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Abstract: We constryct a revealed class X such that P(X) .
is not revealed and furthermore we show that there are two ful-
ly revealed classes so that their intersection is no fully re-
vealed class.
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One of the important notions of the alternative set theory
(ct. [V]) is the property "to be revealed"; this notion corres-
ponds in some aspects to the saturation property in the model
theory.

A class X is called revealed if for every countable class
YcX there is a set u with YcucX (c¢f. § 5 che IILV]); @ class
X is fully revealed if for every normal formula @ (z,2) (even
formal one -~ element of FL, see below), the class fz3; ¢(z,X)%
is revealed (cf, § 2 [S-V 1]).

At first we are going to summarize results describing the
system of revealed classes - e.g. we describe some properties
fulfilled by revealed classes and show under which of the most
frequent operations the investigated system of classes is oclo-

sed. A nontrivial result in this area is thet P(X) = {xyxsX §
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need not be revealed even in the case that X is revealed.

The system of all fully revealed classes is closed under
Godel ‘s operations having one free varisble by the definition;
e.g. V-X,dom(X), V=X, x", Cnv3(x) ={{x,y,2>3<{y,2,x0€ X}
end furthermore U X and P(X) are fully revealed under the as-
sumption that X is fully revealed. On the other hand, also tri-
vially, this system of classes is not closed under operations
working with countably many classes - e.g. for every n€ FN, the
class N-n is fully revealed, but the class N-FN = (\{ N-nyne FN§
is not fully revealed (being reveeled) because FN is not reveal-
ed.

It is not so trivial to answer the question whether the
system of fully revealed classes is closed even under Godel ‘s
operations having two free variables., In this article we are go-
ing to show that it is not, unfortunately, the case - we shall
see that the intersection of two fully revealed classes need
not be fully revealed., Constructing a pair of such classes we
shall prove some statements which seem to be interesting them-

selves.

Let us note that a class X is revealed iff there is no func-
tion £ with FN = { < © dom(f); "o € X%. In fact, for every
countable Y there is a one-one mapping £ with Y = £"FN &

% dom(f) € N by the prolongation axiom; supposing YcX and

7 (3u)(YSucX) we get FN = {0 & dom(f); £"o¢ € X}. On the
other hand, assuming PN ={« < dom(f);s f"«¢ < X} and f"FPnSusc
€ X, we obtain FN ={« & dom(f); 2" « & u? from which Set(FN)
follows - contradiotion, Thence X is not fully revealed iff
there is a normel formula @ (z,Z) with set-parameters only (cf.

the eighth theorem of § 2 [S-V 11) so that PN = 42y ¢ (z,X)% .
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Thus the above mentioned result can be reformulated in the
following way: there are classes X, Y such that there is no nor-
mal formula @ (z,2) with PN =423 9(2,X)§ Vv FN ={32; ¢(2,¥)}
but there is a normal formula v (z,Zq,Z,) with FN =
={z3 ¥ (2,X,Y)¥ (¢, ¥ with set paremeters only). In this for-
mulation our result is not 80 surprising.

We use the notation usual in the alternative set theory (cf.
[V]); in particular, variables F,G,f,g,... run through functiops;
the symbol Fo G denotes the composition of F and G.

Let us recall some definitions.

A pair of classes K, S codes a system of classes M ir
(VI)(X ¢ M= (JqekK) X = S"{ql); a system of classes is co-
dable if there is a pair coding it.

A formula is normal if no class variable is quantified in
it; a formula is called set-formula if there are only set-varia-
bles and set-constants in it. We define formal formulae in the
alternative set thgory as usual and the class of all formal for-
mulae (without constants) which are elements of FN is denoted
by the symbol FL. The symbol FLy denotes the class of formulae
of FL in which set-parameters are allowed.

A class X is called set-theoretically definable (element of
Sd, resp.) 1if there is a set-formula @ e FLy (¢ € FL resp.)
with X ={ 23 @(z)}. X is a or-class ( & ~class resp.) if it is
the intersection (union resp.) of a counteble sequence of set-
theoretically definable classes,

F is a similarity if for wach set-formula @ (Zq,e..,2;)€ FL
and for each Xj,eee,X, 6 dom(F) we have

@ (Xqpeee,Xy) = @ (F(x) 5000 ,P(x))4
a similarity whose domain and range is V is called an automor-
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phism (see § 1 ch., VLV]).
A cless X 1is said to be & revealment of & class Y if X is
fully revealed and for every nomal formula ¢ (2) € FL we have
@ (X) = @(Y) (see § 2 [S-V 21),
A class is called real if it is a figure in an indiscerni~
bility equivalence (see § 1 [E-V] and ch. III [VI]),

To obtain a complete picture of revealed classes let us re-
call results of § 5 che II[VI:

(a) If for every set u the intersection Xnu is a set,
then X is revealed; in particular, each set-theoretically defin-
able class is revealed.

(b) If X and Y are revealed, then XnY and XuUY are reveal-
ed, too.

(¢) 1t {xn;nc FNY is a descending sequence of revealed clas-
ges, then r\{xn;nem} is also revealed and furthermore
dom(N{X yncFN}) = N4 dom(X )sne PNE,

(d) It {xn;n €PN} is a descending sequence of nonempty re-
vealed classes, then (M) 4 X yneFNi+0.

The most important result from the previously mentioned ones
is the last one, it guarantees the importance of the notion of
revealness,

The following statement expressing mainly that the system Of

the revealed classes is closed under union and all Godel s ope-
rations except the complement is formulated for completeness on-

1y, its proof is quite trivial. It is necessary to emphasize
that the complement of a revealed class need not be revealed; as

an example can serve the revealed olass N-FN,

Theorem, (a) If X is revealed, then dom(X) ,1'1, Onv3(x)

and U X are revealed, too.
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(b) If X and Y are revealed classes, then also the class
IxY is revealed.

(¢) If P is a revealed function, then even the claas
U { P(x)x ixi3x € dom(F)} 1is revealed. ’

Proof., (&) If Y is & countable class with YS dom(X) (Y S

ex!

n !SCnv3(x), Y €U X resp.), then we are able to choose a
countable class ZEX with dom(Z) = Y (2 = Y™!, ¥ = Cavy(2),
(VyeY)(32€2) ye = resp.). Assuming X is revealed there is u
with ZEuS X and tus Y< dom(u) € dom(X)(¥YSu™~'s X7, Ye Onvy (ule
scan(x), Y S Uu g UX resp.); dom(u), u", Cnvj(u) and Uu
are sets by § 1 ch, ILV],

(b) If Z is a countable part of Xx<Y then dom(Z) and rng(Zz)
are countable, too, and hence supposing X, Y to be revealed the-
re are u, v with dom(2)S vE Y& rng(Z)$ uSX from which ZEuxve
EX»Y follows.

(¢) If Y is a countable subclass of U{F(x)x{ix}; x €
€ dom(F)} then dom(Y) S dom(F) is also countable and assuming
that F is revealed we can choose £SF with dom(Y) S dom(f) and
therefore Y& U £ £(x) x ix}jx € dom(£)} and the lastly mentioned

class is a set.

Lemma, If Y is a revealment of FN then there is a reveal-
ed mapping P of Y into N-FN with N P"Y =« FN (F being moreover
decreasing i.e. x < € Y—>F(xx)ZF(()).

Proof. Using the same idea as in § 4 [32] we define by in-
duction a sequence {f : & € S} putting £, = 03 the property
dom(f ) e Y& rng(f, )< N-FN& £, 1s decreasing& (V@ ¢ (cnf))
fp & £, serves as the induction hypothesis.

It 2, (¢ €L1) is constructed then we put fes1 = g V
Uix¥x(y-dom(f, )) where y (x resp.) is the smallest element
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(in & fixed well-ordering which orders V by type {L ) of
Y-dom(£ ) (N rng(f, )-FN resp.). Our choice is possible since
dom(f, )€Y and rng(f, )N FN = O by the induction hypothesis
(and because FN is a proper class and thus Y is also a proper
cless).

If o € f) is & limit and if '“[s 3 Be(tnQ)} is const-
ructed, then we choose an increasing sequence {ocn;nemis
€ NQ with Ul snefNi=ULB 3B € (¢ n Q)Y (the
countability of o¢ N ) enables us to meke such a choice) and
furthermore we fix (M { N mg(fp )y B € (ot N)Y -FN)
(this choice is possible since FN is no 4r -class). By the pro-
longation axiom there is g with g(n) = > A9 n& dom(g) € N, Accord-
ing to the induction hypothesis we have n<m € FN — g(n) < g(m) &
% g(n) is decreasing &dom(g(n)) € Y& rng(g(n)) €N - d° . Thus
there is even an infinite natural number o’ with the proper-
ties in question because Y is fully revealed and therefore, de-
fining f, = g(X’), we obtain dom(f, )e Y& rng(fy ) EN - & &
%, is decreasing %(Vne FN) fxng f, from which t}‘xe induction
hypothesis for o¢ follows because of our choice of the sequence
{«3neFr],

At the end we put F = U § L9 6 LY . Evidently F is
revealed since if -fxn;ne FN}c dom(F), then we can choose o« € )
with {x yncFNjg dom(f )3 F 1s a decreasing mapping which is a
part of (N-FN)x Y. Moreover, dom(F) = Y %« N\ F"Y = FN because
1 ‘8.

of the construction of fd,+

Theorem. There is a revealed class X such that P(X) is not
revealed.
Proof. Let Y be a revealment-ot FN (for the existence see
§ 2 [S-V 2]), F be a revealed mapping of Y into N-FN with
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N F"Y = FN and let Y S oL € N. We define X as U{F(x)x{x};
xcdom(P)Y Uk x( = ¥), This class is revealed as the union
of two revealed classes (o¢ - Y is revealed since Y is fully re-
vealed). For every n€FN we have n x o € X, but according to the
choice of F there is no (3 & N-FN with o6 € X and thus the-
re is no u with {n x o¢ y3ncFN}c ucSP(X).

The following trivial lemma is useful,

Lemma, If fsnfnsmi is a sequence of revealed classes with
(YneFN) S, ,,€ S, then the class V - N 18, 3neFN} 1s not revea-
led. ‘

Proof, Let us choose f so that f(n)c (Sn - 8,,1) for every
néc FN, Evidently mZn —>f(m)e€ Sn and thus assuming the classes
Sn are revealed, we can choose a decreasing sequence ﬁnn;nGFN} with
£"(FN - n)e w, € S . Furthermore f"FNE(V - N {Sn;ncmf) and
if the lastly mentioned class would be revealed, then there would
be a set u such that f"FNEu&un/M4iS ;neFN{ = 0, For every
ncFN we would have f(n+1) ¢ (u inu) & (u,nu) from which

O(unN{unePiic unN LS ;nePut

would follow by (a) and (d) of the beginning of the paper - con-
tradiction.

Corollary. Each revealed 6 -class is set-theoretically
definable.

Proof, If {Sn;ncPN} is a sequence of set-theoretically de-
finable classes, then for every k& FN the class Sl; = {Sn; n£x}
is set-theoretically definable, too, and thence the class V - 81;
is revealed. If U { S 3n€FN§ =V - N{V - S ;ncFN} is revea-
led, then there is k€ FN such that (VnZk)(V - S =V - 5,)

l.e. U {5 5NCFNE = 5.,

Corollary. There is no revealed class which is countable,
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in partiocular, the class PN is not revealed.

Corollary. Each fully revealed I¥-class is set-theoreti-
cally definable.

Proof. Its complement is a revealed 6 -class, therefore
its complement is set-theoretically definable.

Corollary. Each fully revealed real class is set-theoreti-
cally definable.
Proof. In § 1 [&-V] the authora prove that every revealed

real class is a 4 ~oclass.

Theorem., (&) A class is set-theoretically definable iff
the system of all its revealments is codeble,

(b) Every set-theoretically definable class which is no e-
lement of Sd, has {1 -many revealments (i.e. if a pair K,S codes
the system of all its revealments, then XK is uncountable) and
each element of Sdo is its sole revealment.

Proof, According to the second theorem of § 2 [S-V 2], the
system {Y; Y ip a revealment of X} equals to the system {F"YO;

F is an automorphism} where Yo is an arbitrarily chosen reveal-
ment of X (by the first theorem of § 2 [S-V 2] every cless has

e revealment).

\ It Xe¢ Sdo. then X 1s its sole revealment by the second theo-
rem of § 3 [8-V 2).

If X is set-theoretiocally definable, then there is & set-
formula @ (2,2,) of FL end a convenient parameter P, (may be
an n-tuple) with X = {23 @ (z,p )}. Let the symbol Mon denote
the monad of‘ P, in the indiscernibility equivalence £ gdefined
in § 1 ch, V[V], Purther let us suppose X& Sd .

Put Aq - {p;(Vz)(q(z,p) = @ (2,q))} and let us assume
at firet that there are pi,...,p & Mon with Mong U { Apk;kén}.
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Since every Aq is set-theoreticelly definable, the class
U{Ap 3k£n% is set-theoretically definable, too. If
k

pe U {Apk-,ké n} then there is i£n with (Vz)(@(z,p) =

=g (z,pi)) and moreover for each automorphism F we have
(V2)(@(z,F(p)) = @ (2,P(p,))). Purthermore let us realize
that #(p;) £ p, (because p; £ p ) end therefore there is j<n
with (V z)( g:(z,F(pi)) = ga(z,pj)) from which F(p) € U { Apk;

k4n} follows. We have proved that U{.Apk;ké nt is a figure

in the indiscernibility equivalence £ and thence by the ni- '
neteenth theorem of § 1 ch, VLV] it is an element of Sd,. Ac-
cording tp the twelfth theorem of the mentioned section there

is a definable p ¢ U {Apk;k£ nt i.e. there is 1 < n apd a set-

formula y of FL such that {z; ¢ (z,p;)} = {z; y (2)}. Further-
more there is an automorphism F so that F(po) = py (because

PR p; and because of the sixth theorem of § 1 ch. V[V]) and
hence X = {z;q(z,po)} = {z; cg(z,l"1(pi))§ = F"”{z; @ (z,py)f =
= Fn {23 y(2)} =12, v (z)§. This contradicts our assumption
X & s4,.

Let {pk;keFNiQMon be a sequence such that Pn ¢ v {Apk;
k<n} for every neFN. The class Mon is & gy -class by the de-
finition and thus it is revealed. Therefore for every ne FN the
class Mon - U{Apk;k< nt is revealed, too, and it is nonempty

(p, being its element). Thence by (d) of the beginning of the
paper, even the cless Mon - U { Apk;kelm} is nonempty.

We suppose that X = {z;g;(z,po)} ¢ Sd,. Then X is its re-
vealment and for every peMon there is ean automorphism G with
G(po) = p and furthermore for every automorphism F we have
F(py,)e Mon and F"X = F" { 33 g(z.po)} = {a;g(z,r(po)}. Thus the
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system of classes {F"X; P is an automorphism} is coded by the
pair Mon,{<z,p> ;g(z,p)} and moreover there is no class ZE Mon
which is at most countable so that Mon & U{Aq;qezf. We have
proved our statement (b) and one implication of (a).

Let X, be a revealment of a class X, If the system of clas-
ses {F"YO; P is en automorphism} is codable, then by the eighth
theorem of § 1 \'_é-V], the class Yo is real, This class is even
fully revealed and hence Y is set-theoretically definable by
the last Corollary end thus Y  =<{z; ¢(z,p)} for some @ € FL
and a suitable parameter p. Therefore X = {zy q:(z,p')} for some
parame ter p' by' the definition of revealment., We have proved the
seoond implication of (a) which finishes the proof of our theo-
rem.

Since there are classes which are not set-theoretically defin-
eble, the last theorem guarantees that the system of fully reve-
aled classes is not codable i.e., it is very large. On the other
hand, the following statement shows that this system is "narrow"
= there is rather a small number of types of fully revealed
classes if in one type there are classes satisfying the same nor-
mal formulae of FL., This is raised by the countability of the
class of considered formulae (the system of all subclasses of FL
is codable according to the prolongation axiom). (If we would
admit in the considered formulae even set-parameters, we would
get a quite opposite result, of course.)

’ The system of all axioms of the fomm

(Vx)(3x) & (x,X) —> (3 ¥V)(Vx) & (x,Y"{x})
where Q is an arbitrary formula is called the strong schema
of choice; the alternative set theory with the strong schema of
choice is consistent relatively to the alternative set theory.
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Theorem. If the stirong schema of choice is available, then
there is a codable system of classes 270 such that

(VX)(3Y e 71 ) Y 1s & revealment of X.

Proof., As & (2z,2) we fix the formula

[(3Q)(Vy e PL)(( ¢ 1s normal& @ hes exactly one free
varieble) = (@(Q) = @ € 2))—> (Vg e PL)(( ¢ is normal &
& @ has exactly one free variable) = ( @(2)=@e =)l1& 2
is fully revealed.

The following result is a slight generalization of the eighth
theorem of § 1 [&-V1.

Theorem. If there are x, y so that the system of classes
{F"X; P is an automorphism with F(x) = vyt is nonempty and codab-
le then X is a real class.

Proof. Let x, y be sets with the above described property.
Since there is an automorphism F with F(x) = y, the set {{y,x>¢
is a similarity.

To every similarity {{z,y>% there is an automorphism H with
H(y) = z by the sixth theorem of § 1 ch. V L[V], Moreover, if &
well-ordering of V of type ) is chosen, then such an automor-
phism cen be constructed uniquely and we are going to denote it
by the symbol H,.

If a pair of classes K,S codes the system of classes {F"X;
P is an automorphism with F(x) = y} then we put .

K= U { (8,"K) x {z}; {<{z,7>} 1is & similarity ¥
and
3 ={<H,(p),<H,(q),2>3 {p,qPe S %LL z,y>t 1s a similarity}.

If G is an automorphism with G(x) = z then ${z,y>¢} =
' m§<2,x>} 0 $¢ x,5)} 18 & similarity since the composition of
similarities is also a similarity and the converse of a simila-
rity is a similarity, too (s‘ee § 1 ch. VLV]), Thus the auto-
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morphism H, had to be chosen end putting F = H'o G we have
F(x) = H;'(G(x)) = H;'(2) = y and thus there is qe K with P"X «
= S"§ q}. Since {<z,y>% is a similarity, {H,(q),z> is an ele-
ment of ?(‘ and moreover

§v{<H (0,22 = {H,()(p,a> € S} = HM(S" {q}) =
= H,"(F"X) = B "(H;'"(G"X)) = "X,

We have proved that the system of classes {G"Xj; G is ean au-~
tomorphism§ is codable. We finish the proof using the mentioned
result of § 1 [&-vI,

Theorem. If F is & similarity which is at most countable,

then there are f, g such thet Fu{<g,f>% is a similarity and
such that every amutomorphism G with G(f) = g is an extemsion of
F.

Proof. We suppose that dom(F) is at most countable and thus
there is f with £"FN = dom(F). According to the third theorem of
§ 1 ch. VI[V)] there is g such that Fu { {( g,f>} is a similari-
ty. I¢ G ig an automorphism with G(f) = g, then G(f(n)) =
= (G(£))(G(n)) = (G(£))(n) = g(n) and {f(n),n> ¢ £ implies
(Fu{<g, 2>} )(Kt(n),m)) e (Fu{<g,2>3) (L) i.e. {F(£f(n)),ndec g
from which F(£(n)) = g(n) = G(f(n)) follows for every ne FN. We
have proved FS G because f“FN = dom(F).

Lemma, If F is a similarity which is at most &utable,
then for every o & FN there is (3¢ o -FN such that Fui{(3,3>}
is a similarity.

Proof. Let %1 be the system of classes of the form
B m <P & (@(BiXypeeesmy) = @ (B,Px),00.,Flx,)))E
where mEFN, Xq,s.0,X, ¢ dom(F) and ¢ is a set-formula of FL
with exactly n+1 free variables.
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For every me PN there is & set-formula +y(z)<c FL wo that
(31 x) y (x) &y (m+l),
It @ (Z,,%990004%,) 18 an erbitrary set-formula of FL, then
(3x)(@(xy2q4000,2,) & Y (x)) 15 & set-formula of FL, too. Us-
ing the fact that P is a similarity, we obtein
(3x)(@ (xyxy4000yx) & y (x)) = (3 x) (@ (%,F(xy),..0,F(x,)) &
& y(x))

i,e.

@ (m+lyxq 000 ,x )= @ (m41,F(xq) y000 ,Fx))
for every Xq,...,x € dom(F),

Thus 771 is a countable system of nonempty set-theoreti-
cally definable classes such that X,Y ¢ 24 — XAY & %71 . The-
refore by (a) and (d) of the beginning of this article we have
N {X3X € W13 40, Acoording to the definition of 77 , every
element of M { XyX ¢ 971} catisfies our requirements.

Theorem., THere are fully revealed classes X amd Y such that
XNnY 1s not fully revealed.

Proof, Let us define

Sat ={<{x,9) ;9€ FL & @ 1s a set-formule with exactly

one free varisble & @ (x)3.

The class Sat determines the satisfaction relation in the model
{V, €> and the pair of classes FL, Sat codes the system of olas-
ges sdo. Furthermore, for every revealment Q of Sat and every
neFN, we have QM n = Sat ' n since Sat M'n is set-theoretically
definable, Since each class has a revealment, we are able to fix
Z as a revealment of the class Sat.

Let {xy 3y « {1} be a descending sequence of natural num-
bers with PN = f\{cc,r;qreﬂ.! and let{xﬂ,;'xs.ﬂ_} be an
enumeration of the universal class, We are going to construct a

sequence of similarities {Hy; ¥ € 1% by induction putting
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Hy = 0 and for every limit o € £ we define Hy as
UiHps Be(ynll,

Por every % € ) we construoct the similarity Hyyq under
the assumption that H,a. is a similarity which is at most count-
able,

By the last lemma we cen choose (3 e o, - FN such that
H,a.. v < r:) .{5)} is a similarity; furthermore according to the
last theorem we are able to fix g, f such that H u{<(3,A2§V
vid g,2>} is & similarity and such that every automorphism F
with F(f) = g is en extension of HTuK{& W%

At first we are going to show ‘that there is an automorphism
P with F(f) = g such that Z P 3P"(Z [ 3). If there would not
be such an automorphism then the system of classes

{P"(Z M3 )3 P is an automorphism with F(f) = g}
would be codeble and nonempty (£{<g,f>} being extendable to an
e.utqmorphinn since it is evidently & similarity) and thus Z } 3
would be real because of the last but one theorem., Since Z I'f3
would be fully revealed and real, it would have to be set-theore-
tically definable by the last Corollary. On the other hand, the
pair FL, Z M (3 ocodes the system of classes Sdo and thus we would
obtain a contradiction to the first theorem of § 4 [S-V 21, Our
claim is proved.

We have proved that there is an automorphism F2 H,quB,B)}
with 2 PR £ (F"Z2) M (3 (= (F"Z)P P(B) = P"(Z 1 (3 )). Therefore
we are able to choose a{ﬂ so that

(1) BVH is a similarity which is at most countable;

erua’ﬂ
(2) (APp<xy )(AxeZMR) Iy 4 2Z2M3)Kx,y)6€

€ (Byyqu K1)

- 512 =.



At the end we put H = U{HT; 7 €%, Evidently H is en
automorphism and for every o ¢ PN we have (H"Z) P % Z MG ,
since for every 7 € Q there 1s 3 < Xy such that for every one-
one mapping F with F2 H'r+1 we have (F*Z) P 3 %+ 2 M3 .

Acoording to the second theorem of § 2 [S-V 2] , the class
H"Z is e revealment of the class Sat, too, and thence for every
nEFN we get ZMn = Sat ' n = (H"Z) M n. Eventually we define X =
= Zx{0tuVx{1} and ¥ = ¥ x40} U(H"Z) x {1}, Both classes X and Y
are fully revealed classes and we have XnY = Zx {03 v (H"Z) x {1}
this class is not fully rewealed because

{0 3((XNY)"§01) Pt = ((XNAY)"{1}) Pt F =

={c¢ 32 Mot = (H"Z)}eC § = FN

is not revealed by the first Corollary.

Let us note that as a trivial consequence we get that the
system of fully revealed classes is closed neither to Cartesian
product nor to the pairing operation of classes ({X,Y >¥ = xxfotu
vYx{1}). On the other hand, according to [S-V 5] , to every ful-
ly revealed class there is a system of fully revealed classes con-
taining it and closed under all Godel’s operations.

At the end let us note that we have constructed two reveal-
ments Z, Z° of the satisfaction class Sat with FN = {032 Mo =
=2 Mot , but using the same technique as in the last proof
we are able to prove a still stronger result, namely, for every
codaPle system %! of revealments of the class Sat we can const-
ruct a class X with

(VY € 9 )FN = {c 3X T ¢ = Y Moo}

Thus we can construct by induction a system {x,(; Ye 03 ot
revealments of the class Sat so that
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(Br¥ e D &BH7)—FN = {0 3Xg Mo =Xy Poc
i,e. we are able to construct Sl -many revealments of Sat with
the property in question.
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