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A FUZZY MODIFICATION OF THE CATEGORY OF LINEARLY
ORDERED SPACES
A. SOSTAK

Abstract: Generalizing the well-known Hutton’s construc-
tion of the fuzzy unit intervel we define & functor F from the
category Ord of linearly ordered spaces into the category Fuz
of fuzzy topological spaces. Some properties of this functor
are established. Specifically, the connections between the pro-
perties of the linear order on X and the fuzzy topological pro-
perties of P(X) are studied. In case when X is connected, the
space F(X) is fuzzy homeomorphic to the space K(X) constructed
by A, Klein,
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§ 0. Introduction. In [16] we offered a construction which
for a given linearly ordered topological space associates in a
definite way a fuzzy topological space F(X) - the so called
fuzzy modification of a linearly ordered topological space X,
In the case when X = I (= [0,1]), the space F(I) is fuzzy ho-
meomorphic with the fuzzy closed unit intervel L7 which is one
of the most important and interesting examples of tazzy topolo-
gical spaces (see e.g. 17),18),051,[131,014],115]) e.s.)s The
fussy spaces P(R) and F(10,1[) are fuzzy homeomorphic with the
fuzzy real line [5] and the fuzzy open unit interval [5] res-
pectively. In [16] we began to study the properties of P(X).
In particular, there were esiablished some connections between
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the topological properties of X and the fuzzy topologioal
properties of P(X).

The principal aim of the present paper is to impart the
categorical character to this construotion. Namely, the main
object of the paper is a functor P from the category Ord of
linearly ordered topological spaces and inoreasing contimous
mappings into the category Puz of fuzzy topological spaces
and fuzzy contimuous mappings (Seotion 4).

The paper begins with Section 1 containing the prelimina-
ry information employed in the text. In Section 2 the defini-
tion of the fuzzy modification P(X) of a linearly ordered to-
pological space X from [16] is reproduced. Here we state also
the main results from [16] concerning the fuzzy topological
properties of F(X)., The third section is devoted to & construc-
tion which allows to associate with an inereasing ocontinuous
mapping £:X —» Y & fuzzy continuous mapping F(f) = Z:P(X) —
—» P(Y). The relation F appears to be functorial (Section 4).
Section 5 contains the construction of a fuzzy modification
for the ocase of a decreasing mapping.

Our definition of the fuzzy modification of a linearly
ordered space is essentially based on the generalization of
the fundamental ides of B. Hutton [7] which he has used for
the construotion of the fuzzy closed unit interval. An interes-
ting and quite different extension of B. Hutton’'s conmstruction
was carried out by A. Klein [10). He associates with a connec-
ted topological space X a fuzzy topological spece K°(X) (our
denotation) in such & way that K°(I) and K°(R) are equivalent
with the fuzzy oclosed unit interval and the fuzzy real line.
Moreover, the space X is contained in K°(X) as a fuzzy subspe-
ce. The aim of the last, sixth seotion is to show that if a
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topological space is both linearly ordered and connected, then
the both constructions P(X) and K°(X) may be considered as
equivalent,

§ 1. Preliminaries. A. Lineerly ordered spaces. Let X be
a set and < @& linear order on it (see e.g. [4], p. 17). As
usual, we write x<£a if x<a or x = a, For a,beX let
Ja,—[ = {xixeX, a<x}, Je— ,b[ = {x:x6X, x<Db}, Ju,b[ =
= {xi1xeX, a<x< b}, la,b] = {x:xcX, acx=b}, [a,b] =
= {xixeX, a&x<b}, etc.

A subset X of X is called bounded in X if there exist
a,beX such that xoc [a,b]. Specifically, X is bounded if it
has a maximal and a minimal elements. By a cofinal ocharacter of

X we understand the least cardinal number k for whioch there ex-
ists a subset X,CX of cardinality k such that for every xeX
there are ye X , y£x, and z€X , x&z (of. [4], p. 22),

One can easily check that B = {]la,b[:8,beX}{ is a base
for some topology 7’ on the set X3 1t will be called "the topo-
logy generated by the linear order < ", Throughout the paper,
by & linearly ordered (topological) space, we understand a tri-
ple (X,<,7’). It will be usually abbreviated as (X,<) or just
as X if there can be no confusion. Thus in our context the 1i-
near order in a linearly ordered (topological) space is assumed
to be fixed (in contrast with the usual terminology according
to which a linearly ordered topological space is defined as a
pair (X,7’) where the topology ¢’ ocan be generated by some 1i-
near order < on X (see e.g. [ 4], p. 82)).

Let (X,<) and (Y,<) be two linearly ordered spaces. A
mapping f£:X-—> Y will be called increasing if u<x, implies
£(xy) & 2(x,). Decreasing mappings are defined analogously.
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It is obvious that linearly ordered spaces and increasing
continuous mappings between them form a category; this category
will be denoted Ord.

B. Puzzy topological spaces., The terminology used in fuzzy
topology is rather unsteedy yet and various euthors proceed so-
metimes from different basic definitions. Therefore everyone
working in this field has to specify first the frames in which
he carries his studies out. As in our previous papers [16],[(17],
[18), we work chiefly in the R. Lowen’s category Puz of fuzzy
topologiocel spaces (mee the definition (1.3) below).

(1.1) Remark. Our preference of R. Lowen’s definition on
the whole was explained in [16] and [17]. However, all the re-
sults of this paper have obvious equivalents in the more general
category Fuz® of fuzzy topologioal spaces in the sense of C.
Chang (definition (1.3)° below). The most important of these
equivalents are formulated explicitly and numerated with the sa-
me number but with an additional superseript "o". The proofs
of theorems in the case of Puz® are ommited since they can be ob-
tained just by obvious and insignificant changes in the proofs
of the corresponding theorems for Fuz., Notice, however, that
both the versions are logically independent.

(1.2) Remark. The question whether the main results of this
paper can be transferred to the category of L-fuzzy topological
spaces ([6], see alsmo 17],[5] e.a.) is more problematic. The au-
thor has only partial results in this direction and they are not
reflected in this paper.

(1.3) Definition [111,(121, A fuzzy topology on & set X is
a family ¥ of its fuzzy subsets (i.e. T cC Ix), satisfying the
following three axioms:

(1) 4f w,v e then uAve€T;
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(2) if wmg€ T for all acAh, then V{ wu tacAfinpwe
(3) 7t contains all constants c:X—> I,
A fuzzy topological space is & pair (X, ) where X is a set and
T 1s a fuzzy topology on it.

(1.3)° Definition [3]. A fuzzy topology on a set X is &
family 1 of its fuzzy subsets, satisfying the axioms (1) and
(2) of Definition (1.3) and the following axiom

(3)° « contains the constents 0:X —> I and 1:X —> I.

A fuzzy topological spece is & pair (X,7 ) where X is & set and
« 1s a fuzzy topology on it.

(1.4) Definition [3],L111, Let (X,t) and (Y, &) be fuzzy

topological spaces (either in the sense of R. Lowen or in the
senge of C.L. Chang). A mapping £:X —> Y is called fuzzy conti-
mious 12 £™'(v) e ® for all » € 6.

(1.5) Denotation. The category of fuzzy topological spe~
ces in the sense of R. Lowen and fuzzy continuous mappings be-
tween them will be denoted Fuz.

(1.5)° Denotation. The category of fuzzy topological spa~
ces in the sense of C. Chang and fuzzy continuous meppings be-
tween them will be denoted Fuz®.

§ 2, Puzzy modification of a linearly ordered space. Ba~
sing on the fundamental idea of B. Hutton L7) we have defined

in [16] a construction which in a definite way associates with

every linearly ordered space X a fuzzy topological space F(X).

In this section we first reproduce the construction and then

following [16] state the theorems which establish some connec-

tions between the properties of the space X and the fuzzy to-

pological properties of its fuzzy modification F(X). All the
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proofs are omitted since they can be found in [16],

(2.1) The congtruction of F(X) [16). Let Z(X) denote the
set of all decreaging functions z:X —> I such that n&p z2(x) =1
and i“x‘zf z(X) = 0. For every x€X let

tex

int z(t), if x4min X
%(x7) = { and

2(x) «= 1, i x = min X
t), it X
2™ -{:3 z(t) X3 max
z(x) = 0, if x = max X,

Por z,5 e Z(X) we write s~ 5  1ff z(x") = z(x") gnd u(x*) =
= z°(x") for every xc¢X. Obviously, ~» is an equivalence rela-
tion on Z(X). Let [zl = {3 € Z(X):z~2 '} and let F(X) denote
the set of all equivalence classes [z], i.e. P(X) = z(x)/~

Por 8ll a,bc X let fuzzy sets ?\b and Ca of F(X) be defined
by the equalities A lz) =1 - 5(b7), and (@ (2] = s(a®). 12
6&¢ I, then we use the same symbol for the conatant function

e1?(X) —» I, Let & be the fuzzy topology on F(X) having o =
= {Aps Pgt®P€XJU {0106 I a8 & subbase, The fuzzy topolo-
gloal spsce (F(X),n) will be usually written just as P(X) and
oalled the fuzzy modification of the linearly ordered space X.

(2.1)° The gonstruction of F°(X). In the ocategory Fuz®,
the fuzzy modification P°(X) of a lineerly ordered space X is

defined just as in (2,1) with the only difference that the fuszzy
topology « ° on F(X) is defined by the subbase dr® =
- &Kb,so'xa,bex'ﬁ (instead of ar ).

(2.2) Exampleg [16]. The fuzzy spaces F(R), P(I) and
?(30,1() are fuszy homeomorphic with the stratified fuzzy real
line [14), the stratified fuzzy closed unit interval [14] end
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the stratified fuzzy open unit interval [14] respectively.

(2.2)° Examples. The fuzzy spaces F°(R), FO(I) and
r°(jo,1c) are fuzzy homeomorphic with the fuzzy real line [5],
the fuzzy closed unit interval [7] and the fuzzy open unit in-
terval [7) respectively.

R. Lowen has defined and widely used the embedding functor
@ 31Top — Fuz (see e.g8. [12]). For a topological space X the
fuzzy topological space @ (X) can be in & natural way consider-

.

ed as a fuzzy copy of X.

(2.3) Theorem [16], If X is a linearly ordered space,
then co(X) is fuzzy homeomorphic to a (proper) fuzzy subspace
of F(X).

Since the category Top of topological spaces and continuous
mappings may be in an obvious way considered as a subcategory of
l‘uz°. the corresponding equivalent of the previous theorem is

even more lucid:

(2.3)° Theorem. If X is a linearly ordered space, then X

is fuzzy homeomorphic to a (proper) fuzzy subspace of F°(X).

(2.4) Theorem [16), If X is an infinite linearly ordered
space, then its weight is equal to the fuzzy weight of F(X),.

(The fuzzy weight of a fuzgzy topological space is natural-
ly defined as the minimal cardinality of the bases of its fuzzy
topology [ 16].)

We shall not state explioitly the equivalent of (2.4) as
well as the equivelents of (2.5) - (2.9) below for the category
Pus® becsuse one cen obtain them just by replacing F(X) with
r°(x).
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(2.5) Corollary (cf., [13]). The fuzzy spaces F(R), P(I)
and F(J)0,1[) have countable fuzzy weighis.

(2.6) Theorem [16]. If a linearly ordered space X is boun-
ded, then F(X) is fuzzy oc-compact for all o< & [ 0,1[. Conver-
gely; if F(X) is fuzzy oc -compact for some oC € [ 0,1[, then
X is bounded.

(For the definition of fuzzy o¢ -compactness see [5] or
[121.)

(2.7) Corollary (cf, [51,[13)). F(I) is fuzzy o< -compact
for all owe [0,1[3; F(R) and F(]0,1[) are not fuzzy o« -compact

for any . ¢ [0,1L.

(2.8) Theorem [16]. If X is an unbounded linearly ordered
space, then the fuzzy Lindelof number of F(X) is equal to the
cofinal character of X (see § 1.4).

(The fuzzy Lindelof number of & fuzzy space Y is defined
as the minimal cardinel k such that for every o« e [0,1[ every
o¢ -shading [5] has an of¢ -subshading of cardinality less or
equal to k.)

(2.9) Theorem [16]. The following conditions are equiva-

lent for & linearly ordered space X:

(a) X has a Gy -diegonal;

(b) X is stratifiable;

(¢) X is metrizable;

(d) PF(X) is fuzzy stratifiable.

(The equivalence of the first three conditions is a well-
known fact of general topology (see e.g. [4] and [1).) For the
definition of a topological si;ratiﬁ.a.ble space see (2] and [1];
fuzzy stratifiable spaces were introduced and studied in 17,
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[18].. The author is sorry sbout the confusing consonance of the
two completely different notions of a fuzzy stratifiable space
and a stratified fuzzy topological space ({19],[13]) e.a.).)

§ 3. Puzzy modification of an increasing continuous mapping
(3.1) Let (X,<) and (Y,<) be linearly ordered spaces and
£:X —> Y an increasing continuous mepping. Por every z € Z(X)
let £*(2) = u:Y —> I be defined as follows:

inf z(x), if Je,y1ln 2(X)+ ¢
u(y) = { foddy

1" it Je ,y1Nn 2(X) = g,

(3.2) Proposition. Let 24,z,& Z(X) and uy = f*‘(z1),
uy = t*(zz). If z4~z2, in Z(X), then uy~u, in Z(Y).

Proof. Let y,< Y and let u€Z(Y). To show that u,(y,) =
= uz(y;) consider the following possible cases:

a) f"]e—- '70[#‘ ¢ and there is no maximal element in

t"]e—- ,yo[. Then u(y;) = inf u(y) = inf
H<nfy

int z(x) =
Yy, £(0€y

= }(rg(w z(x) -fi(e‘ﬂwo z(x7). 1

b) There exists x, = max £~ ] <— ,10[ . Let 34 = £(xy) <
< Yo Then either x4 is the maximal element in X and hence
u(y;) = u(yy) = z(xq) = 0, or there exists x,€X, x,< X,, such
that there is a jump [4] between xq and x, (otherwise f cannot
be continuous) and therefore u(y;) = u(y,) = 5(11) = z(x;_).

¢) r"134—— ,yo[ = J. Then u(y) = 1 for every y< y, snd
hence u(y;) = 1.

Thus in every case we conclude that u, (y;) = uz(y;).

It remains to show that u,(y}) = u,(y}). Consider the next
possible cases:

8) £y, —>[« @ and there is no mininal element in this

+
. = - e = =
et Then u(ro) = BBy, M) = By, ey P "84
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= m z(x*).
ch >% -l

b) There is xy = min £~ ly,,—>[. Let y; = 2(x;). Then
either x; is the minimal element of X and hence u(y:) = u(y,) =
= z(xq) = 1, or there exists x,e X, X,< x4 such that there is

8 jump between x, and x, (otherwise f cannot be continuous) and
therefore u(y:) = sup u(y) = sup inf “}Z(X) = inf 2z(x) =

°

a4 >np Yy>ap, 00 fx)£y,
- 2(x)) = z(z}). ’ !

c) e~ 130 —>L0 = @#. Then obviously u(y) = 1 for every
¥>7y, and hence u(y;) =1,

Thus again in every case u, (y;) = ug(y;).

This proposition ensures the correctneass of the following
definition:

(3.3) Definition. Let f£:X -—> Y be an increasing continuous
mapping. The equality £( ] = [u) where [2]€F(X), u = £¥(z)
and [ul ¢ P(Y) defines a mapping ?xl‘(x)-—a F(Y).

The mapping ? will be called a fuzzy modification of the
mapping f.

(3.4) Theorem. The mapping ?sF(I)——-& F(Y) is fuzzy continu-
ous.

Proof. Let x = {A,, @ ,28,be X3V icioelf be the stan-
dard subbase of the topology on F(X) (see (2.1)), and let ana-
logously Il = {L.,Rdse,dcY}u{o:oeI} be the standard subbase
of the topology on F(Y). (Here the fuzzy sets L.,Rd:l‘(Y)_—p I
are defined by the equalities L, [ul =1 - u(e”), Ry[u] = u(a®)
for all (uleP(¥Y).) Since the preimege of every constant
c1P(Y) —» I under T is obviously the same constant ¢ = 3’.\'1(0)1
tF(X) — I, to show the continuity of f it suffices to check
that the preimege of ell L, and Ry are open in F(X).

Teke some L, and let [z)e P(X). Then ks (L) Lz] =
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- I..? (8] = Ly Lu) = 1 = u(e™) where u = £%(z). Conelder the
following possible cases:

a) 1 «—, e[ 4 ¢ and there is no maximal element in

1"1]<—- se[. Then u(e”™) = inf inf z(x) = inf 2(x) =
Y<e £0a<y fix1<e

= int z(x"). Hence ?'1(13 Ylzlel e A 2z(x™) =
flx)<e J fxi<e

" e (TN = g et

b) x; = max £~ J«— ,e[. Then the contimuity of f implies
that either x, is the maximel element of X and hence u(e”) =
= z(xq) = 0, i.e, ?'1(}.) [2] = 1, or there exists x,¢ X, x,< X, )
such that there is & jump between x, and x,. In this case u(e )=
= 2(x;) = 2(x3) end therefore £"'(L) [zl = 1 = 2(x5) = A L2l

e) £ e s@[ = #. Then u(y) = 1 for every y<e, hence
u(e™) = 1 ana (1) = 0.

Thus in every case the preimage ' (L.) is an open fuzzy
subset of F(X).

Now tske some Ry, Then £™'(Ry) [5] = R,F (2] = Ry[ul =
= u(a*), where u = £* (z). Consider the following possible ca-
ses:

1) £711a, —»[+4 ¢ and there is no minimel element in it.

+
Then u(d™) $pd u(y) z&pd }&f‘,,“ z(x) mg>d' z(x) =

+ 1
- :gg>dz(x ), and hence ¢ (Rd) ‘(xd. ®xe

2) x, =min £7'Jd,— [ . Then the continuity of £ implies
that either x; = min X and hence u(d*) = z(xy) =1, 1.0
™~ (nd) = 1, or there is x,< x; such that there is & jump bet-
ween x, and xq. In this case u(d®) = z(xq) = z(x;), i.e,

gaxz'
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3) r’1ld, —>[ = ¢, Then u(y) = O for every y> d and hence
u(d*) = 0. Therefore ™~ (Ry) = 0.

Thus in every case the preimage ?"1 (Rd) is fuzzy open in X,
This completes the proof of the theorem.

(3.3)° Since the fuzzy modifications F(X) amd P°(X) (see
(2.1)°) coincide as sets, the mapping f defined in (3.3) mey be
considered also as & mapping f:F°(X) —> FO(Y).

(3.4)° Theorem. The mapping ?xl"’(l)——» Po°(Y) is fuzzy con-

tinuous,

(3.5) Proposition. If f:X—» Y is en increasing homeomor-
phism, then £:7(X) — P(Y) 18 & fuzzy homeomorphism,

Proof. Let £7':Y — X be the inverse of f. We shall first
show that (£~1)* o £*(z) = z for every ze Z(X) and
e*(£~1)* (u) = u for every uc Z(Y). This will precisely mean
that (f")“ 12(Y)—> Z(X) is the inverse of £* :Z(X)— 2z(¥).

Since £ is & bijection, the equality £* (z) = u means in
this case that z(x) = u(y) for x = £(y). Hence (f")* £*(z)(x)=
= z(x) for every z € Z2(X) and all xe X; thus, (=H)* £%(2) = 3.
The equality £* (2'1)* (u) = u for every uc Z(Y) can be proved
similarly.

Since (f")* is the inverse of £* , it is easy to conclude
now that (21):P(Y) — F(X) is the inverse of £:P(X)—> F(Y).
Moreover, since the mappings f and !'1 are continuous from Theo-
rem (3.4) 1t follows that £ ana ! are fuzzy continuous. Hence

Tisa fuzzy homeomorphism.

(3.5)° Proposition. If £:X—> Y is an increasing homeo-
morphism, then £:P°(X)—» P°(Y) is & fuzzy homeomorphism.
(3.6) Remark. One may consider that it is more natural to
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define £* (z) = u:Y—> I in the following way (which is obvi-
ously not equivalent with (3.1)):

fa<y

int 2(x), it Je— ,yl N £(X) %¢
u(y) = {
1 y 12 Je— ,y[n £(X) = &,

The analog of Proposition (3.2) holds for £* defined in such a
way, too, and, moreover, the assumption of continuity of £ is
superfluous in this case. However, on the other hand, the ana~-
log of Theorem (3.4) does not hold for the corresponding £ even
if £ is continuous., This is one of the reasons for our choice
of Definition (3.1) as the basic one.

§ 4. Punctor P. Let Ord be the category of linearly order-
ed topological spaces and increasing continuous mappings. In
this section we define basing on the results of the two previous
sections an embedding functor F:0rd —» Puz (see 1.5)). Inciden-
tally we consider also an embedding functor F°;0rd —» Fuz® (see
(1.5°) which is the natural analog of F for the case of Chang ‘s
definition of fuzzy topological spaces.

(4.1) Definition of P:0rd —» Puz. For every object X of
Ord let F(X) be the fuzzy modification of X (see (2.1)) and for
every morphism £:X—> Y in Ord let P(f) = fiP(X)—> F(Y) (see
(3.3)).

(4.2) Theorem. F is & functor from the category Ord into

the category Fuz,

Proof: follows immediately from the next two lemmas.

(4.3) Lemma. Let (X,<), (Y¥,<) and (T,<) be linearly

ordered spaces and f£:X—>» Y, g:Y —> T increasing continuous
mappings. Then F(geo ) = P(g)o F(£).
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Proof. Dencte h = gof and let z& F(X), u = £*(z)e z(Y),
v=g*¥(u)ez(T), w=h*(z)e 2(T). To prove the lemma it suffi-
ces to show that v = w, From the definition (3.1) it follows
that for every teT

inf 2(x), 12Jw— , t1A B(X)pd

w(t) = haat
9 1f]le— , tJN K(X) =g ,
inf  u(y), ifle—, t1n g(¥) 4@
Y(t) - { w‘t
9 1t)e~, tlng(y) =g .

Moreover, for every ye Y
inf  z(x), if Je—, y] N 2(X) 40
aly) = { )6y
1 s 1fle—, 31N 2(X) =g .
FPix teT. The two possible cases are:
8) Je—, t1NNh(X) =g, Then w(t) = 1, IfJe—, t1n &(¥) =
= @, then v(%) = 1, too. Otherwise ]«— ,t1Nn g(Y)4 @ and hence
Je— 471N 2(X) = @ for every ye g"’]q-— st], and therefore
also v(t) = inf u(y) = 1,
Fypst

b) Je— ,t1Nn h(X)$@. In this case w(t) =~ int z(x). On
AGN £t

the other hand, in this case Je— ,y1n £(X)4 @ for some

vc 81 1e— ,4]. Therefors v(t) = int o B - jnt 41(1:{‘@2(1)- '

- %’“:(x). Hence in every ocase v(t) = w(t).

(4.4) Lemma, If 1:X —>X is the identioal mapping, th.n
P(1)1¥(X) — P(Y) ir also the identity.
Proof: is obvious,

(4.5) Propositiog. If f,,f,:X—» Y are two increasing
contimious mappings and £+ f,, then £, f,.
Broof. Take x,& X such that f,(x)) = y;, £,(x,) = y, and
assume for definiteness that y,< Yoo Let ze Z(X) be defined by
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the equality

1, it x<x,

l(x) - {
0, 1t xZx, ,

and let uy = £¥(z), u, = £¥(z). It is obvious that uw,(y;) <
£u,(y)= z(x,) = 0 while u,(y3) = #g*z u(y) = .
=iat o ®(x) = 1. Thus u(73)4 vy (y3) wnd hence 2,45,
Theorem (4.2) and Proposition (4.5) immediately imply the
main result of this section:
(4.6) Corollary, P;Ord — Puz is an embedding functor,

(4.1)° Definition of F°:0rd — Pus®, Por every object X
of 0rd let F°(X) be defined as in (2.1)° and for every morphism
£:X — Y in Ord let F°(2) = £:¥°(X) — PO(Y) (see (3.3)°).

(4.6)° Theorem. F° is an embedding funotor from the cate-
gory Ord into the oategory Fuz®.

§ 5. Puszy modifioation of a decreasing continuous mepping,
Since the composition of two decreasing mappings is not decreas-

ing except for some special cases, it is impossible to develop
the previous theory to the full extent for the case of decreas-
ing mappings. However, there are some ways in which one can
partially extend the study of ﬁn fuzzy modification of a mono-
tone continuous mapping to the case of a decreasing mapping.
One of tl_xuo ways is sketohed below.

Let (X,<) and (Y,<) be two linearly ordered spaces and
let < ° be the inverse order om Y, i.e. < ¥ 12 y,<74.
The pair (Y, <') will be usually abbreviated to Y'.

It is obvious that ue Z(Y) if? 1 - uez(Y’).

(5.1) Lemma, Let u,,u,€2(Y). Then wy~u, in Z(Y) iff
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1 -u~1 - w, in %(¥°).

Proof is obvious.
This lemma ensures the correctness of the following defi-
nition:

(5.2) Definition. The equality g L ul = [1 = u) determines
a mepping o 1?(Y7) — P(Y).

(5.3) Lemms, The mapping o~ :P(Y) —» P(Y") defined by
the equality 9'1. [u]l = [1 - u] 1s the inverse of ¢ . Speoi-
tically, ¢ :1P(Y')—> F(Y) is & bijection.

Proof is obvious.

(5.4) Proposition. @ s¥(Y')—» P(Y) is a fuzzy homeomor-
phi-n-

Proof, Show directly that ¢ end @~

are fugzzy conti-
nuous and apply the previous lemma,

A decreasing continuous mepping £:X —- Y can be obviously
considered as an increasing continuous mapping £ 3X— Y~ with
the seame values. Applying (3.3) we obtain a fuzzy contimmous
mapping :‘:':P(I) — F(Y).

(5.5) Definition. Let f£:X—»> Y be a deoreasing con tinuous
mapping. Then its fuzzy modification f:F(X) —> P(Y) is defined
by the equality £ = gof”.

(5.6) Theorem., If £:X—» Y is a decreasing continuous map-
ping, then its fuzsy modification f:F(X)—» F(Y) is fuzzy con-

tinuous,
Proof follows immediately from (3.4) and (5.4).

(5.7) Proposition. If £:X—> Y is a decreasing homeomor-
phism, then ?xl"(x)—-v F(Y) is a fuzzy homeomorphism.
Proof. Use (3.5) and (5.4).
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It is quite obvious how to reformulate the results of this

section for the case of the category Puz®,

§ 6. Puzzy modification of a linearly ordered connected
space. Taking as a basis the fundamental ideas of B, Hutton

[ 71, A. Klein [10) has generalized the comnstruction of fuzzy
unit interval in a completely different way than ours. For e-
very connected topological space X he has defined a fuzzy topo-
logical space which we shall denote K°(X) and which has some
important properties (see Definition (6.9)° and Remark (6.15)
below). Specifically, the spaces K°(I), K°(10,1() and K°(R)

are fuzzy homeomorphic with the fuzzy closed unit interval, the
fuzzy open unit intervel and the fuzzy real line respectively
(cf. (2.2)9). The space X is contained as & fuzzy subspace in
K°(X) (cf. (2.3)°).

If both constructions K°(X) and F°(X) ere suiteble and
natural generelizations of Hutton ‘s fuzzy unit interval, one
could hope that for a linearly ordered connected space X the
fuzzy spaces K°(X) and FO(X) are to be isomorphic. The aim of
this section is to show that this is really the case, We be-
gin with a brief outline of the construction from [10] but in
a form appropriately modified for the case when the space is
both linearly ordered and connected.

Thus, let X be & linearly ordered connected space and let
M(X) denote the set of all monotone mappings (both increasi ng
and decreasing) z:X—> I such that sup 2z(x) = 1 and inf z(x)=

xe& X x6 X

= 0. (Specifically, Z(X)c M(X).)
The following two lemmas can be easily proved,

(6.1) Lemma (cf. [10], Proposition 1.1). z:X—> I is
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monotone iff for all «, 3€ I the set 2! [, 3] is commeo-
ted.

(6.2) Lemme. If o€ 10,1 and £~ (k)4 @, then X\ s~ (%)
is disconnected,

(6.3) Definition (cf. [10], def. 1.3). Por z €M(X) and
o« € [0,1[ 1ot

z"loc.nns" [0, =x[ , if °<,<%
Kw(ﬁ) -{

0,0l n s [ -k, , 1wz 5

(6.4) Definition. For z4,%,€ M(X) let z, =~ £, iff H“‘(z.‘)-
- B“_(zz) for every « € L0,1[.

It is obvious that ~: is en equivalence relation on M(X).
If z€ M(X) ket (z) = §2 712 € M(X), 2z =~ 3}.

(6.5) Definition. Let K(X) denote the set of all = -equi-
valence classes, i.e. K(X) = M(X)/, .

Assume that o« =2 %. Since X is connected, there exist a,beX

such that 2~  [0,] = (8, —>[ &nd 5~ [1 = ¢ 11 = Je— ,b)
(see [4]). Moreover, a<¢b in this case (otherwise for yelb,al
the inequality 1 - < 2(y) < ¢ would imply o > %). Therefo-
re Hw(s) =[a,b).

Applying similar reasonings, one can easily show that in

case «,<% s & ¥ 0 there exist a,b¢ X, a<d such that E‘(z) =
= [a,b], but H (5) has one of the following four forms: [a,b],
{a, [ , Je—,b) or X. Since X is connected, applying [4], PP.
281, 457, we get from the above the mnext

(6.6) Lemma (cf. [9), Lemma 3.5). If o % O, then H‘(z)
is ocompact.
IftL< % and o <= O, then the monotoness of z allows %o
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conolude that Ja,b[c z™'] oo s 1= [c[a,b]l. Moreover, sin-
ce X is connected, la,bl = Int Ll P s 1 =x [ . Similar in-
clusions may be written also for H (z). For example, if B (2)=
= [a,—[ then la, —[c g1 s 1 =x[cla,—[ and

Int 5”1 s 1=« =]oc ,— [ . Hence we derive the fol-
lowing two statements.

(6.7) Lemma, If o < %, then either

Hec(s) =Int s~ 1o s 1 =e[ or Hoc(z) is & singleton.

(6.8) Leama, If ¢ < %and z,.nzcn(i) then H (z,) =
= B (5,) inplies that Int 57'Jot , 1 = oc[ = Int 23'1ac,1 =l .

From the previous three lemmas one notices that the set
K(X) ocoincides with the set X(I) defined by A. Klein in L101.
Let «° be the fuzzy topology on K(X) = X(I) defined exactly as
in [10].

(6.9)° Denotation. The fuzzy topological space (K(X), °)
will be denoted K°(X).

Our next goal is to establish a natural fuzzy homeomorphism
between F°(X) and K°(X).

(6.10) Lemma, If z€M(X), then £ =1 - =,
Proof is easy (of. also [10), Lemma 3.3).

(6.11) Corollary. Bvery class (z)e K(X) contains a decre-
asing member z € (i).

(6.12) Lemme. Let 3, .szez(x). Then 5.~ 5, iff B‘(q) -
= B (5,) for all « € [0,1[.

(6.13) Definition. Define the mapping ¢ :F(X) — K(X)
by the equality ¢ [s] = (z).

Lemma (6.12), Definition (6.4) and Corollary (6.11) ensure
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that the mapping @ is one-to-one and onto.

Reasonings quite similar to the ones used in the proof of
L10], Theorem 3.4, show that the mapping ¢ :F°(X) —> K°(X) 1s
fuzzy continuous end fuzzy open. Now we can sum up the obtained
information in the following

(6.14)° Theorem. Let X be a line arly ordered connected
space. Then the mapping ¢ :FO(X) — K°(X) defined by the equa-
1ty olzl = (z) is & fuzzy homeomorphism,

(6.15) Remark. In this section as everywhez“o in the paper
the superscript "o" is used to mark those statements and const-
ructions which deal with the category Fuz® (in contrast with
the category Fuz (see (1.5)°%, (1.5))). Since the originel con-
struction of A. Klein was fulfilled just for Puz°. the exposi-
tion of this section is presented in the form of Fuz°, too,
However, quite obvious changes in the text allow to obtain the
corresponding analogs for the category Fuz.

Namely, let < be the weakest fuzzy topology on K(X) which

contains <t ° and all constants.

(6.9) Denotation. The fuzzy topologicel space (K(X), )
will be denoted just K(X).

Since the preimege of a constant fuzzy set is the same
constant fuzzy set and since preimages preserve suprema and in-
fime of fuzzy sets, from (6.14)° we can now obtain the follow-
ing

(6.14) Theorem. Let X be a linearly ordered connected
space. Then the mapping < :F(X) —» K(X) defined by the equeli-
ty ¢ (2] = (2) is a fuzzy homeomorphism.
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