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EXTENSION OF DIFFERENTIABLE FUNCTIONS
V. AVERSA, M. LACZKOVICH and D. PREISS "

Abgtract. Let Hc R™ be closed end let F:H —> R® be di-
fferentiable with respect to H, It is shown that

(1) P is Baire 2 on H;

(111) P’ 1is not necessarily Baire 13

(1i1) P can be extended to R as an everywhere differen-
tiable function if and only if P’ is Baire 1 on H.

ey words: Differentiable functions of several variables,
extensions.

Claseification: 26B05

1. Introduction. Let H be a perfect subset of R and let
£:H — R be differentiable with respect to H., It is easy to
gee that £  is Baire 1 on H and it is also well-known that f
ocan be extended to R as an everywhere differentiable function
(see e.g. [31,[41). In this paper we are going to investigate
the analogous problems in the n dimensional Euclidean space Rr2,

Let (M) denote the linear space of all linear forms
on B® endowed with the usual norm. Let H be & subset of R"
and F:H —> R, P is said to be differentiable at ae H if there
1s L(a) ¢ £(R®) suoch that

1) Part of this work was done while the seocond and third aut-
hor visited the University of Naples and was completed whi-
le they participated in the Special Yeap in Real Analysis
at the University of California, Senta Barbara.
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x}tm P(x) - F(a%x-_(ﬁsz, x - a) = 0.
xeH

The linear form L(a) is called the derivative of F at a;
if it is determined uniquely, it is also denoted by F'(a). The
function F is said to be differentiable on H, 1f it is differen-
tiable at every peint of H.

Let H c R™ be closed and let F:H — R be differemntiable
on H, Obviously, if its derivative is not determined uniquely,
it need not be in the first class. For example, it suffices to
consider the segment H = [0,1] as a subspace of IRZ, the functi-
on F = 0 end its derivative (L(x),(u, »%)) = 0 if x €A and
(L(x),(uy,u;)) = u, if x¢A, where A is, say, & nonmeasurable
subset of H,

A natural conjecture seems to ‘be that the derivative of P
is in the first class provided that it is determined uniquely.
We prove that this is not the case (Theorem 5)., However, if P’
is determined uniquely, it is of Baire class 2 (Theorem 4(i)).
Also, if the tangent space of H is sufficiently rich, then F’ is
in the first class (Theorem 4(ii)).

Since the derivative of an everywhere differentiable func-
tion is Baire 1, a function F:H —»R, differentiable on the clo-
sed set H can be extended to an everywhere differentiable func-
tion only if its derivative is Baire 1 on H. We show that this
condition is sufficient as well (Theorem 7). For the proof we
will need a generalization of the following theorem of L.E, Sny-
der [5], If f is Baire 1 on the compact metric space X then the-
re is a funotion g: (X x lRY) —> R such that £ is the 1imit of g
along the Stolz cones {(x,y); y>dist(x,a)} (a€X)., We prove
that the assertion remains valid if we replace X =< R* and
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X x40} by an arbitrary metric space and a nowhere dense closed
subset, respectively (Theorem 6).

2. Baire class of derivatives. Let H be a subset of MRP

and let x € R™, A vector u € R® is called a tangent vector to H
at x if

lim inf dist(x + ru, H)/r = O,
r—->0+

The set of all tangent vectors to H at x is denoted by Tan(H,x).

Lemma 1, Let L(a) be a derivative of the function £:H — R
at a€H, Then A e« &( R®) is a derivative of F at a if and only
it

Tan(H,a)C Ker(A - L(a)).

Proof. Let B = A - L(a) and suppose first that A is a de-
rivative of F at a, Then B is a derivative of O at a and hence
(1) 1im .@.r!.‘.'_a). = 0,

x-a x =8l
xeH
Whenever ue€ Tan(H,a), we can find a sequence r, of positive num-

bers converging to zero and a sequence xneB sach that

1lim "h - (a + zwl/r, =0,

n—>c
Then
I(Byx, - &)l [(Byx, - &) |x, - al
I(B = 11 o = 1lim . =0
R il igirg n nvoo ‘Xp = 8l Tn

since lxn -alg \:l:n -(a+rul +irulér (1 +ul) for n
large enough. Therefore (B,u) = O for every uec Tan(H,x) and hen-

ce Tan(H,x)cC Ker B.

Now let Tan(H,x)c Ker By first we prove (1). Suppose indi-

rectly that there are ¢ > 0 and a sequence xneﬁ\{ai, xX,—> 8
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such that

|(B| - a)‘
.‘___.'_xnx‘;' = E e

-8
There is a subsequence ixnk] such that -'?nk-:r converges to

& unit vector u. It is easy to check that ueTan(H,x) and
(B,u>#0, a contradiction. Therefore (1) holds true and hence
B is a derivative of O end A = L(a) + B is a derivative of F at

Corollary 2. Whenever a&€H c R?, the following statements
are equivalent.

(1) Por every function F:H —> R differentiable at a, the
derivative is determined uniquely.

(i1) Ten(H,a) spans R".

Proposition 3. Let H be a subset of R” and let, for each
xeH, ay(x) = mp faet(u',...,u?); u',...,u" are unit vectors
from Tan(H,x)}{. Then

(1) for every a>0 the set E, = {x€Hy nn(a)z afis a Gy
subset of H, and

(11) whenever F:H —> R is differentiable on H and & >0,
then F* as a map from B, to ( R™) is of Baire class 1 relati-
ve to E,.

Proof. Let F be a function differentiable on H and let M
be & closed subset of £( R™). We intend to prove that the set
Bu={xeB,; P (x)c M} is & Gy subset of H, This clearly implies
the second statement of the proposition and, since one may choo-
se P = 0 and M = {0}, also its first statement.

For each x¢ B and each k = 1,2,,.. we find numbers
oix) e (O.Z'k). t;(x).... ,tg(x) € (0,0,(x)) and unit vectors
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u;(x)..-..u:(x) € R® such that |P(y)-F(x)=- <P (x) J=x) | <
<27k Hy-x! whenever yeH and 0 < §y-x i < o (x),
x+ti(x)ui‘(x) €H for each 1 = 1,,..,n, and
det(ul(x) ... ,ul(x)) > & - 27K,
Next we use the continuity of P on H to find
4, (x) € (0, 27k nin(tk(x),....tk(x))) such that
IP(x + H(x)u(x) - F(y) - <P (D), th@ui@)>] € 27 %ei(x)
for each 1 = 1,,..,n end each y€H with Iy-xH<dk(x).
Whenever y€H n O Ua{y e R ly-xfl < 4, (x)%, we find

8 sequence x, € B such that ka-y < 4, (x ). There is a subse-
quence k1< k2< eee such that

i i .
u 1im (x, ) exists for each 1 = 1,,..,n., To eimplify the
= jreo uk,‘l xkj =1, ’ P y

notation, we put zy = x.kj, t;' = t;d(zj), u;‘ = uia(zj), v;' =
i1

= tdu;’, and dd = dkj(zj).

i

J

From zj + vy;eH and from

}imw(tj)“ May + vy -3 - thille }gmm[(t;‘)d hoy-y+
+ huj-ulll<1im 273 2 0
we 1nror that uie Tan(H,y) for each i = 1,...,n. Since oclearly
det(u’ sesesut) Za, YEE,.

Whenever > 0 and J is sufﬁ.oiontly large, we have
lr(z + vj) - F(y) -<?°(y), (z + vj -y lse ﬂz + vi -yle

p3 e(t§+a)42e, td

Hence
\(?'(zj),v;') - <r'(y),vj>|e 1B (zy + v;;‘) - P(y) -<r'(zd),v§>l
+2 eti‘ + |<r'(!).sd-y)l <273 4+ 2 e)tg' + Ili"(y)lldJ

é(z" +2¢ + 273 lr'(y)|)ti for each 1 = 1,,..,n.

Consequently, Jlin IKF (zd),u »=-<(F (y).u >l = 0 for
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each L = 1,.,,,n, which, together with 1lim det(ul,...,u®)>0
PR J J

imply that P’(y) = 1im r’(sj). Since r’(z;,)cu for each | =
m 1,2,000y P°(y) € M and therefore y<B. Thus

n
BOH nkg xs{yc R \ly-xll<dt(x)1;,

and, since the converse inclusion is obvious, B is a Gd' subset
of H,

Theorem 4. Let H be a subset of R™ such that Ten(H,x)
spans R" for every xeH.

(1) I PH~>R is differentiable on H, then ¥ as & map
trom H to %( R®) 1s of Baire class 2 relative to H,

(11) If H cen be covered by countably many relatively
olosed subsets H, sich that inf {ag(x)y xeH, 1 >0 for each k,
then the derivative of every funoction differemtiable on H is
of the first class on H,

Proof. Both statements follow immediately fxom Proposi-
tion 3.

heo r « There exist a compact set H C lRa end a functi-
on PsH~> R guch that F is differentisble on H, F'(x) is uni-
quely determined at every point of H and P  is not Baire 1.

Proof. Let C denote the Cantor termary set in [0,1] and
let ]o.n,bn[. be the components of 10,1L\C. We denote T, =
= §8queeeslys Bypeeestpl, T U0 anac” e O\

For every fixed n we oonatruct a set snc ¢’ with 'S'n\ Sn c
¢ T,v 10,1} end such that for every $€C\T, there is en 8cS,
with 1t - #l< atatd(s,7)).

Let Jccn. (33[ (3 = 14000,n+1) denote the components of

Jo,1L N\ O fa,,b;]. Por every J = 1,.,.,n+1 weo choose sn incre-
2R £ i Sl &
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asing sequence {xl“a)}‘l"__a such that 1]r:i.m xf‘d)- oy ,%im :.é”- (3‘1 and
-0 o0

0<2{d) - x{Pe min(x{ - wpt, (py - 2{INY tor every k.
We select a point seC’n t:éd) .xﬁig 1 whenever this interseotion
is nonempty and we denote by sn the set of these points. It ias
eagy to check that 3, satisfies our requirements.

We denote
s¥ -.\‘.')S";& (x,7) € B%} 1x = l\‘!‘% diltz(l,!!nﬂ
and
B, = §(x,7)y 8, 6x6b, Oy €(b, = a Imin(x - a;,b, = x)}
(n = 1,2,000)
Finally, we define -
He U (BusHou(oxiol)

and

0 it (x,y)e H \ﬂg‘ H,
F(I.y) "{ o
yit (x,)e \J, R,

It is easy to see that H is & compact subset of R, We show that
Tan(H,x) spens ®2 for every xcH, This is obvious for
xeH\N(Cx{0%). I x = (%,0)¢ (Ox{0}) and 12 t& T, then x is &
vertex of H and the essertion is also clear. If & C° then, ob~
viously, (1,0) € Tan(H,x). We prove that (0,1) € Tan(H,x). Let

T, = u-ta(t.mn) and choose &n s €8, with 18, - tl< ri. Since
(8,08%,) ¢ H 12 n 15 sufficiently large,

1 1 1
nii: det(x + grn(o.n,n)/rn Gnlinwl(t.grn) - (nn,grn)l /:.'n
-lm\t-lnl/r % lim »r

n-»o % nowo B

= 0,

Hence (0,1) belongs to Tan(H,x).
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. oo
We claim that P (x,y) = O for (x,y)e H \M%Hn end
e [
(P (x,¥), (u,v)) = v for (x,y) em\;{‘ H,. This is obvious for all

points (x,y) € H\ (Cx$0}). To prove the remaining case, we first
note that, whenever teC and (u,v)€H,, then 0O6vé(b, - a )°
-ddet(u,fe,,b3) & (b, - e )lu - tl. Since b, - a — 0, this shows
P’(%,0) = O for every teC’. Now let ts{am,bmi, we have to show

¥u,v) - v

1lim
(u,v) »(t,0) \(u,v) - (t,0)\
(u,v) e H

=0

Since F(u,v) = v if (u,v) emg H, and F(u,v) = O otherwise, it
is enough to prove that

lim ——5" = 0,
(u,v)>(t,0)0 * -~ °

(u,v) e U s:
: mA

Since a and bm d0 not belong to the closure of the set U S¥,

i mz4q 1

m-~ ©0
thus o = aist((%,0), s3)>0. It (u,v)emL'/1 sh,aist((u,v),
00

(t,0)) <d” , then (u,v) e Y S¥ end hence there is nZm end
scS, such that lu- slevey dist?(s,2)6 3(s - )2,

Therefore fu - t! Zlg = tl=lu-8slzls~tl -%(u- $)2z
E% |s - t| and vcé-(s - )2, which proves our assertion.

Finally, we note that P~ is not Baire 1 on H, since Cx{0%
contains no point of continuity of the restriction of P’ to
Cx{OL

3. Extension of differentiable functions., Our next result

will be used\in the proof of the extemsion theorem, but may have

some interest in itself, Let H be a nowhere dense, closed subset

of the metric space (X,d). By a Stolz oone yith vertex a€H we
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mean a set

{xeX; dist(x,H)Z ¢ » d(x.s)§,‘

where ¢ is a positive constant. Our theorem implies that if

£:H — R is of Baire class 1 then there is a function g:X—>

—>» R such that for every a€eH, 1lim g(x) = £(&) relative to
x>a .

any Stolz cone with vertex a. Using a locally finite, continu-
ous partition of unity of X\ H subordinated to the system of
balls with center x€¢ X\ H and radius % daist (x,H), one can ea-
sily show that g can be chosen to be continuous. This resulst
is a generalization of a theorem by L.E. Snyder [5].

Theorem 6. Let (X,d) be a metric space, let H be a olosed
subset of X and let f:H — IR be of Baire class 1 on H. Then the-
re exigsts a function g(X\H) — R such that

1im - 2(e)) SEMxA) o
(3) _Ma e - (e SgHED

xeX\H
for every a € dH,

Proof. Pirst we remark that if £:Y— R is a Baire 1 funoc-
tion defined on the metric space Y then £ is the pointwise 1li-
mit of a sequence of bounded Lipschitz functions, This has been
proved by Hausdorff in a more general setting (see [2], § 41,
pp. 264-276)3y or it follows more direotly from L[1], Propositi-
on 3.9

Applying this result %o Y = H as & subspace of X and to
£:H — R, we get a sequence fn:H — R of bounded Lipschitz
functions converging to f on H., Let 1£ M, 6!26... end 0< K, &
ékzé... be such that lfnlﬁln end |£ (x) - fn(y)\éxn a(x,y)
(n=1,2,...3 x,yeH).

Let XX\ H be fizxed, If dist (x,H) Z (K (M +2))~", we
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define g(x) = 0, If, for a naturel number n,

() ((n+ VK ((a+1)W 4+ 2)] ¢ &1 st (x,H) < (oK (nM+ 2)] 7

then we select a point u(x) € H with d(x,u(x))<2 dist(x,H) end
define g(x) = £ (u(x)). We prove that if acH, xc X\ H and (4)
holds then

(5) lg(x) - t(a)| LglmID g1, LE)l, g (o) - 2(a)).

Since f (a) ~> f(a), this will prove (3). We distinguish between

two cases.

Iz %ﬁ%)"&‘:lm; then we have lg(x) - £(a)| %ﬁ%" €

€ 12 (u(x)) ~ 2(a))

. %1;33:;91- + ﬁ% end thus (5) holds true,

b 4 %ﬁ%ﬁl>ﬁ; then d(u(x),s)# d(u(x),x) + d(x,a) <
<2 aiet(x,H) + oM dist(x,H) = (oM, + 2) diat(x,li)<1/nxn,
and hence
1g(x) - £(a)l = 12 (u(x)) - £(a) ] & I, (u(x)) = £, (a)l +
+12,(0) - (o)l € Kd(u(x),8) + l£.(a) - 2(a)I< & +
+ 12.(a) - 2(a)l,

Since dist(x,H) &d(x,a), this implies (5), which completes the

proof,

Theorem 7. Suppose that H is a closed subset of mn, P 1is
& real valued function defined on H and LiH —» £,( R") 1s a de-
rivative of P on H, Then F can be extended to & function F eve-
rywhere differentiable on R™ with

F(x) = L(x)  (xcH)
if and only if L is a map of the first class.
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Proof. The necessity of the condition is obvious, since,
by Theorem 4(il), the derivative of every function differentiab-
le on R™ 1s Baire 1. In order to prove the suffiociency, suppose
that £:H — R and L satisfy the conditions of the theorem.

Then there is & map A: { RP\H) —» % ( R®) such that

N
dist(u,H
(6) a 11: HA(u) - L(a)l —rt—l-‘:-‘i% =0

uéH
for every a € d H. Indeed, let

(L(x),u) = ‘L% Ly (x)uy (x€H, u = (u,,..,,un) € anl),

:hcn the functions Lizll — |R are of Baire class 1, By Theorem.
6, there are functions g,;:( R"\ H) — R smch that (3) holds with
X = R" end £ = L., We define (A(u),v) -ii gy (w)vy
(u € R®\H, v = (v.l,...,vn) ¢ R™), then the map As( R\ H) —»
~—> ¥ ( R®) satisties (6).

Let T: R" —> H be & map with lu - T(u)| = diet(u,H)(u ¢ RD).
Let ¢, be & locally finite ¢! partition of unity on RP\H sub-
ordinated to the system of open balls with center u ¢ R\ H and
radius % dist(u,H), For every Jj, let u:1 ¢ R™\ H be chosen such
that @,(u,)+0. We define # vy

P(u) if ueH,
A
F(u) = {

f éd(u)[l'('l‘(ud)) + (L(uJ),u-T(nd))] if ueH,
Let a ¢ dH, Then for every u ¢ H

1B(u) - #(a) - (L(a),u - &)l
= lf Qj(u)[P(T(uJ)H(,A(uJ).u-T(uJ))-i‘(s)-(L(a) yu=-a)l|

= \f 03(u)tr(m(uj))-rm-(r.(a) +2(uy)=8)~(L(a)=A(uy),

u=T(uy))Jl
P g—‘- B y(u) IF(P(uy))-F(a)~(L(a) JMuyg)-a)l +
ﬁ,(m) +«0
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def
+OE By (L(a)-Aluy)u-t())] = E, (W4 X (),
X
Now §3(u)+o implies lu - ujl<% dist(u,H), from which

n lu-T(uJ)I 6|u-ujl + Iud-'!(uj)lilu-ujl + lua-T(u)l
$ 2|u-ujl + lu-T(u)l € 2 dist(u,H),
Thus we have
W(uj)-a\ﬁlu-r(uj)l +lu-al€2 dist(u,H)+ |u-alé 3 |u-al,
Since P'(a) = L(a), there is a function w:H — TR such that

lim w(z) = O end
x>a
g€ H
|?(z)=F(a)=(L(a) ,2-8)| = w(z)lz-al (z €H).

Then ¢

1= () - F m(2(uy)) I T(uy)-alé3u-al
Qi(w)*o
? Qj(u)mp{w(z);zc H,lz-al € 3lu-a |} = 3lu-alsupiw(z);
Q;‘(M.)#o
z€eH, |z-a|€&3lu-al}.

Hence
ne o @
u¢H

On the other hand, by (7), we get

\(L(l)-A(uj),u-T(ui))l P WL(a)-A(u,) N -2 aist(u,H)
u-a fu-al

4.dist(u,,H)

£ lI.(a)-A(uJ)I
E-Iud-a |

which, taking (6) into consideration, implies

=, (u)
ioa TaT "0
uéH



Since, from the differentiability of P on H,

1im f‘u)-ﬁ‘a)-—(;‘az ,u-al - 0

o 1]
S u-a
u€eH

we obtain F’(a) = L(a), This finishes the proof of the theorem,
since P is continuously differentiable on RP\ H.
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