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ON A PRIORI ESTIMATES FOR POSITIVE SOLUTIONS
OF A SEMILINEAR BIHARMONIC EQUATION IN A BALL
P. OSWALD

Abstract: We deal with a priori estimates in L% for pesi-
tive, radial symmetric solutions usCQ(ﬁ) of the problem
0% = g(u) 10 B, u = $2 = 0at 0B,

where BcR‘, KZ1, ias the unit ball, and the nonlinearity g:R"’—-)

—> RY has superlinear growth at infinity. As a straightforward
application some existence results are proved.
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1. Introduction. In the present note we are mainly inter-
ested in studying 1®- a priori estimates for positive, radial
symmetric solutions of the homogeneous Dirichlet problem for a
semilinear biharmonic equation

A2 = ) in &
) L (wect (L))

us= g% =0 at 9L
in the special case where SL = B is the unit ball in R,

The motivation for considering this question arises from
the extensive literature on analogous problems for second order
nonlinear elliptic equations where nearly optimal results have
recently been obteined in the case of the Laplace equation. We
refer to the paper [1] by D.G. de Figueiredo, P.-L. Lions, and
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R.D, Nussbaum (cf, also [2-4) and the further references in
£11). As it was shown in [1], L% bounds combined with well-
known fixed point properties of compact, cone-preserving ope-
rators in Banach spaces and variational techniques tum out to
be very useful for investigating structural properties of the
positive solution set of semilinear problems.

In order to prove a priori L°° bounds for the solutions
u€ 0%(0) of the related semilinear Laplace equation

Au = g(u) in O

1Y
( u=0 at 3L

for more general bounded, smooth domains ) c RY and under near-
ly final conditions on the growth and the regularity of the non-
linearity g, the suthors of [1] explored the Pohozaev identity
[5] and some monotenicity properties of the solutions of (1 5’
near the boundary 3. which follow from results in [6]. The
other details were more or less familiar. While identities of
Pohozaev type remain valid also for polyharmonic semilinear
problems, the results of [6] cannot immediately be carried over
to the case under consideration. Thus, we have to look for oth-
er techniques which allow to attack higher order problems.

In our special situation (problem (1) with (Ll « B and u =
= u(|x|)) we use an explicit desoription of the Green’s funoti-
on of the corresponding ordinary differential equation. This
yields some analytiocal properties of positive, radial symmetric
molutions of (1) which allow %o establish in combination with
the ideas used in [1] satisfactory a priori uf:l.ntu end exis-
tence results. A somewhat nn_lpnﬁod but typiocal result for pro-
blem (1) is the following:

Let 0 = Bc R, K21, and gtR*—> R* be a contimuous funo-
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tion satisfying the conditions

(1) Iim g(u)eu™' > A,, where Ay>0 1s the first eigenva-
w3+ 0

lue of A2 with respect to L (superlinearity)
(11) 1f XZ4 then s(u)n.v."5 is decreasing for large u and some
A < € = (§+4)/(H-4) (regularity and growth condition).

Then any positive, radial symmetric solution ue¢ 04(!) of (1) sa-
tisfies (with & constant independent of u)
(2) tull,€C <00,

For illustration, consider the pure power ocase ( p=>1

A2 = AvulP ins
(3)

u= %% =0 at 9B,
Then, by our results, a priori L% bounds for positive, radial
symmetric solutions of (3) hold for arbitrary A > O and 3 < ©
1f W$4 resp. <€ if N> 4. Thus, by the fixed point theorems
quoted in [1] (propositions 2,1 - 2.3) the existence of at least
one positive solution m\*"s =Y .a (1x\) of (3) follows for all
these parameters, FPurther information on the behaviour of the so~-
lutions (e.g., concerning their dependence on A ) can be obtain-
ed.
On the other hand, in the remaining cases, i.e., N> 4,
A &€&, and A > 0, no positive solutions of (3) exist ot all.
This is an easy consequence of the Pohozaev type identity given
below (cf. Corollary 1). Thus, the growth condition in (ii) seems
to be sharp in some sense. It should be mentioned that (in ane-
logy to [1]) it is an open question whether a priori estimates
in L® hold under the less restrictive end more natural conditi-
on
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(11Y 1m g ? =0
Mo ~» ¥+ 80

instead of (1i).

2, Prelimiparies. Let {2 be a bounded, smooth domein in
RY, B=ixer™ Ixl<1l, §Z1, geC(R'), and u = u(x)e c4(A)
any solution of (1),

Legne 1. (Pohozaev type identity.) With these assumpti-

ons we have

(0 Ht. fnibulzdx -¥. [ ewa -3 Jyo ! 8012 (aax)ax

where G(u) = f:s(t)dt.

ixvof. Multiplying equation (1) by Vuex and integrating
(over ) by part we obtain (we use the notations n = n(x) for
the outer unit normal vector at x ¢ 3 3 Xy, ny for the compo-
nents of x, mny w -%EI eto.; w= Au, and the summation con-
vention)

-rn,'(“,“ixt& - j;nc(u)nixidx -No fno(u)dx

and
j;‘ v“nixic'k = fan BymiEiyex - f wy(ugtzguy g)ax
- fanl, nywu T, - "(nj“j"‘axi“ij)}dx + fn-(an“ﬂivi)dx
= fioiRmgugxy - wngupngzu, g - % nyx)%ax + (2 - 5.
‘ . ,/;1 wldx
Thus,

) B. [ lan2x-5. [ cwa

= [ i tuxvw) - Audl ¢ Rixovu) - } (xew)) -

- G(u) (x.n)} ax.
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Finally, teking into account u = 0, Vu = 0 at 3L we get (4).

Corollary 1. Assume that SLc RY is bounded, smooth, sad
that there exists a point x, such that n-(x-x°)>0 for sll
x ¢ 00 (e.g. let O be convex). Let N>4 and suppose t-g(t)&
Z 2N/(N=4)-G(t)& O for t>0. Then no positive solutions u €
¢ C4(T) of (1) exist at all.

Proof. Without loss of generality, let x, = 0. Multiply-
ing in (1) by u and integrating by part we get

(6) fnlAulzdx = f;x A%u.u dx = fng(u) -u dx.

From our assumptions, (4), amd (6), it immediately follows that
w= Au=0at 30 , But Aw = Aau-g(u)zo, by the maximum
principle this ylelds w&O0 in 0 . Thus, Au€0 in {1 , u = O at
2 , and the Hopf maximum prinoiple (cf. [7]) gives either

w=041n D or %<0 at 20 which is the desired contradiotion.

Now we specify to the case {l = B, We need some information
concerning the corresponding linear eigenvalue problem.

Lemma 2, There is a ?~1 >0 such that the problem
(D 4% = AjovinB, v=3%=0at 3B

possesses & positive, radial symmetric solution v, (x) whioch se-
tisties .
(8) Cqe(1 = 1x)2& vy (x)40,°(1 - IxD)?, 26T, ¢y>0.

Lemms 3, Let u = U(r), r = Ixlc (0,11, be a radiel symmet-
rie 0*(5)-solution of (1) where Q = B, Then U(r)e¢ C4(0,1) and

satisfies
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p(4), 2(E=1) ((3), (B=1)(¥=3) ym 1? U7) = g,
r

(9) 0<r<i,
0°¢0) = 0¢32(0) = 0, U(1) = U(1) = 0

Inversely, any solution U(r)ec4(0,1) of (9) gives a radial
symmetric solution u = U(|x|) of problem (1),

The proof of Lemma 2 and 3 is obvious. The next lemma oon-
tains the desired results concerning the Green’s function of
the linear problem ocorresponding to (9). Unfortunately, we ha-
ve not found these formulae in the litersature (except the ce-
ses N = 1, 2),

Lemma 4, If the kernel function is defined by

ay(s) + 1% by(s), Oéréskl
(10) x(r,s) -{
(/)1 (ag(r) + 8® By(r)), Oéséréi

where

(2 + (5-4)a"2 - (5-2)4) 1 K 42,4
4(8-2) (§-4)

(11) ag(s) = { (s - (1 - 1n8))/8 1f H = 2
(8 -28° Ins - $)/8 1L W = 4

—B e (ne2 . (5-2)e¥ - 2) 1f W42,4
4N(E-2)

(12) by(s) = < (s:(1 + 2 1ns) -~ £)/8 it ¥ = 2

(-8 +26° - 8)/16 12 N = 4
then any solution U(r)e C(0,1) of the integral equation
(13) U = [ Kz, a(000)) am, e 10,11,

actually belongs to C4(0,1) and solves (9). The following pro-
perties hold for arbitrary r, s ¢ [0,1]
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1 , Hc4
(14) 04k(r,m)6C.a" ' (1-0)2. ] (1 + |1n(max(r,s))|), N = 4
(max(r,s))4¥ , ¥>4

(15 0z % k(r,s)
az
(16) ;E k(r,s)lrd - %_-X-‘I“ - .2).

The proof of this lemma is a simple but tedious verificati-
on of all the properties stated, the details will be omitted.

3, L% g priori estimates. Now we are going to prove the
main result.

Theorem. Let geC (h) be a given nonlinearity satisfying

(1) L_:l._ln.mg(u)-u'1 > 7&1, where .7\.1 is defined in Lemma 2,
wr+

(11)° lim gu)-u™® = 0, &= (N+4)/(N-4), 12 K> 4
W+ o0
(resp., 1lim g(u)-u‘ﬂ- O for some 3 < 00 if N = 4)
MA-»+ 00
and
(11)" if E>4 then there exists o & [0,2N/(N-4)) swh that

Ta (ueglu) - o -6(w)-(u2.g(w)~4F) éo.

A~ + 0O

Then the estimate
an  lull €c <o

holds for any positive, radial symmetric solutiom u of (1) (with
L) = B) where C does not depend on u.

Proof. We mainly proceed in amalogy %o (11, pp. 44-50. Let
fLl = Band u = u(x) = U(r), x| = ref0,1], be any positive, ra-
dial symmetric solution of (1).

Step 1. We prove
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(18) fn“"' ax£¢, f;)_ls(u)\-v1 ax£¢
under the only comdition (i):

fn\g(u)\-m‘ ax%C + f;xs(u) «v, d&x=C + fn Aau-v1 dx
-C + j-;'u -A211 ax = C + ‘]_‘;.?\1\1-71 ax€cC + q-./;ls(u)-q dx

with some q< 1, and (18) follows.
Let us mention that (18) yields (17) for N<4: According
to (8), Lemma 3 and 4 (especially (14)), and (18) we get

1 1 N1 2
e 6nm‘af°'nj;k(r.n)\s(0(s))\daéc Jy #7(1-8)%| g(u(s)) [as

1 5
&C J; sn'1.v1(s)|s(v(n))ld:£c fs vi-lg(u) | axéc.

Thus, in the following, let N4,

Step 2. We prove the estimatecU(r)£C for r e€[2/3,1] and
- 2
(19) %3 u@ = U1 éC, xe 3B, [ 1gwlaxée

12 (1) is fulfilled. For this we in.trodnco the function
U&= [ kle,0)la(U(s)) | as U(r) + C

(the latter inequality easily follows from (1)). Because of
(15), U*(r) is decreasing in r and, therefore, for arbitrary
r¢(2/3,1] we have (cf. also (8),(18))

TR 60 2/3)%3 « [ Ut (e)as4kC - [ 7 (1-0)2 0 (2)an
; 1/3 (]

€0-(1 + [ vi.u ax) £c.
This proves the first inequality which now yields (19) by ena-
logous censiderations (use (16) resp. (18) and once again (8)).
As e :med.ute consequence of (19) and the Pohozsev type iden-
tity (4) we obtain
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200 B4+ [ 1pulax - ¥. J) c(waxlgc.

Step 3. Now we additionally suppose (1i)" to establish
1) [ lel.uaéc, JylAul?axge.

This can be done by a straightforward adaption of step 3 in [1],
p. 47/48, the details will be left to the reader (the needed
facts from the preceding steps are (19),(20), and (6)). It should
be mentioned that now the case N = 4 can already be finished by
using the growth restriction in (i1) ", the 'g bound from (21),
and the usual embedding and regularity results for the (1linear)

biharmonic equation.

Step 4. Finally, we get (17) for N> 4. By the considera-
tions in Step 2 it is clear that (ef. (10) - (11))

1 1
luly, € U*(0) % [ k(0,8 e(u(s))las£c « [ 0*lg(U(a))] as.

We denote g'(u) = max |g(t)| and teke an arbitrary re (0,1).
tel0,ul

Then, by Holder s inequality, (1i) ", and (21) we have
. 1
flull & c - { f: s gt (U(s))ds + f'; s> lg(u(s))| as}
1
;C {r4' 8+(“u“¢>) + ( f" "X(G-H)d')m .
o
L e T e
N-
4 4, L | ’zw*
,éC . . d .
{r*. g (Rull ) + ( fm 8 8)
+
4
s ( 'ro 131‘_1|8(U(s))|l.l(s)cll)y-Zﬁ
£C --Yr4. g+(lulw) + r2'N/2}, where ~ = 3 - (N-1). éf .

Taking in this inequality the infimum with respect to r we get
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Lull &ce(1 + g*uly) /6 ),
But this estimate yields (17) since (ii) " implies g*(t) = o (t%)
for t— 4+ 0O .

Thus, the Theorem is ocompletely proved.

Remaxk 1. FPor applications it is importent to observe
that the constant in (17) can be chosen independent of the pa-
rameter t&[0,8,), 0<t <00 , 1f we consider positive, radi-
sl symmetric solutions of (1) for the family of nonlinearities
8y = 8(urt).

Remark 2. A careful analysis shows that exoept Step 2 the
proof could be carried out for more general domeins L . This
remark is obvious for Step 1 and 3, in Step 4 you might follow
the line of argumentation in L1], p. 49/50, if the identity

2 2
2112y o L _ . wPax + 7
LlA(u )| €ax ‘rl-"/‘ Lg(u)udx-b—nz—

o [ 1v@um) 4ax,
o

which is satisfied for positive solutions of (1) amd p23, 7 =
= (p+1)/4, will be explored.

Remark 3, Clearly, condition (11)" is technicel and not
necessary for obtaining a priori estimates. Por.imttnoo, it
g(u) = u%. (mﬂu)"‘ where 1n_u = mex (1,lm) for u>o0,

o > C, and N> 4, themn (i),(ii)’ bold but condition (1ii)"
does not. Nevertheless, a slight modification of the above con-
siderations gives (17), at least, for oc > 4/(N-4). We only
sketoch the proof of this statement. A direot verification shows
that
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s W & - =1
’ t+%. (1nt dt
G(u) - "3'“'3(“) _{3+’I’ L nt) , u>e
0, uZe

Hence, by (6),(20) we have
A -1 -1 .
fo & - g(U(s))-U(s)(1n, U(s)) " as£C,

and, repeating the estimations as in Step 4 of the above proof,
we obtain

6
)m'm&!(o,‘l-d /6')}

4 + 2-N/2
Rul & c{r®g™(lul) + © «(1n,, full

It remainas to check the infimum,
Purthermore, if N = 4 then the growth restriction in (ii)

can easily be weakened to

Ta  1ng (w.u™' < 4,

U=+ 00
Finally, it should be mentioned that condition (ii) stat-

ed in the Introduction obviously yields (ii) , and (ii)".

Remark 4. We only considered radial symmetric solutions
but 1t is not yet clear whether there can exist non-radial sym-
metric solutions of (1) for Q = B at all (concerning (1)~ ef.
6l1).

We close the exposition by stating an existence result
(the apalog of Theorem 2.1 in (1)) which immediately follows
from our Theorem (for other assertions which can be obtained
on the basis of the L% bounds we refer to [11,[4]).

Corollary 2. Let Q = B end g:R*—> R* be continuous. It
g satisties (1),(i1) *,(ii)", and
(111) IIm gw.u™' < A,
m->0
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then there existas at least one positive, radial symmetric solu-
tion u = U(r)e CH(T) of (1) which has the additional properti-

es U'(r)< 0 for O<r<1 and U"(1) > 0.

Proof. Let us consider the compact map F:Kx[0,00) — K
where K = {Ue c(0,1‘)=U(r)E 0% is the closed cone of nonnegative
functions in C(0,1) given by the formula

F(U,t)(r) = f: k(r,s)-g(U(e)+t) ds.

The following properties hold:
(a) Any non-zero solution of the fixed point equation

U= d(U) = F(U,0), TUEK,
is, actually, a positive solution of (9) end, thus, u(x) = U({x}|)
is a positive, radial simmetric solution of (1).
(b) U = A-3(U) for arbitrary A € [0,1) and UeK with |lUj, = R
for sufficiently small R, >0 since according to (iii) &(u(x)) £
£q * Mru(x), q<1, end, therefore,

.7\1 ];_uv.'dx = .&lu-baﬁdx = fn Azu-v1dx = _/‘;1 g(u)vydx £

£q> }‘1 L fn uv dx
for suffiociently small solutions of (1) which is a contradiction.
(c) There exists t, such that U o F(U,t) for arbitrary UeK and
tlto because for some finite t, we have from (1) g(u+t) Z A . u
uniformly in uZ 0 and t2t, where A > A, (then proceed as in
Step 1 of the proof of the Theorem or as in (b) to obtain a con-
tradiction).
(d) PFinally, according to the Theorem, (c), and Remark 1 we can
choose a sufficiently large R,> Ry such that U*?(U',t) for arbi-
trary t€l0,c0) and UcK with W\Ul, = R,.
Now, the Krasnosel “gkii type fixed point theorem from L[1]
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(cf. Proposition 2.1 and Remark 2,1) can be applied. Hence, the
existence statement is proved, the additional properties are

obvious consequences of Lemma 4,
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