
the set K = {xe M| £([{x1])< £([ul)} trivially satisfies the
condition (1), it ia.K = m. Thus, £([v]l)< £([m]) < £([ul). Ana-
logously, £([ul)#4 £([(vl1), O

2.3. Theorem: The set (Z/~ ) ordered by " £ " is a fra-

me with joins and meets given by the formulas
A1 tugd = Ly )

[ulaflvl = [§{x AB,y\ xeu,ye v3l

(5)

It we define Ly Xy —> (z2/~) by uj(a) = [{ ft‘j(a)ﬂ , where
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-r,'d(a)eB' and a%d(a) =8, a:J(a) = 1 for k=J, then LJ are

frame homomorphisms and (Z/~ ) is the sum of xj with injections

Uge

Proof: By 2.2.2, 2.2.4, 2.2.6, (Z/~) is a complete lattice

with joins and meets given by (5). However, (5) trivially implies
the distributive law so that (Z/~ ) is a frame. The mappings

U4 ere frame homomorphisms by (5). (Note that namely the beha-
viour of the zero element forces us to set u~ v =s(u)~, 8(v).)
Given homomorphisms rj;xj —> C, there exists (by 2.2.7) a unique
Join-preserving mapping f:(Z2/~ ) —> C satisfying (4). This map-
ping obviously preserves finite meets. [

2.4, QObservation: For arbitrary standard z,yeB' we have
[4x3] ¢ [{y3]l = x<3y.

Proof: Consider the mapping 'tjzxd — B’ defined by Theorem
2.3+ Obviously "cj preserve joins, and thus, by 2.2.7, there ex-
ists a unique join-preserving v : ,\5 Xy —> B’ satisfying (4).
Since B is the product of ZJ and B” is & sublattice of B, we ha-
ve a canonical join- and finite meet-preserving mep L P —
—*12/3 Xy induced by U 41Xy ""-3\!3 X,. By (4), the diagram

., 1d .
B —— B
o~k
;%%
commutes. Thus, ¢ 1is injective and hence {x} ~g $yi=x=y
(for gtandard x, y). Now [£x3]1 < [{y3) = [4x¥Inliyl] =
= [{x31=[{xAyi] =[{xl]l = xAay=x=x<3y, O

2,5. Remark: This result is proved in [5] and it can be re-
formulated to say that U4 preserve arbitrary (even infinite)
meets. This property could be called the openness of L 3 This
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.

is motivated by the following

Pact: Let X, Y be topological T,-spaces. Then & continu-
ous £:X —> Y is open iff = Q@) - 000 preserves arbit-
rary (even infinite) meets.

Proof: If £3:X—> Y is open, then the image mapping £,:
1 (X) =0 (Y) is evidently left adjoint to e, Thus, 'k
preserves meets, On the other hand, if 1'1 preserves meets, it
has & left adjoint £, . Por U € D(X), V € H.(Y) we have

!‘(U) - q'({l}zu v <. cvnuv = 2,(0) (for, since Y is Ty, we

-1
have x 6{‘Q)ZVV' 7 (Y\{x})2U=x€2,(0)), On the other
-1 -1 -1
hand, £7'£,(U) = ¢ ($~((\\/)zuv) -6-®)zut (V)2 U, snd hence

f‘l(u)g f\(u)- ml‘ t,, - !'1. D

3. The Tychonoff’s theorem. A frame (locale) is said to
be compaot, if for eny SS A with VS = 1 there exists & fini-
te ¢S with VP = 1, In this section we give a choice- and
replacenent-free proof of the theorem that the product of com-
paot locales is compact.

Let A be a frame. A set S A is called a govering of A, if
it holds VS = 1, For ocoverings a, t of a frame A we set s8££ ¢,
12 it holds (Vxes)(3yet) x4&y. (This is the ordinary con-
cept of refinement.,) Let now & be & covering of A and let tSA
mich that V tZa. We will use the notation s A, t = {xes )
Ixdajuixzny|l xcs&yes tl. Obviously, s At is & covering of
A and s A téa. Analogously, (VxcmAa t)((xéa)=> (Iyct)
(x£y)).

Kow let xa (3J<J) be a system of fremes. Consider a sys-
tem ’ of coverings such that 8y = 1 except for, at most, fi-
nitely many J. Then the system
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J
4 8y ={[{x}] ngJ Xyl (Vied) q:€l3'§

is a covering of j\/ﬂ xJ.
In the last section we remarked that ijlj — ?.\(J

preserve arbitrary meets. Thus, they have left adjoints Pyt
: ‘}YJ xj—-> IJ (which, of course, are not frame homomorphisms).
We can easily check that

(6 py(tul) = Viellxeul

) 1. Lemma: Let {u,v} be a covering of \/ A:l’ Then
jedo
Po(u) = 1 or py(v) = 1,
Proof: There should exist a connector (m, :R,;, :R,‘;(J €10,1%),

WUV, 41}) for some standard representatives T, ¥ of the classes
u, v. Consider a system xieB', 1€I such that x; differ at most

at one coordinate. Then the statement (\icI) If(ux ‘po(u)) or

(lz & pq(v))] implies the statement (AW & py(u)) or

('\/x & py(v)). Thus, by (3), the set K = {xemn \(nx‘po(u)) or
(a: ‘p1 (v))} satisfies (1), and hence K = m., In partioular,

1£p°(u) or 1£p1(v). O

3.2, Obgervation: Any element of a finite latiice is a
Join of join-irreducible elements.
Pppof: An obvious induction, O

3. Lemma: Consider a finite covering t = {t{xiil | 1¢n,
x,6 3"} of the freme 3¥3 Xyo Then there exist finite coverings
ey of the frames Ia such that ‘;r'I;TJ B <t.
Broof: will be done for J = {0,1%, This, by induction,
obviously implies the case of J finitejy the case of J infinite
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is executed by the finiteness of t. Let, hence, J = {0,1f.

Let AJ (3 = 0,1) be sets of all possible elements of IJ obtain-
ed from ag (1<n) by join and meet~operations in xa. Obvious-
1y LJ are finite lattices. Write By for the set of all join-
irreducible elements in Ad. By 3.2, 84 is a covering of xa.

We will show that sox s1é.t. Suppose the contrary. Then there
exists & y&B® such that age-j for § = 0,1 end x, %y for any
14 n, From the join-irreducibility of a; it follows that

Pn([‘cxi\ ‘ii¥331]) 2 B; for J = 0.10
By 2.4 and by the properties of y, however,

56\474}[{"1‘.3#43]- 1,

contradicting 3.1. O

3.4. Lemma: Consider ocompact frames Ij (Je J). Let
(m, ﬁ;,.ﬁg (3ed) x, 41%) be a connector. Then for eny finite
mc m such that m’~, 1 and for eny xem  there exists a fini-
tem”’c (m"\{x})Uk such that m '~ 1.

Proof: Let k be the set of all xem, satisfying the sta-
tement of Lemma 3.4, We will show that k satisfies the condi-
tion (1), and hence k = m.

The inoclusion kSk is obvious.

&) Let y .'R;'u&xeu, y k. Then, of course, x< y so that if
1~. n'3x, it 1s 1~y (m\{x3) uiy}. Thus, xek,

() Let uR;x&uEE. Assume 1~ m’2x. Put N = {L{ytllye
¢ wi, Then M~ is & covering of ;3 Xjo BY 3.3, there exists

a covoring%T;rJ aaél'. We teke the covering s A‘:{O:’ yeu?

of the frame I“. By compactness, it possesses a finite suboco-
vering §,, . Putting id =8y for j % 2¢ , we obviously obtain

J;r] ijé(u'\[{x'ﬂ)u {C{y})| yeut. The left hand set is
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finite. Thus, there exists a finite mubset tZu with (m"\ x) U
vt~y 1. From tSk we easily obtain xek (by induction on
card t), O

3¢5, Theorem: In the Zermelo set theory (without the axi-
oms of choice and replacement) Tychonoff ‘s theorem holds for

locales; i.e., the product of compact locales is oompact.

Proof: Let IJ (§ €J) be a system of compact frames and
let S be a covering of %% xd. Put k = s( xLer t(x)), where s
is the kernel and t is defined in 2.2.4. It will be k~. 1.
By Lemma 3.4 (with m” = {1%, x = 1), there exists a finite sub-
set k 'Sk with k'~ 1. Since k” 1s finite, however, there ex-
ists a finite PS8 such that (Vxck )( 3w € P)(xc 8(t(x))).
Thus, of course, VP =1, O
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