

Werk

Label: Article **Jahr:** 1985

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0026|log45

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 26.3 (1885)

SOME AUTOMORPHISMS OF NATURAL NUMBERS IN THE ALTERNATIVE SET THEORY J. MLČEK

Abstract: A method of construction of sutomorphisms of natural numbers is presented. It is based on a saturation of the structure in question and on some properties of indiscernibles in this one. Majorizing and minorizing sutomorphisms are constructed.

Key words: Alternative set theory, natural numbers, automorphism, indiscernibles.

Classification: 03E70, 03C50, 03H15

Introduction. It is known that there exist non-trivial automorphisms of natural numbers in the alternative set theory. There are several possibilities, how to construct these ones. In the paper presented, we introduce one method of such a construction, based on a saturation of natural numbers and on some properties of indiscernibles. A description of this method is contained in the section "Proofs".

By using this method, we can, for example, construct to a given class X of natural numbers and a collection \mathcal{F} of functions, an automorphism of natural numbers which majorize (minorize resp.) every function from \mathcal{F} on X. A precise formulation of this vague description is given in the section "Main results".

<u>Preliminaries.</u> By a language we mean a countable first-order language $\mathcal L$ with equality. The set of formulas of this language is obtained by a usual construction on FN. Writing $\varphi \in \mathcal L$ we mean that φ is a formula of $\mathcal L$.

We use iM, N,... as symbols that range over structures for $\mathcal L$. If iM is such a model then M is the universe of this one.

Having $\mathbb{M}_1 \models \mathcal{L}$, i = 1,2, and a mapping $H \subseteq \mathbb{M}_2 \times \mathbb{M}_1$, we say that H is a similarity between \mathbb{M}_1 and \mathbb{M}_2 iff the following holds: $(\forall q \in \mathcal{L})(\forall a_1, \ldots \in \text{dom}(H))(|\mathbb{M}_1 \models q(a_1, \ldots)) \iff \bigoplus \mathbb{M}_2 \models q(H(a_1), \ldots))$. Recall the following fact: if \mathbb{M} is a fully revealed model for \mathcal{L} , then every 1-type of $\mathcal{L}(C)$ -formulas, where $C \subseteq \mathbb{M}$ is at most countable, is realized in \mathbb{M} . Thus, every at most countable similarity between two infinite fully revealed models for \mathcal{L} can be extended to an isomorphism of these ones. Note that every revealment of a class \mathbb{X} is a fully revealed class. (See [3].)

Let \mathcal{J} denote the language of Peano arithmetic and let \mathbb{N} be the structure $\langle \mathbb{N},+,.,0,1,<\rangle$ for \mathcal{J} . We use α , β , γ , σ , ζ (possibly indexed) as variables ranging over natural numbers. Assuming $\alpha \leq \beta$, we denote $[\alpha,\beta]$ the interval $\mathcal{J}\gamma$; $\alpha \leq \gamma \leq \beta$; and $\tilde{\alpha}$ the class $\{\gamma,\gamma>\alpha\}$.

Suppose that H is an automorphism of the model \mathbb{M} , $\mathbb{M} \models \mathcal{J}$. This property of H can be expressed in an extension \mathcal{J}' of \mathcal{J} , $\mathcal{J}' = \mathcal{J} \cup \{h\}$, where h is a new unary function symbol. Indeed, let $\langle \mathbb{M}, \mathbb{H} \rangle$ be the expansion of \mathbb{M} to the structure for \mathcal{J}' . Then H is an automorphism of \mathbb{M} iff $\langle \mathbb{M}, \mathbb{H} \rangle \models \{g(x_1, \ldots) \longleftrightarrow g(h(x_1), \ldots), g \in \mathcal{J}\} \cup \{(\forall x)(\exists y)(F(y) = x)\}$.

<u>Main results</u>. Throughout this paper, \mathcal{F}_0 , \mathcal{F}_1 , \mathcal{F}_2 denote at most countable classes of functions such that

Fe $\mathcal{F}_0 \cup \mathcal{F}_1 \cup \mathcal{F}_2 \to \mathbb{F}: \mathbb{N} \to \mathbb{N}$ and there exist $\varphi(x,y,z) \in \mathcal{F}$ and γ with $\mathbb{F}(\infty) = \beta \longleftrightarrow \varphi(\infty,\beta,\gamma) \& (\forall \infty) (\exists !\beta) \varphi(\infty,\beta,\gamma)$. Let $\mathbb{H}: \mathbb{N} \to \mathbb{N}$ be a function, $\mathbb{X} \subseteq \mathbb{N}$. H majorizes (minorizes resp.) \mathcal{F}_0 on \mathbb{X} if $(\forall \infty \in \mathbb{X}) (\forall G \in \mathcal{F}_0) (G(\infty) \neq \mathbb{H}(\infty))$ ($\forall \infty \in \mathbb{X}) (\forall G \in \mathcal{F}_0) (G(\infty) \geq \mathbb{H}(\infty))$ resp.) holds. H is over constants if $(\forall \infty) (\exists \beta) (\forall \gamma > \beta) (\mathbb{H}(\gamma) > \infty)$. \mathcal{F}_0 is over constants).

Theorem 1. $(\forall \gamma)(\exists \sigma')(\exists H)[(H \text{ is an automorphism of } IN) & (H \text{ is identic on } \gamma) & (H \text{ majorizes } \mathcal{F}_1 \text{ on } \sigma')].$

Theorem 2. Let \mathscr{F}_2 be over constants. Then $(\forall \gamma)(\exists \sigma')(\exists H)[(H \text{ is an automorphism of } | N) & (H \text{ is identic on } \gamma) & (H \text{ minorizes } \mathscr{F}_2 \text{ on } \sigma')] \text{ holds.}$

An interval $[\alpha, \beta]$ is \mathcal{F}_{0} -large iff $(\forall F \in \mathcal{F}_{0})(F(\infty) < \beta)$.

Theorem 3. Assume that \mathscr{F}_2 is over constants. Then $(\forall \gamma)(\exists H) \cdot \{(H \text{ is an automorphism of } | N) \cdot \&(H \text{ is identic on } \gamma) \cdot \&(\forall \infty) \cdot [(\exists U) \subseteq \check{\varpi})(U \text{ is an } \mathscr{F}_0\text{-large interval} \cdot \& H \text{ majorizes}$ $\mathscr{F}_1 \text{ on } U) \cdot \& (\exists U \subseteq \check{\varpi})(U \text{ is an } \mathscr{F}_0\text{-large interval} \cdot \& H \text{ minorizes}$ $\mathscr{F}_2 \text{ on } U) \cdot \& (\exists \beta > \infty)(H(\beta) = \beta) \}$.

Remark. Each of Theorems 1, 2,3 guarantees that for every ∞ , the mapping Id $\wedge \infty$ can be extended to a non-trivial automorphism of NN.

Proofs

<u>Notation</u>. Let $\{B_k\}_{k \in FN}$ be an indexed sequence of classes. We shall write more briefly $\{B_k\}_k$ only.

Suppose that $\mathcal{F}_{ik}^{\dagger}_{k}$, 1=0,1,2. Assume that for i = = 0,1,2 and k \in N, $\Psi_{ik}^{\dagger}(x,y,z)$ and γ_{ik} are such that the statements

 $\mathbb{P}_{ik}(\infty) = \beta \longleftrightarrow \psi_{ik}(\infty, \beta, \gamma_{ik}) \& (\forall \gamma) (\exists ! \sigma) \psi_{ik}(\gamma, \sigma, \gamma_{ik})$ hold.

To simplify some following notations, we put $\sigma_{1k} = \gamma_{1k}, \quad \sigma_{2k} = \gamma_{2k}, \text{ keFN and } \sigma_{3k} = \gamma_{1\ell} \leftrightarrow \text{i=0,1,2 \& k=3.$$\ell$ + i.}$

Let \mathcal{K} be the extension of \mathcal{J} of the form $\mathcal{K} = \mathcal{J} \cup \{h\} \cup \{c_n, c_1\} \cup \{d_k\}_k,$

where h is a new unary function and c_1 , d_k are new constants. Let \mathcal{T}_1 be the following theory, formulated in \mathcal{K} : $\{\varphi(x_1,\ldots)\longleftrightarrow \varphi(h(x_1),\ldots);\varphi\in\mathcal{F}\}\cup\{(\forall x)(\exists\,y)(h(y)=x)\}\cup\{x<s_0\longrightarrow h(x)=x\}\cup\{c_1< x\longrightarrow (\forall\,y)\ (\psi_{1k}(x,y,d_k)\longrightarrow y< h(x));k\}.$ It is easy to see that the theorem 1 is equivalent to the following proposition:

$$(\forall \gamma_0)(\exists \gamma_1)(\exists H: N \rightarrow N)(\langle N, H, \gamma_0, \gamma_1, \{\sigma_{1k}\}_k \rangle \models T_1).$$

We can construct quite analogously the theories \mathcal{T}_2 and \mathcal{T}_3 in \mathcal{K} such that the theorem 2 is equivalent to the proposition

$$(\forall \gamma_0)(\exists \gamma_1)(\exists H: N \rightarrow N)(\langle N, H, \gamma_0, \gamma_1, \{\sigma_{2k}\}_k \rangle \models \sigma_2$$

and the theorem 3 is equivalent to

$$(\forall \gamma_0)(\exists H: N \rightarrow N)(\langle M, H, \gamma_0, 0, \{\delta_{3k}\}_k \rangle \vdash \Gamma_3.$$

Now, let i be fixed.

Assume that to given γ_0 , there exist

 γ_1 , a substructure M of M and a mapping $G:M\longrightarrow M$ such that

- (A) { γ₆, γ₄} υ { σ_{1k}}_k ∈ M
- (B) IM ≺ IN
- (c) $\langle M, G, \gamma_0, \gamma_1, \{\delta_{ik}\}_k \rangle = \mathcal{T}_1.$

Then there exists a mapping H: N -> N such that

and, consequently, Theorem i is true.

Proof. Put $\widetilde{\mathbb{M}} = \langle \mathbb{M}, \mathbb{G}, \gamma_0, \gamma_1, \{\sigma_{1k}^2\}_k \rangle$. Then a revealment $\widetilde{\mathbb{M}}^*$ of $\widetilde{\mathbb{M}}$ has the form $\langle \mathbb{M}^*, \mathbb{G}^*, \gamma_0, \gamma_1, \{\sigma_{1k}^2\}_{k \in FN^*} \rangle$, where X^* is the revealment of X. We have $\widetilde{\mathbb{M}} \prec_{\mathcal{K}} \widetilde{\mathbb{M}}^*$ and, especially, $\mathbb{M} \prec_{\mathcal{G}} \mathbb{M}^*$ is true, too. We deduce from this, (A) and (B), that $\mathrm{Id} \wedge (\{\gamma_0, \gamma_1\} \cup \{\sigma_{1k}^2\}_k)$ is a similarity between \mathbb{M} and \mathbb{M}^* . Let Z be an isomorphism of \mathbb{M} and \mathbb{M}^* which is identical on $\{\gamma_0, \gamma_1\} \cup \{\sigma_{1k}^2\}_k$. Put $\mathrm{H}(\infty) = \beta \Longleftrightarrow \mathrm{G}^*(Z(\infty)) = Z(\beta)^*$. Then Z is an isomorphism between $\langle \mathbb{N}, \mathbb{H}, \gamma_0, \gamma_1, \{\sigma_{1k}^2\}_k \rangle$ and $\widetilde{\mathbb{M}}^*$. We deduce from this that the assertion in question holds.

To finish our proof of Theorem i it suffices to find, to a given γ_0 , a number γ_1 , a substructure M of N and G:M \rightarrow M such that (A),(B), and (C) hold. We shall construct γ_1 , M and G in question by using some properties of indiscernibles in AST. Recall that there exists an unbounded γ_1 -class J of strong indiscernibles in N. (See [2].) We start with two lemmas which will be used frequently in the sequel. Let us introduce the following notation. Let $X \subseteq N$. We denote by γ_1 the smallest substructure of N such that the universe of γ_1 contains X as a subclass.

Lemma 1. Let I be a class of strong indiscernibles in N. Assume that $Z \subseteq N$ has the property $(\forall \bullet \in I)(Z \subseteq \bullet)$.

- (1) Let G_0 be an automorphism of $\langle Z \cup I, \langle \rangle$ which is identic on Z. Then there exists an automorphism G of the structure $M_{Z \cup I}$ and $G \supseteq G_0$ hold.
- (2) Assume, moreover, that I has no last element and I \leq J. Then I is cofinal in $N_{\mathbb{Z}_2 \setminus \mathbb{I}}$.

Proof. (1) We define the mapping G as follows: Suppose that $a \in N_{Z \cup I}$ is definable by the formula $\varphi(x, e_1, ..., e_1, ...)$ where $e_1, ...$ is an increasing sequence from I (i.e. $e_1 < e_2 < ...$ and $e_1 \in I$, $e_2 \in I, ...$), $e_1 \in I$, and $\varphi(x, y_1, ..., x_1, ...)$ bolds.

If $b \in N_{Z \cup I}$ is definable by $\psi(x, e_1, \ldots, z_1, \ldots)$ in N, where e_1, \ldots is an increasing sequence from I and $z_1 \in Z, \ldots$, then there exists an element $a \in N_{Z \cup I}$ such that $\psi(a, G_o^{-1}(e_1), \ldots, z_1, \ldots)$ holds. Therefore, the mapping G is onto $N_{Z \cup I}$.

To finish the proof, it suffices to prove the following: If $a_1, \dots \in \mathbb{F}_{Z \cup I}$, $\varphi(x_1, \dots) \in \mathcal{F}$ then $\mathbb{N}_{Z \cup I} \vDash \varphi(a_1, \dots) \Longleftrightarrow \iff \mathbb{F}_{Z \cup I} \vDash \varphi(G(a_1), \dots)$. But $\mathbb{N}_{Z \cup I} \prec \mathbb{N}$ and, consequently, we have to prove: If $a_1, \dots \in \mathbb{N}_{Z \cup I}$, $\varphi(x_1, \dots) \in \mathcal{F}$ then $\mathbb{N} \vDash \varphi(a_1, \dots) \Longleftrightarrow \mathbb{N} \vDash \varphi(G(a_1), \dots)$. Assume that $\psi_1(x_1, e_1^1, \dots, e_1^1, \dots)$ defines a_1 in \mathbb{N} , e_1^1, \dots is an increasing sequence from I and $e_1^1, \dots \in \mathbb{Z}$. We have

 $\iff g(G(a_1),...).$

(2) Assume a is definable by $g(x,e_1,...,z_1,...)$ in N, $e_1,...$ is an increasing sequence from I, $z_1,...\in Z$. Suppose that $e\in I$ has the property: $\{e_1,...\}\subseteq e$. We can easily see that a< e holds.

Lemma 2. Let $F:N \to N$ be a function, definable by the formula $\varphi(x,y,\gamma) \in \mathcal{F}(\{\gamma\})$ in N. Suppose that I is a class of strong indiscernibles in N which is unbounded in N. Let $e_0 < e_1 < e_2 < e_3$ be an increasing sequence from I, $\gamma < e_0$.

- Then (1) $F^{n} [e_1, e_2] \subseteq e_3$ and
 - (2) if F is over constants, then F" [e1,e2] & e.

Proof. (1) Let $\chi(e_2, e_2, e_3)$ be the formula $(\exists x \in [e_1, e_2])(F(x) \ge e_3).$

Then $\chi(e_1,e_2,e_3) \rightarrow ((e \in \mathbb{T} \& e > e_3) \rightarrow \chi(e_1,e_2,e))$, which is impossible.

(2) Let $\chi(e_0, e_1, e_2)$ be the formula $(\exists x \in [e_1, e_2])(F(x) \leq e_0).$

Then $\chi(e_0,e_1,e_2) \rightarrow ((e,f \in I \& e_2 < e < f) \rightarrow \chi(e_0,e,f))$, which contradicts the assuming property of F.

Let $\gamma_0 \in \mathbb{N}$, $i \in [0,2]$. We are looking for γ_1 , a substructure |M| of |M| and $G:M \longrightarrow M$ such that $(A)_+(B)_+$ and $(C)_+$ hold. Let K denote the class of all finite integers.

Case 1 = 1. Choose $\S \in \mathbb{N}$ with $\{\gamma_0\} \cup \{\delta_{1k}\}_{k} \subseteq \S$ and $I \subseteq J$ of the form $I = \{e_c\}_{c \in K}$ such that $(\forall c \in K)(\S < e_c)$ holds. Put $M = \mathbb{N}_{\S \cup I}$. Let G_0 be an automorphism of $(\S \cup I, <)$, satisfying: G_0 is identical on \S and $G_0(e_c) = e_{c+2}$ holds for every $c \in K$. Let $G \supseteq G_0$ be an automorphism of |M|. Assume that $x \in [e_k, e_{k+1}] \cap M$. We can see, by using Lemma 2, that $G(x) \ge 2 \subseteq G(e_k) = e_{k+2} > F_{11}(x)$ holds for every 1, k. The class I is cofinal in M and, consequently, $\gamma_1 = e_0$, |M| and |G| have the required properties (A), (B), and (C).

Case i = 2. Choose again $\S \in \mathbb{N}$ with $\{ \gamma_0 \} \cup \{ \delta_{2k} \}_k \subseteq \S$ and I, M as above. Let G_0 be identical on \S and let $G_0(e_0) = e_{0-2}$ hold for every $c \in \mathbb{K}$. Suppose that $G \supseteq G_0$ is an automorphism of M. We can see analogously as above (by using the presumption that \mathcal{F}_2 is over constants) that $\mathbf{x} \in [e_k, e_{k+1}] \cap \mathbb{N} \longrightarrow \mathcal{F}_{2k}(\mathbf{x}) > G(\mathbf{x})$ holds for every i, k. We can conclude that

 $\gamma_1 = e_0$, im and G have the required properties.

Case i = 3. Let again $\zeta \in \mathbb{N}$ be such that $\{\gamma_0\} \cup \{\delta_{3k}\}_k \subseteq \zeta$. Choose I \subseteq J of the form I = $\{e_{ko}\}$ k \in FN, $o \in \mathbb{K}$ with the property

An existence of I is guaranteed by the fact that J is an unbounded π -class. Put M = $M_{C \cup I}$.

We define $G_0: \{ \cup I \rightarrow \{ \cup I \text{ as follows: } \}$

0)
$$k \equiv 0 \pmod{3} \rightarrow G_0(e_{kc}) = e_{kc}, c \in K$$

1)
$$k \equiv 1 \pmod{3} \rightarrow G_0(e_{kc}) = e_{k,c+2}, c \in K$$

2)
$$k \equiv 2 \pmod{3} \rightarrow G_0(e_{k0}) = e_{k,c-2}, c \in K$$

3)
$$\propto \epsilon \hookrightarrow G_0(\infty) = \infty$$
.

- (i) $k \equiv 1 \pmod{3} \rightarrow x \in [e_{k0}, e_{k1}] \cap M \rightarrow F_{1j}(x) < G(x),$ $k, j \in FN,$
- (11) $k \equiv 2 \pmod{3} \longrightarrow x \in [e_{k0}, e_{k1}] \cap M \longrightarrow F_{2j}(x) > G(x),$ $k, j \in FN$.

We deduce, using Lemma 2, that the assertion

(o)
$$F_{0,i}(e_{k0}) < e_{k1}, k, j \in FN$$

holds, too. The class I is unbounded in M. We conclude from this and from 0), (o),(i),(ii), and 3) that $\gamma_1 = 0$, M and G have the required properties.

References

- [1] P. VOPĚNKA: Mathematics in the alternative set theory, Teubner Texte, Leipzig 1979.
- [2] A. SOCHOR, A. VENCOVSKÁ: Indiscernibles in the alternative set theory, Comment.Math.Univ.Carolinae 22(1981), 785-798.

[4] A. SOCHOR and P. VOPENKA: Revealments, Comment. Math. Univ. Carolinae 21(1980), 97-118.

Mathematical Institute, Charles University, Sokolovská 83, 18600 $\mathbf{P_{r}}$ eha 8, Czechoslovakia

(Oblatum 13.12. 1984)

