

## Werk

Label: Article **Jahr:** 1985

**PURL:** https://resolver.sub.uni-goettingen.de/purl?316342866\_0026|log52

### **Kontakt/Contact**

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

# COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 26,3 (1885)

# TWO NON-HOMEOMORPHIC COUNTABLE SPACES HAVING HOMEOMORPHIC SQUARES M. M. MARJANOVIĆ and A. R. VUČEMILOVIĆ

Abstract: A pair of non-homeomorphic countable metrizable spaces having homeomorphic squares is exhibited. This answers a question of V. Trnková from [4].

Key words: Countable metrizable spaces, homeomorphism, squares of spaces.

Classification: 54B10

1. Introduction. A class  $\mathcal K$  of topological spaces is said to have the <u>unique square root property</u> if for any two objects A and B in  $\mathcal K$ ,  $A \times A \approx B \times B$  implies  $A \approx B$ .

Several naturally organized classes of topological spaces do not have this property (see [41]). In [41, V. Trnková asked the following question: Is the unique square root property valid in the class of all countable metrizable spaces?

In this paper, we exhibit a pair of non-homeomorphic countable metrizable spaces having homeomorphic squares.

2. A classification of points of a space. Now we consider a classification of points of a countable metric space, following the case of classification of points of a compact metric O-dimensional space (see [2]).

When we say "a space", it will mean invariably "a countab-

le metric space".

For a space X, let  $X_0$  be the set of all isolated points of X and  $X_1$  the set of those points of X which have a neighborhood without isolated points. Let  $X_{(0)} = X \setminus (X_0 \cup X_1)$ . Since  $X_{(0)} \subseteq \overline{X}_0$  ( $\overline{A}$  denotes the closure of the set A), the set  $X_{(0)}$  is split again into two parts  $X_2 = X_{(0)} \setminus \overline{X}_1$  and  $X_{(0)}(1) = X_{(0)} \cap \overline{X}_1$ . In words, the set  $X_{(0)}$  is split into the set  $X_2$  of those points which are not accumulation points of  $X_1$  and the set  $X_{(0)}(1)$  of those points which are accumulation points of  $X_1$ .

Now we have the following inductive definition: Suppose that the sets  $X_0, X_1, \dots, X_n$  and  $X_{(0)}, X_{(0)}(1), \dots, X_{(0)}(1), \dots, (n-1)$  have been already defined. Put

$$X_{n+1} = X_{(0)}(1)...(n-1)^{n} X_{n}, X_{(0)}(1)...(n) = X_{(0)}(1)...(n-1)^{n} X_{n}$$

In this way, we have defined a sequence of sets  $X_0, X_1, \dots$  ...,  $X_n, \dots$  which are disjoint and for each n, the set  $X_0 \cup X_1 \cup \dots \cup X_n$  is open and  $X_{(0)}(1), \dots (n-1)$  closed.

Let

$$X_{w} = \bigcap \{X_{(0)}(1), \dots, (n): n \in \mathbb{N}\}.$$

The following statement is immediately derived from the given definition.

### Statement 1.

- (a)  $\overline{X}_n = X_n \cup ( \cup \{X_k: k = n+2, ..., w\})$
- (b) If  $X_n = \emptyset$ , then  $X_k = \emptyset$  for k = n+2, ..., w.

Call a point  $x \in X$  n-point if  $x \in X_n$  for some n = 0,1,... ...,  $\omega$ . The number n is called the <u>accumulation order</u> of x and we write ord (x) = n.

To the space X, for which  $X_{n-2} \neq \emptyset$ ,  $X_{n-1} = \emptyset$  and  $X_n \neq \emptyset$  (and according to 1 (b),  $X_k = \emptyset$  for k > n) the sequence

$$s(X) = (0,1,...,n-2,\emptyset,n),$$

and to the space X for which  $X_{n-1} \neq \emptyset$ ,  $X_n \neq \emptyset$  and  $X_k = \emptyset$  for k > n, the sequence

$$s(X) = (0,1,...,n-1,n)$$

is attached respectively. The sequence s(X) is called the accumulation sequence of the space X (we avoid here the case  $X_w \neq \emptyset$ ).

3. Q-full spaces. Denote by Q the space of rational numbers. Every countable metric space without isolated points is homeomorphic to Q (Sierpinski's theorem, [1], p. 290).

Call a space X Q-full if for each n>o,  $X_n \neq \emptyset$  implies  $X_n$  has no isolated point (or  $X_n \approx Q$ ).

Now we construct a sequence of Q-full spaces.

Let  $Q_{-1} = \emptyset$  be the empty set,  $Q_0$  a one point space and  $Q_1 = Q_0$ , where Q is the set of rationals realized geometrically as the set of all end points of removed intervals of the Cantor discontinuum C (when C is constructed in the usual way of removing the middle third intervals).

Suppose the sequence  $Q_0,Q_1,\ldots,Q_n$  has already been defined (and all the spaces  $Q_1$ , i = 0,...,n are the subspaces of [0,1]).

Define  $Q_{n+1}$  to be the space Q plus a copy of the disjoint topological sum  $Q_{n-2}+Q_{n-1}$  being interpolated in each of the removed intervals. Now by induction, the sequence of spaces

$$Q_0, Q_1, \dots, Q_n, \dots$$

is defined and it is easy to see that all these spaces are Q-full as well as the sums  $Q_{n-1}$  +  $Q_n$ ,  $(n \in \mathbb{N})$ .

As for the accumulation sequences, we have

$$s(Q_0) = (0), s(Q_1) = (\emptyset, 1), s(Q_0 + Q_1) = (0, 1)$$

and for n>1,

 $s(Q_n) = (0,...,n-2,\emptyset,n), s(Q_{n-1} + Q_n) = (0,...,n-1,n).$ In particular,  $s(Q_2 + Q_3) = (0,1,2,2), s(Q_5) =$ 

=  $(0,1,2,3,\emptyset,5)$ , what shows that  $Q_2 + Q_3 \neq Q_5$ .

We quote [5] for the following two easily proved statements. Statement 2.

- (a) A compact space cannot be Q-full.
- (b) If every infinite sequence in  $X_0$  has an accumulation point then  $\overline{X_0}$  is compact.

Call two Q-full spaces X and Y <u>equivalent</u> if their accumulation sequences are finite and equal, and if card  $(X_0) =$  card  $(Y_0)$ .

According to the statement 2.6 in [5], which can be considered as a variation on the already mentioned Sierpinski's theorem, two equivalent spaces are homeomorphic (Sierpinski's theorem being the case  $s(X) = s(Y) = (\emptyset,1)$ ).

We give here a sketch of a (new) proof.

In order to simplify the proofs which follow, notice that according to the statement 1, a space X such that  $s(X) = (0, \dots, n-1, n)$  has both parts  $X_{n-1}$  and  $X_n$  closed in X. Then, it easily follows that X can be decomposed into two closed and open

parts X' and X' such that  $s(X') = (0,...,\emptyset,n)$ ,  $s(X'') = (0,...,\emptyset,n-1)$  (see also 2.3 in [5]).

Notice also that a closed and open subset of a Q-full space is Q-full again.

A pointed Q-full space is a pair  $(X, x_0)$  where X is Q-full space and  $x_0 \in X$  a point of highest accumulation order.

Statement 3. Let  $(X,X_0)$  and  $(Y,Y_0)$  be two pointed Q-full spaces such that X and Y are equivalent and  $s(X) = s(Y) = (0,...,\emptyset,n)$ . If  $X = X' \cup X''$  is a decomposition into two closed

and open subsets such that  $x_0 \in X'$ , then there exists a decomposition of Y into two closed and open subsets,  $Y = Y' \cup Y'$  such that  $y_0 \in Y'$  and X' is equivalent to Y' and X'' to Y''.

<u>Proof.</u> The statement is easily seen to be true in the cases s(X) = 0,  $s(X) = (\emptyset,1)$ . Suppose  $n \ge 2$ . We have two cases

- a)  $s(X') = (0,...,\emptyset,n), s(X'') = (0,...,\emptyset,m)$
- b)  $s(X') = (0,...,\emptyset,n), s(X'') = (0,...,m-1,m).$
- a) If m = o and card X  $^{\prime\prime}$  <  $\kappa_o$ , we take Y  $^{\prime\prime}$  c  $\kappa_o$  such that card Y  $^{\prime\prime}$  = card X  $^{\prime\prime}$  and Y  $^{\prime\prime}$  = Y \ Y  $^{\prime\prime}$ .

If m = o and card X'' =  $Y_0$ , then by 2, there exists a closed and open subset Y'C  $Y_0$  such that card Y'' =  $Y_0$  and Y' =  $Y_0$  has the required properties.

If  $1 \le m < n$ , then since  $Y_0 \cup Y_1 \cup \ldots \cup Y_{m-2} \cup Y_m$  is open, take a small enough closed and open neighborhood Y of a point  $y \in Y_m$  such that Y  $\subset Y_1$  if m = 1 and Y  $\subset Y_0 \cup Y_1 \cup \ldots \cup Y_{m-2} \cup Y_m$  if m > 1. Let  $Y = Y \setminus Y'$ .

If m = n, let Y' be a small enough closed and open neighborhood of  $y_0$  such that  $Y_n \setminus Y' \neq \emptyset$ . Take Y'' = Y\Y'.

b) If m=0, we do the same as under a) (and it is the same case). If s(X'')=(0,1), take a closed and open neighborhood U of a point in  $Y_1$  such that  $U\subseteq Y_1$  and let  $V\subset Y_0$ , closed in Y, be equivalent to  $X'\cap X_0$ . Take  $Y''=U\cup V$ ,  $Y'=Y\setminus Y''$ .

Now we have left the case  $1 < m \notin n - 2$ . Take U and V to be closed and open neighborhoods of a point  $y_1 \in Y_m$  and  $y_2 \in Y_{m-1}$  respectively such that  $U \subseteq Y_0 \cup Y_1 \cup \ldots \cup Y_m$  and  $V \subseteq Y_0 \cup Y_1 \cup \ldots \cup Y_{m-1}$ . Take  $Y'' = U \cup V$  and  $Y' = Y \setminus Y''$ . This concludes the proof.

Statement 4. If X and Y are equivalent spaces, then they are homeomorphic.

<u>Proof.</u> We can suppose that X and Y are subspaces of the interval [0,1]. Since X and Y are countable, we have the enumera-

tions of each of them  $X = \{x_1, \dots, x_1, \dots \}$ ,  $Y = \{y_1, \dots, y_1, \dots \}$ . Let  $x_{i_1}$  and  $y_{j_1}$  be the first elements of highest order (i.e. of order n) in the enumerations of X and Y respectively. Consider the pointed spaces  $(X, x_{i_4})$ ,  $(Y, y_{j_4})$ .

Now let the term "to point a closed and open part A" of X or Y mean to form the pair (A,a), where a & A is the point of highest order in A which stands first in the given enumeration and has not been already used in the process of pointing.

If s(X) = s(Y) = (0, ..., n-1, n), then both of these spaces can be decomposed into two parts each, so that the accumulation sequences of the parts are  $(0, ..., \emptyset, n)$  and  $(0, ..., \emptyset, n-1)$ , and the pointed parts having the sequence (o,...,Ø,n). Point the non-pointed parts, if any. Then, each of these parts of X, or X itself, if  $s(X) = (0, ..., \emptyset, n)$ , can be decomposed into two closed and open parts which are of diameter less than 2/3 of the diameter of X. Applying 3, we also have equivalent parts of the parts of Y. Now the decompositions of X and Y have at most 4 elements and let us point non-pointed parts. The parts of Y, having the sequence (0,...,m-1,m) decompose into two parts having each the sequences  $(o,...,\emptyset,m)$  or  $(o,...,\emptyset,m-1)$ , point them and correspond to each the equivalent parts of the corresponding parts of X. Point also parts of X. Now, we have at most 8 parts in each of the spaces. Finally decompose the parts of Y so that the diameters of the parts are less than 2/3 of dismeter of Y. Point non-pointed parts and do the same with the equivalent non-pointed parts of X.

In this way X and Y are decomposed into at most 16 pointed parts. If  $\mathbf{x_i}_k$  points a part of X, denote such a part by  $\mathbf{X}^1(\mathbf{x_i}_k)$  and the corresponding part of Y with  $\mathbf{Y}^1(\mathbf{y_j}_k)$ . The parts  $\mathbf{X}^1(\mathbf{x_i}_k)$  and  $\mathbf{Y}^1(\mathbf{y_j}_k)$  are all of diameter less than 2/3 and they are equi-

valent pointed Q-full spaces.

Now starting with the pairs  $X^1(x_{i_k})$ ,  $Y^1(y_{j_k})$ . We decompose them into at most 16 parts  $X^2(x_{i_k})$ ,  $Y^2(y_{j_k})$  having the diameters less than  $(2/3)^2$ .

Proceeding inductively, in the m-th step, we have the parts  $X^m(x_{1_k})$ ,  $Y^m(y_{1_k})$  of diameter less than  $(2/3)^m$ .

Define the mapping  $f: X \longrightarrow Y$  by  $f(x_{i_k}) = y_{j_k}$ . If  $x_{i_g} \in X_t$ , then by 1, the set  $X_0 \cup \ldots \cup X_t$  is open, and for a large enough m, there will exist a part  $X^m$  of X contained in  $X_0 \cup \ldots \cup X_t$  and disjoint from the set of those points of order t which precede  $x_{i_g}$ . So  $x_{i_g}$ , if not already used in pointing, will be used in the m-th step. The same is valid for the points of Y, so that f is a mapping defined from the whole X onto Y. It is easily seen that f is 1-1 and on both sides continuous. Hence, X and Y are homeomorphic.

Thus the term "equivalent Q-full spaces" means to pologically equivalent and it was only a working term.

The statement 4 shows that the only Q-full spaces are the spaces

$$Q_n$$
,  $Q_{n-1} + Q_n$ 

adding to them at most countable discrete spaces and the topological sums of such a space and the space  $Q_1$ .

4. The space  $Q_2 + Q_3$  and  $Q_5$  have homeomorphic squares. Consider two spaces X and Y having no point of the accumulation order 4. (Such two spaces are  $Q_2 + Q_3$  and  $Q_5$ .) If ord (x) = = m,(x  $\in$  X) and ord (y) = n, (y  $\in$  Y), we will denote the order of (x,y)  $\in$  X  $\times$  Y by m  $\times$  n. The number m  $\times$  n does not depend of the choi-

ce of spaces X and Y as it will become evident from the proofs which follow. The evident homeomorphism of the spaces  $X \times Y$  and  $Y \times X$  sends the point (x,y) onto (y,x) and so  $m \times n = n \times m$ .

Now we show that  $n \times m$  dependently of n and m is given by the following table

| ×<br>0<br>1<br>2<br>3<br>5 | 0 | 1 | 2      | 3 | 5      |
|----------------------------|---|---|--------|---|--------|
| •                          | 0 | 1 | 2      | 3 | 5      |
| 1                          | 1 | 1 | 1      | 1 | 1      |
| 2                          | 2 | • | 2<br>5 | 5 | 5<br>5 |
| 3                          | 3 | 1 | 5      | 3 | 5      |
| 5                          | 5 | 1 | 5      | 5 | 5      |
|                            |   |   |        |   |        |

- (a)  $0 \times n = n$ : Suppose ord (x) = 0, ord (y) = n. The set  $\{x\} \times Y$  is mapped onto Y by a homeomorphism sending (x,y) onto y. Thus, ord (x,y) = ord (y).
- (b)  $1 \times n = 1$ : The point x has a neighborhood without isolated points and so the point (x,y) has also such a neighborhood.
- (c)  $2\times325$ : In an arbitrary neighborhood of the point (x,y), there exist two points (x',y'), (x'',y'') such that ord (x') = 0, ord (y') = 3, ord (x'') = 2, ord (y'') = 0. Thus, ord (x',y') = 3, ord (x'',y'') = 2 and the point (x,y) is an accumulation point of  $(X\times Y)_2$  and  $(X\times Y)_3$ . By the statement 1 (a), it follows that ord  $(x,y) \ge 5$ .
  - (d) 2×5≥5: The proof is the same as under (c).
- (e)  $3\times3=3$ : By 1 (a),  $\widehat{X}_2=X_2\cup X_4\cup X_5$  and the set  $X_0\cup X_1\cup X_3$  is open. Take closed and open neighborhoods U and V of x and y respectively so that  $U\subseteq X_0\cup X_1\cup X_3$ ,  $V\subseteq Y_0\cup Y_1\cup Y_3$ . Let (x',y') be in  $U\times V$ . If one of the numbers ord (x'), ord (y') is less than 3, then ord (x',y')=0,1 or 3. If ord (x')=0 or (y')=3, then ord  $(x',y')\geq 3$ , since  $(x',y')\in \overline{(X\times Y)}_0$  and  $(x',y')\in \overline{(X\times Y)}_1$ . Thus, no point in  $U\times V$  has the order 2. Thus, ord (x',y')=3.

- (f)  $3 \times 5 \ge 5$ : The proof is the same as under (c).
- (g) 5×5≥5: The proof as under (c).
- (h)  $2 \times 2 = 2$ : The proof easier than (e).

Hence, the space  $X \times Y$  has no point of order 4. By 1 (b),  $X \times Y$  has no point of order greater than 5 and we have  $2 \times 3 = 5$ ,  $2 \times 5 = 5$ ,  $3 \times 5 = 5$ ,  $5 \times 5 = 5$ .

It is immediately seen that the product of two Q-full spaces X and Y is a Q-full space.

Take  $X = Q_2 + Q_3$ ,  $Y = Q_5$ . Then, s(X) = (0,1,2,3) and  $s(Y) = (0,1,2,3,\emptyset,5)$  and X and Y are not homeomorphic. The spaces  $X \times X$  and  $Y \times Y$  are Q-full and  $s(X \times X) = s(Y \times Y) = (0,1,2,3,\emptyset,5)$ . By the statement 4, the spaces  $X \times X$  and  $Y \times Y$  are homeomorphic.

In a full analogy with the case of compact spaces (see [3]), it can be shown that there exists an infinite sequence of pairs; of non-homeomorphic separable metric spaces having homeomorphic squares.

#### References

- [1] KURATOWSKI K.: Topology (Russian), vol. 1, Moscow (1966).
- [2] MARJANOVIĆ M.M.: Exponentially complete spaces III, Publ.
  Inst.Math., Beograd, t. 14(28)(1972), 97-109.
- [3] " : Numerical invariants of O-dimensional spaces and their Cartesian multiplication, Publ. Inst. Math., Beograd, t. 17(31)(1974), 113-120.
- [4] TRNKOVÁ V.: Representations of commutative semigroups by products of topological spaces, Proc. Fifth Prague Topol. Symp. 1981, Berlin (1982), 631-641.
- [5] VUČEMILOVIĆ A.: On countable spaces, Mathematica Balcanica, 4.127(1974), 669-674.

Math. Institute PMF, Studentski trg 16, 11000 Beograd, Yugoslavia

(Oblatum 23,1. 1985)