

Werk

Label: Article **Jahr:** 1985

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0026|log55

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 26.3 (1885)

ON THE EXISTENCE OF BOUNDED SOLUTIONS OF DIFFERENTIAL EQUATIONS IN BANACH SPACES Marian DAWIDOWSKI

Abstract: In this note we shall give sufficient conditions for the existence of bounded solutions of the differential equation y' = f(t,y), $y(0) = x_0$, on the half-line $t \ge 0$. Here f is a function with values in a Banach space satisfying some conditions expressed in terms of an axiomatic measure of noncompactness μ . The proof of our theorem is suggested by the paper of Stokes [7] concerning finite dimensional vector differential equations.

Key words: Ordinary differential equations in Banach spaces, fixed point, measure of noncompactness.

Classification: 34G20, 47H09

Introduction: Let $(B, \| \cdot \|)$ be a Banach space. The closure of a subset A of E, its convex hull and its closed convex hull will be denoted, respectively, by \overline{A} , conv A and $\overline{\text{conv}}$ A. If A and B are subsets of E and t, s are real numbers, the t-A + + s·B is the set of all t·x + s·y, where x \in A and y \in B. Further let \mathcal{M}_E denote the family of all nonempty and bounded subsets of E and \mathcal{H}_E - the family of all relatively compact and nonempty subsets of E.

A function $\mu: \mathcal{M}_E \longrightarrow [0, +\infty)$ is said to be a measure of noncompactness if it satisfies the following conditions: 1° the family $\mathcal{P} = \{A \in \mathcal{M}_E: \ \mu(A) = 0\}$ is nonempty and $\mathcal{P} \subset \mathcal{R}_E$, 2° $\mu(\{x\}) = 0$ for all $x \in E$,

 3° ACB $\Longrightarrow \mu(A) \neq \mu(B)$,

4° (A) = (A),

 5° $\mu(\text{conv A}) = \mu(\text{A})$,

6° $\mu(t\cdot A) = |t| \cdot \mu(A)$ for every $t \in \mathbb{R}$,

 7° $\mu(A + B) \leq \mu(A) + \mu(B)$,

8° μ(A∪B) ≼ max (μ(A), μ(B)).
We put

 $\|A\| = \sup \{\|x\| : x \in A\}, \quad K(0,1) = \{x \in E: \|x\| \le 1\}.$ The following property of the function μ is true:

Lemma 1. If $A \in \mathcal{M}_{E}$ then $\mu(A) \leq ||A|| \cdot \mu(K(0,1))$.

Now let $J = \{0, +\infty\}$ and denote by C(J) the set of all continuous functions from J to E. The set C(J) will be considered as a vector space endowed with the topology of uniform convergence on compact subsets of J.

Let us put $X(t) = \{x(t): x \in X\}$, $X_t = \bigcup \{X(s): 0 \le s \le t\}$ for $t \in J$ and $X \subset C(J)$. We have

Lemma 2. If $X \subset C(J)$ is bounded and almost equicontinuous then $\mu(X_+) = \sup \{\mu(X(s)): 0 \le s \le t\}$ for $t \in J$.

For properties of u see [1],[2],[3],[4].

The Ascoli theorem we state as follows: $X \in C(J)$ is conditionally compact if and only if X is almost equicontinuous and X(t) is compact for each $t \in J$.

We shall use the following fixed-point theorem of Sadovskii type (see [3],[5],[6]):

Let \mathfrak{X} be a nonempty closed convex subset of C(J). Let $\Phi: 2^{\mathfrak{X}} \longrightarrow [0,+\infty)$ be a function with the following properties:

- (1) $\Phi(X) = 0 \Longrightarrow \widehat{X}$ is compact,
- (2) $\Phi(\overline{\text{conv}} X) = \Phi(X)$,

(3) $\Phi(X \cup \{x\}) = \Phi(X)$

for every subset X of $\mathfrak X$ and for each $x \in \mathfrak X$. Suppose that T is a continuous mapping of $\mathfrak X$ into itself and Φ (T[X]) $< \Phi$ (X) for Φ (X)>0. Then T has a fixed point in $\mathcal X$.

Main result.

Theorem. Assume that $f: J \times E \longrightarrow E$ is a function satisfying the following conditions:

- 1° for each fixed $x \in E$ the mapping $t \mapsto f(t,x)$ is measurable;
- 2° for each fixed $t \in J$ the mapping $x \mapsto f(f,x)$ is continuous;
- 3° || f(t,x) || ∠ G(t,||x|) for (t,x) ∈ J×E, where the function G is nondecreasing in the second variable such that t → 1→ G(t,u) is locally bounded for any fixed u ∈ J and t → C(t,y(t)) is measurable for every continuous bounded function y: J→ J;
- 40 the scalar inequality

$$g(t) \ge \|x_0\| + \int_0^t G(s, g(s)) ds$$

has a bounded solution g existing on J;

(let us put $r_0 = \sup \{g(t): t \in J\}$ and $Z_0 = \{x \in E: \|x\| \neq r_0\}$)

- 5° there exist functions m, p of J into itself such that
 - (i) m is measurable and integrable on compact subsets of J with

$$M = \sup \left\{ \int_0^t m(s) ds : t \in J \right\} < \infty,$$

- (ii) p is nondecreasing such that $M \cdot p(t) < t$ for t > 0,
- (iii) for any t>0, €> 0, X⊂Z₀ there exists a closed subset Q⊂[0,t] such that mes([0,t]\Q) < ε and μ(f[I×X]) ≤ sup {m(s): s∈I} · p(μ(X))</p>

for each closed subset I of Q.

Then the differential equation

$$y' = f(t,y)$$

- 613 -

with the initial condition $y(0) = x_0$ has at least one solution y defined on J and $||y(t)|| \le g(t)$ for $t \in J$.

Proof: Denote by $\mathfrak X$ the set of all $x \in C(J)$ such that $||x(t)|| \le g(t)$ on J and

$$\|x(t_1) - x(t_2)\| \le \int_{t_1}^{t_2} G(s, r_0) ds \| for t_1, t_2 \in J.$$

The set \mathfrak{L} is nonempty closed convex bounded and almost equicontinuous subset of C(J).

Let us put

Since

 $\Phi(X) = \sup \{ \mu(X(t)) : t \in J \} \text{ for a subset } X \subset \mathfrak{X} .$ Obviously $\Phi(X) < \infty \text{ , } \Phi(X_1) \neq \Phi(X_2) \text{ for } X_1 \subset X_2 \text{ and }$ $\Phi(X \cup \{x\}) = \Phi(X) \text{ for } x \in \mathfrak{X} .$

so $\mu((\overline{\infty}\overline{nv} X)(t)) \leq \mu(\overline{(conv X)(t)} \subset \overline{(conv (X(t)))})$ The inverse inequality immediately follows from the inclusion $X(t) \subset \overline{(\infty}\overline{nv} X)(t)$. Hence $\Phi(\overline{(conv X)}) = \Phi(X)$. If $\Phi(X) = 0$ then $\overline{X(t)}$ is compact for every $t \in J_t$, therefore Assoli's theorem proves that \overline{X} is compact in C(J).

To apply our fixed-point theorem we define the mapping T as follows:

for
$$y \in \mathcal{X}$$
, $(T(y))(t) = x_0 + \int_0^t f(s,y(s))ds$.

It is easy to see that T is continuous and $T[\mathfrak{X}] \subset \mathfrak{X}$.

B₁. Furthermore, by assumption $5^{\circ}(iii)$ there exists a closed subset B_2 of [0,t] such that mes $([0,t]\setminus B_2)<\sigma'/2$ and $\mu(f[I\times X_t1) \neq \sup\{m(s): s\in I\}\cdot p(\mu(X_t))$ for each closed subset I of B_2 .

Let us put $B=B_1\cap B_2$, $A=[0,t]\setminus B$. Hence mes $(A)<\sigma'$. Since m is uniformly continuous on B, for any given e'>0 there exists $\eta>0$ such that $t',t''\in B$ and $|t'-t''|<\eta$ implies |m(t')-m(t'')|<e'. Let $t_0=0< t_1<\dots< t_n=t$ be the partition of the interval [0,t] with max $\{|t_{j-1}-t_j|: 1\neq j \neq n\}<\eta$. Moreover, let $I_j=[t_{j-1},t_j]\cap B$ and s_j be a point in I_j such that $m(s_j)=\sup\{m(s): s\in I_j\}$.

Putting

$$\int_{\mathbf{I}} f(s,X(s)) ds = \left\{ \int_{\mathbf{I}} f(s,x(s)) ds : x \in X \right\}$$

we get

$$\|\int_{A} f(s,X(s)) ds\| \leq \int_{A} G(s,r_{o}) ds < \varepsilon < 1.$$

By the mean-value theorem, for $x \in X$ we have $\int_{B} f(s,c(s))ds = \sum_{x=1}^{\infty} \int_{\mathbf{I}_{s}} f(s,x(s))ds \in$ $\in \sum_{x=1}^{\infty} \operatorname{mes}(\mathbf{I}_{j}) \stackrel{\text{conv}}{\operatorname{conv}} (\{f(s,x(s)): s \in \mathbf{I}_{j}\}\}) \subset$ $\subset \sum_{x=1}^{\infty} \operatorname{mes}(\mathbf{I}_{j}) \stackrel{\text{conv}}{\operatorname{conv}} (f[\mathbf{I}_{j} \times X_{t}]),$ hence $\int_{B} f(s,X(s))ds \subset \sum_{x=1}^{\infty} \operatorname{mes}(\mathbf{I}_{j}) \stackrel{\text{conv}}{\operatorname{conv}} (f[\mathbf{I}_{j} \times X_{t}]). \text{ Thus}$ $\mu(T[X](t)) \leq \mu(\{x_{0}\} + \int_{A} f(s,X(s))ds + \int_{B} f(s,X(s))ds) \leq$ $\leq \mu(\{x_{0}\}) + \|\int_{A} f(s,X(s))ds\| \cdot \mu(X(0,1)) +$ $+ \sum_{x=1}^{\infty} \operatorname{mes}(\mathbf{I}_{j}) \cdot \mu(f[\mathbf{I}_{j} \times X_{t}]) \leq \varepsilon \cdot \mu(X(0,1)) +$ $+ \sum_{x=1}^{\infty} \operatorname{mes}(\mathbf{I}_{j}) m(s_{j}) p(\mu(X_{t})) \leq \varepsilon \cdot \mu(X(0,1)) +$ $+ p(\mu(X_{t})) \cdot (\sum_{x=1}^{\infty} \int_{\mathbf{I}_{t}} m(s_{j}) - m(s)|ds + \sum_{x=1}^{\infty} \int_{\mathbf{I}_{t}} m(s)ds) \leq$ $\leq \varepsilon \cdot \mu(X(0,1)) + p(\mu(X_{t})) \cdot (\varepsilon' \cdot t + \int_{0}^{t} m(s)ds)$

and therefore

 $\mu(T[X](t)) \neq \varepsilon \cdot \mu(K(0,1)) + M \cdot p(\mu(X_+)).$

Since with respect to Lemma 2

 $\mu(X_t) = \sup \{\mu(X(s)): 0 \le s \le t\} \le \Phi(X)$ we obtain

 $\mu(T[X](t)) \leq \varepsilon \cdot \mu(K(0,1)) + M \cdot p(\Phi(X));$

as 6 > 0 is arbitrary, this implies

μ (T[X](t)) ≤ M·p(Φ (X)).

Hence Φ (T[X]) \leq M·p(Φ (X)) < Φ (X), and consequently T has a fixed point in $\mathfrak X$. The proof is complete.

References

- [1] J. BANAS: On measures of noncompactness in Banach spaces, Comment. Math. Univ. Carolinae 21(1980), 131-143.
- [2] J. BANAS, K. GOEBEL: Measures of noncompactness in Banach spaces, Lect. Notes Pure Applied Mathematics, Marcel Dekker, vol. 60, New York and Basel, 1980.
- [3] J. DANES: On densifying end related mappings and their application in nonlinear functional analysis, Theory of nonlinear operators, Akademie-Verlag, Berlin 1974, pp. 15-56.
- [4] I. KUBIACZYK: On the existence of solutions of differential equation in Banach space (to appear).
- [5] B. RZEPECKI: Remarks on Schauder's fixed point principle and its applications, Bull. Acad. Polon. Sci. Sér. Eath. 27(1979), 473-480.
- [6] B.N. SADOVSKII: Predel no kompaktnye i uplotnjajuščije operatory, Uspehi Mat. Nauk IVII 1(163)(1972), 81-146 (in Russian).
- [7] A. STOKES: The applications of a fixed-point theorem to a variety of nonlinear stability problems, Proc. Nat. Acad. Sci. USA 45(1959), 231-235.

Institute of Mathematics
A. Mickiewicz University
Ul. Matejki 48/49
60-769 Poznań
Poland

(Oblatum 18.12. 1984)

