

Werk

Label: Remarks

Jahr: 1985

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0026|log41

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ANNOUNCEMENT OF NEW RESULTS

THRESHOLD MOYING AVERAGE MODEL

Alexandr Puchs (Institut hygieny a epidemiologie - HPNP, Srobárova 48, 10042 Praha 10, Czechoslovakia), received 31.1.

Define a partition of real line R (R=S₁ $\cup \ldots \cup$ S_h) by an ordered set of thresholds $\{p_1,\ldots,p_{h-1}\}$; further define n real functions $b_k(.)$ constant on each of subsets S₁, i=1,...,h. Threshold moving average time series $\{X_t\}$ is defined by

$$X_{t} = Y_{t} + \sum_{k=1}^{m} b_{k}(Y_{t-u_{k}}) Y_{t-k}, t=...,-1,0,1,...,$$

where $u_k \in \mathbb{N}$ and $\{Y_t\}$ is the strict white noise. The above model is studied from the point of view of stationarity, invertibility and estimation of parameters. Main results follow.

Stationarity. a) Let $u_k=k$, k=1,...,n. Then $\{X_t\}$ is stationary.

b) Let $u_k=d$, $d\in \mathbb{N}$, $k=1,\dots,n$. Then $\{X_t^{\frac{1}{2}}\}$ is stationary. Mean and autocovariance function are calculated for the mentioned model; for n=1 and for the Gaussian white noise, the marginal density is obtained.

Invertibility. Let et be the error arisen from Granger-Andersen's procedure of estimation of white noise.

- c) Let h=2, $p_1=0$, $|b_k(y)| \le \gamma_k$, $y \in \mathbb{R}$, $k=1,\ldots,n$ and $\sum \gamma_k < 1$. Then $\lim_{t\to\infty} \mathbb{E}|e_t| = 0$.
- d) Let $|b_k(y)| \le \gamma_k$, $y \in \mathbb{R}$, $k=1,\ldots,n$ and $\sum \gamma_k < 1$. Then there exists a real c such that $\lim_{t\to\infty} \mathbb{E} |e_t| < c$.

<u>Estimation</u>. For regular systems of densities, maximum likelihood estimators give consistent and asymptotically normal estimates of parameters.