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SOME AUTOMORPHISMS OF NATURAL NUMBERS
IN THE ALTERNATIVE SET THEORY
J. MLCEK

Abstract: A method of comstruction of automorphisms of
natural numbers is presented. It is based on a saturation of
the structure in question and on some properties of indiscerni-
bles in this one. Majorizing and minorizing automorphisms are
constructed.
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Introduction. It 1s known that there exist non-trivial
automorphisms of natural numbers in the alternative set theory.
There are several possibilities, how to conatruct these ones.
In the paper presented, we introduce one method of such a con-
struction, based on a saturation of natural numbers and on some
properties of indiscernibles. A description of this method is
contained in the section "Proofs".

By using this method, we can, for example, conatruct to a
given class X of natural numbers and & collection & of func-
tions, an automorphism of natural numbers which majorize (mi-
norize resp.) every function from & on X. A precise formula~
tion of this vague description is given in the sectién "Main

results"”.
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Preliminaries. By a language we mean & countable first-

order language &/ with equality. The set of formulas of this
language is obtained by a usual construction on PN, Writing
9 ¢ & we mean thet ¢ is & formula of .
We use M, N,... as symbols that range over structures for
o . If M is such a model then M is the universe of this one.
Having My =& , 1 = 1,2, and & mapping HSM,x M,, we
say that H is a similarity between IM; and M, iff the follow-
ing holds: (Vg e )(Vay,... € dom(H))( My = @ (81,...) =
<> M, =g (H(e;),...)). Recall the following fact: if IM is a
fully revealed model for & , then every 1-type of &£(C)-for-

mulas, where CSM is at most countable, is realized in M. Thus,
every at most countable similarity between two infinite fully
revealed models for & can be extended to an isomorphism of
these ones. Note that every revealment of a class X is a fully
revealed class. (See [3].)

Let } denote the language of Peano arithmetic and let N
be the structure <( iN,+,.,0,1,<> for J o+ Ve use o, Bsysds
g (possibly indexed) as variables ranging over natursl numbers.
Assuming oo £ 3 » we denote [« , B1 the interval
1ysk £ p< B and 3 the class {7, r> «<i.

Suppose that H is en eutomorphism of the model M, IM =
This property of H can be expressed in an extension }' of ¥ ,
3 = } U {h3, where h is a new unery function symbol. Indeed,
let < IM,H)> be the expansion of IM to the structure for F -
Then H is an automorphism of M iff < IM,H) = {@(x14000) &>
<>@ (h(x)),..0)59e 1o {(Yx)(Iy)(F(y) = n)i. '

Main results. Throughout this paper, 3"0, 3"1, T, denote at

most countable classes of functions such that
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P es'ou FiuF,— BN — N and there exist @ (x,y,2) € end
¥ mMthFet) = B>, B,2)% (Ve )(31B)g (<, B,7).
Let H:N —> N be a function, XSN, H majorizes (minorizes resp.)
FoonX it (Ve X)(VE € F ) (6(x)< H(c))

(Veu e X)(¥G €T )(G(ec)Z H(cc)) resp.) holds.

H is over constants if (Ve )(IR ) (Vy >R )(H(x)>x). ¥

0
is over constants if (VP e 3'0)(? is over constants).

Theorem 1. (Vy)(3g")(IH)[(H is an automorphism of
iN) & (H is identic ony) % (H majorizes 3’1 on 5‘ )1.

Theorem 2. Let 8'2 be over constants. Then
(Vy)(35°)(3H)[(H is an automorphism of IN) & (H is identic on
¥) % (H minorizes 3, on & )] holds.

An interval [«¢,(3] 1is % -large iff (VP ¢ F)(F(c)<fB).

Theorem 3. Assume that 8’2 is over constants. Then
(Vy)(3H) {(H 15 an automorphism of IN) & (H is identic ony)&
& (Ve ) I(3U) s &)(U is an Elo-la.rge interval & H majorizes

3’1 on U)& (3U e¢xX)(U 18 an ?o-large interval& H minorizes
, n UX(3IB >« )(H(B) =@)1)T .

Remark. BEseh of Theorems 1, 2,3 guarantees that for every
o , the mapping Id Ac¢ can be extended to & non-trivial auto-
morphism of I[N,

Eroofs

Notation. Let {Bk}kem be an indexed sequence of oclasses.
We shall write more briefly {Bk}k only.

Suppose that 9‘1 = {P;, 3,0 1=0,1,2, Assume that for i =
= 0,1,2 and k¢ N, Yik(x"’“) and Yy, are such that the sta-
tements
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rik(&) - {3 > w’_k(‘x! {3 ’ ’Xik)&(V'( (3 lo")ufik(r,d',a’ik)
hold.

To simplify some following notations, we put
Iy = T d;_,k = Yppo KEFN and Jy = ¥y, «>120,1,2 &

&kmw3.8 +1,
Let ¥ be the extension of } of the form
% =F uintule o duial,,

where h is & new unary function end o,, d, are new constants. Let
T’y be the following theory, fomulated in ¥ :
{?(11 ,o.o) L md ? (h(x«l)'Ioo)}?C }} v {(VX)(B ])(h(!)-x)3 v
vi{z<se,—> h(x)=x}uio;< x — (V¥y) (V1 (x,3, 4 ) —> y< h(x)) k8.

It is easy to see that the theorem 1 is equivalent to the follow-
ing propositioms

(Vo (3 )(A|mN —>N)( < N, By 2 {5’11!})‘) = T).

We can construct quite analogously the theories I o end T 3
in ¥ such that the theorem 2 is equivalent to the proposi tion

(Vr (39 ) (AEmE— D) (KW H, 5, £y > = T
and the theorem 3 is equivalent to
(Y J(IHmN — M) ( {W,H, 7,0, {54 > Ty,

Now, let 1 be fixed.
Assume that to given ¥os there exist
71, a substructure M of I and & mapping G:M —> M
such that
() i, oo, cn
(B) IM<IN
(0) <IMGy Yo%y L0t > = Tye
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Then there exists a mapping H:N — N such that

SINH, A, Yy o A8l > =Ty
and, consequently, Theorem i is irue.

Proof. Put ™ = < IM,G, Yor¥ps 19433 7. Then a reveal-
ment M* of T has the form < M*G%, 00, M {d‘u}kan*h
where X* is the revealment of X. We have ﬁ«(x {i* and, especial-
1y, M <y IM* is true, too. We deduce from this, (A) and (B),
that TAA({ 7, P13 Uy }y) 1s a similarity between IN and
M* ., Let Z be an isomorphism of I and M* which is identical
on 4o, MI v 4d, b Put H{«) = B ¢> 6%(2(x)) = 2(R 3
Then Z is an isomorphism between { IN,H, ¥y, %%, {d'ik}k) and
ﬁ* « We deduce from this that the assertion in question holds.

To finish our proof of Theorem i it suffices to find, to a
given 7, & mumber 7y, & substructure M of IN end GiM —> M
such that (4),(B), and (C) hold. We shall construct 7, M and G
in question by using some properties of indiscernibles in AST.
Recall that there exists an unbounded gy -class J of strong in-
discernibles in N, (See [2].) We start with two lemmas which
will be used frequently in the sequel. Let us introduce the fol-
lowing notation. Let XS N, We denote by mx the gmallest gub-
structure of N guch that the universe of Wy contains X as &
subclass.

Lemma 1., Let I be a class of strong indiscernibles in N,
Assume that Z¢ N has the property (VesI)(Zce).

(1) Let G, be an automorphism of { Zul,<?> which is
identic on Z. Then there exists an automorphism G of the struo-
ture szI and GaGo hold.

(2) Assume, moreover, that I has no last element and I2J,
Then I is cofinal in anI‘
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Proof., (1) We define the mapping G as follows:
Suppose that aGleI is definable by the formula ?(x,o1 péiae
eeeyBygese) Where o,... 1s an inoreasing sequence from I (1i.e.
o, <e,<... and ¢, €I, &, €I,...), T1€Z,0.. a0d Q(X,¥q4000
ceesXygeee) & F - e put G(a) = b 122 @(b,0(eq)40ee,8q,000)
holds.

If bENy ; 1s definable by Y(Xy0950009295000) in N, whe-
T® @4 000 is an increasing sequence from I and z4€ Z,..., then
there exists an element aelzuI such that V(n,G;1(o1)....
eee B sees) holds. Therefore, the mapping G is omto Ny 1°

To finish the proof, it suffices to prove the following:
If &y,ec0 €8y 1y G(Xyye00) 6 then WMy 1 =g (8),0..) &=>
- Ilzuxl=g>(0(a1)....). But WMy r < IN and, consequently, we
have to prove: If &,,... €Ny 1, @(X4,0.0) éJ then
N b @ (8yyeee) &> I 1= @(G(ay),0..). Assume that v, (x,,e],...
...,111....) defines &; in N, 01‘.... is an increasing sequence
from I and si‘,...sz. We have
Glagpecs) e (I 2400 ) (A ¥i(Xg 00 h0nes8],000) K @lxyyen))e

& (3x00.00 /4 wi(xi,Go(e%).....s%,...) &
&9(!1 veee)) &=
> @ (G(ay),000)0

(2) Assume & is definsble by (X,@4,e0c,8140..) in IN,
€000 is an inoreasing sequence from I, %4,... 6 Zo Suppose that
ecI has the property: {e;,c.. ¥ S 0. We can esslly see that a<e
holds.

Lemma 2, Let F:N—> N be & function, definable by the for-
mila @(x,y,7) ¢ } ({3} ) in IN, Suppose that I is a class of
atrong indiscernibles in N which is unbounded in N, Let e, <<
<.2<o3 be an increasing sequence from I, 7 < e
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Then (1) P© [01,0215 ) and
(2) 1f P 1s over constents, then F" [e,,e,]1% &,

Proof. (1) Let %(02,e2,03) be the formula
(Ixeley,e,1)(F(x)2 03).

Then "“‘1"2"3) —> ((ecTke> 33) — 9, (e, »,e)), which is

impossible.

(2) Let x(eo,e“ez) be the formula
(Ixeley,0,1)(F(x)<e).

Then 7(‘%-'1’92) —~ ((e,teI&ez<o<f) —> 'L(oo,e,f)), which
contradicts the assuming property of P.

Let ¥,€ N, 1€[0,2]. We are looking for 7, & substruc-
ture IM of N end G:M — M such that (A),(B), and (C) hold.
Let K denote the class of all finite integers.

Case 1 = 1, Choose § € N with “To}U{JIk}k;S and
IcJ of the form I = fest  p such that (VeeK)({ <e,) holds.
Put M = NsuI‘ Let G, be an automorphism of (§ vI,<?) , satis-
fying: G, is identical on ¢ and Go(ec) = e,,, holds for eve-
ry ce K., Let GQGO be an automorphism of IM. Assume that
X e (°k"k+1] N M. We can see, by using Lemma 2, that G(x) >
ZG(e) = e, 42 7 P14(x) holds for every i, k. The class I is co-
final in M and, consequently, Yy = I and G have the re-
quired properties (A),(B), and (C).

Case 1 = 2, Choose again § e Nwith {¥ jv{d,}, ¢

end I, M as above. Let G, be identical on € and let Go(.o) =

o?

=e, 0 hold for every ce€ K. Suppose that GEGO is an automorph-
ism of M. We can see analogously a&s above (by using the pre-
sumption that ’5’2 is over constants) that x € e ,0, .10 M —
—> P, (x) > G(x) holds for every i, k. We cean conclude that
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Y = L I and G have the required properties,

Case 1 = 3, Let again § & N be such that {To}“{d-3k}kg
€ § .« Choose IEJ of the form I = fe  f ke PN, c €K with the
property

(Vk<1)(Ve,deK) [(F< o <0 ,)&(c<cd—> o< &)

An existence of I is guaranteed by the fact that J is an unboun-
ded 4Jr -class, Put M = 'guI'
We define Goz gu I —>S$ ul as follows:
0) x=0 (mod 3) —> Go(eko) = e, CEK,
1) k=1 (mod 3)—> G (e, ) = ®x,c420 CEK,
2) k=2 (mod 3)— Goley,) =& ., cex,
3) e ¢ > G (c¢) = ¢,
It is easy to see that G, 1s an automorphism of < v I, <> .

Let GQG° be an eau tomorphism of IM. We can see as above that the
following propositions hold:

(1) k=1 (md3)—> xecle ,e,1n M—> Py y(x)< 6(x),
k,Je PN,

(11) ¥ =2 (mod 3) — xele, ,0,,1n H— FZJ(‘b G(x),
k,jc PN,
We deduce, using Lemma 2, that the assertion

(o) ’o;:“ko)‘ e K, JEFN
holds, too., The class I is unbounded in M. We conclude from this
and from 0), (o0),(1),(ii), and 3) that % = 0, M and G have
the required properties,
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