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ON THE EXISTENCE OF BOUNDED SOLUTIONS OF DIFFERENTIAL
EQUATIONS IN BANACH SPACES
Marian DAWIDOWSKI

Abstract: In this note we shall give sufficient conditi-
ons for the exiatence of bounded solutions of the differemntial

equation y° = £(t,y), y(0) = X,, on the half-line tZO. Here f

is a function with values in a Banach-space satisfying some ocon-
ditions expressed in terms of an axiomatic measure ofnoncompact-
ness v . The proof of our theorem is suggested by the paper of
Stol:je_s L7] concerning finite dimensional vector differential e-
a ations,

Key words: Ordinary differential equations in Banach spa-
ces, xed point, measure of noncompactness.

Classificetion: 34G20, 47HO9

Introduction: Let (E, l*Hi) be a Banach space., The closu-

re of a subset Aiot E, 1ts convex hull and its closed convex
hull will be denoted, respectively, by A, conv A and conv A. If
A and B are subsets of E and t, s are real numbers, the t-A +
+ 8+B 1s the set of all t+x + 8+y, where x€A and ye& B. Further
let ’mE denote the family of all nonempty end bounded subsets
of E and ﬂ'E - the femily of all relatively compact and non-
empty subsets of E,

A function w: 'm.E-——>[0,+ 00) is said to be a measure
of noncompactness if it satisfies the following conditions:
1°  the femily P=fA Mgt @w(A) = 0} 1is nonempty and P c ﬂE,
2° @ ({x}) = 0 for al1 x6E,
3° AcB =p w(A) £ u(B),

- 611 =



4° W) = wa),
5° @ (conv A) = (u.(A) )
6° (L(t»A) = |tl - (L) for every t € IR,
7°  @(A + B) & w(a) + «(B),
8° @ (AuB)&max ( @ (A), @(B)).
We put

Al = sup ShxH: xeA}, K(0,1) ={xeE: hxl=£1},

The following property of the function M is true:

Lemma 1. If A & 'mE then w(A) £ NAW. w(K(0,1)),

Now let J = [0,+ co ) and denote by C(J) the set of all con-
tinuous functions from J to E, The set C(J) will be considered
as a vector space endowed with the topology of uniform conver-
gence on compact subsets of J.

Let us put X(t) = {x(t): xe X}, X; = U {X(s): 048 £t}
for t€J and Xc C(J). We have

Lemma 2, If XcC(J) is bounded end almost equicontinuous
then w (X,) = sup { (X(8)): 0Oés 4t} for ted,

For properties of w see [11,(21,[31,[4],

The Ascoli theorem we state as follows: XcC(J) is condi-
tionally compact if and only if X is almost equicontinuous and
X(t) is compact for each te&J,

We shall use the following fixed-point theorem of Sadovskii
type (see (31,05],061):

Let % be & nonempty closed convex subset of C(J). Let

$: 2" —> [0,+ 00 ) be a function with the following proper-
ties: .

(1) &(X) = 0=»X is compact,

(2) @ (%onv X) = &(X),
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(3) $@uixd) = ()

for every subset X of ¥ and for eachx € ¥ .
Suppose that T is & continuous mapping of % 1into itself and
® (T[X]) < $(X) for $(X)> 0. Then T has a fixed point in X.

Main result.

Theorem. Assume that f: JxE —>E 1s a function satisfying
the following conditions:
1° for each fixed x€ E the mapping t >£(t,x) is measurable;
2% for each fixed t €J the mapping x > £(f,x) is continuous;
3° le(t,x)l&a(t,lxl) for (t,x)€ IXE, where the function
G is nondocreas;.ng in the second variable such that t \—>
‘> G(t,u) is locally bounded for any fixed ueJ and t >
> G(t,y(t)) is measurable for every ocontinuous bounded
function y: J—» J;
4° the scalar inequality
() Zlx I+ ‘I:G(s.s(l))dl

has a bounded solution g existing on Jj
(let us put r, = sup fg(t): te€J¥ am Z, =ixeB: [xll€ r})
5° there exist functions m, p of J into itself such that
(1) m is measurable and integrable on compact subsets of J
with
M = sup {j;tm(a)ds: tcJ} < 00,
(11) p is nondecreasing such that M.p(t)< t for t> 0,
(1i1) for eny t>0, & > O, xczo there exists a closed
subset Qc (0,t] such that mes({0,t]J\Q) < & and
@ (2lIx X)) & sup {m(s): se I}« p(u(X))
for each closed subset I of Q.
Then the differential equation

y’ = £(%,y)
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with the initial condition y(0) = x, has at least one solution y
defined on J and Hy(t)h £ g(t) for ted.

Proof: Denote by &£ the smet of all xeC(J) such that

Ix(t)| & g(t) on J and :

2
I x(ty) = x(t) 0 < | j; G(s,r )ds| for t,t,€J,
1

The set £ 1s nonempty closed convex bounded and almost equicon=-
tinuous subset of C(J),

Let us put

(x) = sup § w(X(%)): t&J} for a subset X ¢ &«
Obviously §(X) <o , @ (X)) £ §(X,) for X,CX, and
O Xuixt) = §(X) torxe®.

Since

(Gonv X)(t) = (conv X)(t) € (conv X)(t)c conv (X(t))
s W((BI¥ X)(t)) £ w(conv(X(1)) = w(X(t)),
The inverse inequelity immediately follows from the inclusion
X(t) c (conv X)(t). Hence & (Gonv X) = & (X). If & (X) = O then

iTi) is compact for every t&dJj; therefore Ascoli ‘s theorem proves
that ¥ is compact in C(J).

To spply our fixed-point theorem we define the mapping T as
follows:
forye % , (T(y))(t) = x, + f: 2(s,y(8))ds.

It is eagy to see that T is continuous and TLX1lc X .

Let X be & subset of ¥ such that & (X)>0. To prove the
theorem it remains to be shown that @ (T[X1) <« & (X). To this end,
fix t in J, Let & ¢ (0,1) and o= J(&)>0 be & number such that
LG(l.rojds < 0 for each meesurable Ac[0,t] with mas [A) <.
By the Luzin theorem there exists a closed subset By of [.0,.1:3 with
mes ([0,t1\By) < d'/2 such that the function m is ‘continuous on
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By Purthermore, by assumption 59(111) there exists a closed sub-
set B, of [0,t] such that mes ([0,t]\B,)< d7/2 and
@ (LIIxX 1)< sup{m(s): seI}+p(@(X;)) for each closed subset
I of BZ'
Let us put B = ByNnB,, A = [0,t]1\ B, Hence mes (4) < d” . Since
m is uniformly continuous on B, for any given ¢’ > O there ex-
ists 7 > O such that t ,t"eB and It" - t"l < 7, implies
im(+") - m(t")} < &' . Let t, = 0<%;< ...<t =t be the parti-
tion of the interval [0,t] with me.x{ltd_1 = tjlx 1£34nk< 7.
Moreover, let I, = [ty 1,%,Jn B and sy be & point in I, such that
m(sj) = sup { m(s): ueIJ}.
Putting

fI £(s,X(8))ds = {f; £(s,x(s))ds: xe X}

we get
ﬂ_& 2(8,X(8))as | < fAG(s,ro)ds <eg< 1,

By the mean-velue theorem, for x€ X we have
f £(s,0(8))ds = % f £(s,x(8))ds €
B m 321 "1y
‘5'2" mes (I,) 36av (if(s,x(s)): scI4}) ©
Cégﬂnes (I;)) conv (f[I;:xt]),
hence fsf(s,x(a))ds 655‘14 mes (IJ) Snv (t[IJx It]). Thus

@ (TXI(1)) £ @ (ixy + [, 2(s,X(s))ds + [, 2(s,X(s))ds) &
£ @w@x}) + I J, 2(s,X(s))as I« @ (K(0,1)) +

+,Eynes (1)) 0 @(IIx X)) £ & @K(0,1) +

+i£4 mes (I,)m(sy)p(u (X)) £ €-u(K(0,1)) +

+ 20 @) (E, [V nlsy) - n(a)lds + 55 INCOLOE
€ e @ (K(0,1)) + Bl @ (X)) (et + [*n(a)ds)

and therefore
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@ (TIX1(%)) £ € - w(K(0,1)) + Mp(  (X,)).

Since with respect to Lemma 2

@ (Xy) = sup 4 (X(8)): 0484t} 4 & (x)
we obtain

@ (MX1(t)) &« €@ (K(0,1)) + Mep( & (X))

as ¢ > 0 is arbitrary, this implies

@ (TLX2(t)) £ M-p( & (X)),

Hence & (T(X1) £ M:p( & (X)) < & (X), and consequently T has a
fixed point in & . The proof is complete,

References

{11 J. BANAS: On measmires of noncompactness in Banach spaces,
Comment.Math, Univ. Carolinae 21(1980), 131-143,

2] J. BANAS. K. GOEBEL: Measures of noncompactness in Banach
spaces, Lect. Notes Pure Applied Mathematics, Marcel
Dekker, vol. 60, New York and Basel, 1980,

33 J DANES: On densifying end related mappings and their ap-
plication in nonlinear functional analysis, Theory
of nonlinear operators, Akademie-Verlag, Berlin 1974,
PPe 15-560

(4] I. KUBIACZYK: On the existence of solutions of differential
equation in Banach space (to appear).

{5] B. RZEPECKI: Remarks on Schauder ‘s fixed point principle
and its applications, Bull, Acad. Polon, Sci, Ser.
Hath, 27(1979), 473-480,

[6] B.N. SADOVSKII: Predel no kompaktnye i uplotnjajus&ije oper
ratory, Uspehi Mat. Nauk XVII 1(163)(1972), 81-146
(in Russian).

{71 A. STOKES: The epplications of a fixed-point thecrem to a
variety of nonlinear stability problems, Proc. Nat.
Acad, Seci. USA 45(1959), 231-235.

- 616 -



Institute of Mathematics
A. Mickiewicz University
Ul. Matejki 48/49
60-769 Poznan

Polend

(Oblatum 18,12, 1984)

- 617 -






	
	Article


