

Werk

Label: Article Jahr: 1985

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0026|log40

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE 26,2 (1985)

ON THE COMPLEXITY OF THE SUBGRAPH PROBLEM J. NEŠETŘIL, S. POLJAK

Abstract: The complexity of the problem "Does a given graph contain a complete subgraph with k vertices?" is $O(n^k)$.

Key words: Complexity of the subgraph problem, complete subgraph.

Classification: 05C99

This note is motivated by the complexity of the following decision problem:

Given a graph G and a positive integer k, does there exist a subgraph of G isomorphic to K_k (= the complete graph with k vertices)?

The following particular question was considered independently by L. Lovász and one of us:

Is the complexity of the above problem $O(n^k)$?

In this note we give a positive answer to this question in a slightly more general form. Let us note that we have been informed by L. Lovász that F.K. Chung and R. Karp obtained independently also a solution to the above problem.

Let us stress that all the solutions are based on the fast matrix multiplication and that it is not clear whether one could devise a purely combinatorial algorithm.

1: Fast recognition of complete subgraphs

1.1: First we show how to detect a triangle:

Let G be a graph with vertices x_1, \ldots, x_n and let A be the adjacency matrix of G (i.e. $a_{ij} = 1$ if x_i, x_j form an edge of G, $a_{ij} = 0$ otherwise). Compute the matrix $B:=A^2$. Then the graph G does not contain a triangle if and only if $\min(a_{ij},b_{ij})=0$ for all i, j (as b_{ij} is the number of paths of length 2 between x_i and x_j). The complexity of this precedure is $O(n^{cc})$ providing we use an $O(n^{cc})$ algorithm for the matrix multiplication. It is well known that one may achieve cc < 3 (see Concluding remarks). If $0 < a_{ij} \le b_{ij}$ for some i, j then G contains a triangle of the form $\{x_i, x_j, x_k\}$. The third vertex x_k can be found in O(n) steps by checking all the remaining vertices.

1.2: This procedure may be used for detection of complete subgraphs of size 3ℓ in $O(n^{\ell \cdot d})$ steps as follows:

For a given graph G of size n we construct an auxiliary graph H of size $O(n^\ell)$ with the following property: H contains, a triangle iff G contains a complete subgraph of size 3ℓ .

Thus the detection of triangles in H yields an $O(n^{\ell \cdot \infty})$ algorithm for the detection of a complete subgraph of size 3ℓ .

The graph H may be defined as follows:

 $V(H) = \{Y \subseteq V(G); |Y| = 1 \text{ and } Y \text{ forms a complete subgraph in } G\}$

 $E(H) = \{\{Y,Y'\}; Y \neq Y' \text{ and } Y \cup Y' \text{ forms a complete subgraph in } G\}.$

1.3: Let us also remark that the vertex sizes which are not divisible by 3 do not present a difficulty by the following:

For a subset Y of vertices of graph G = (V, E) put $N(Y) = \{v \in V \mid \{y, v\} \in E \text{ for every } y \in Y\}$.

N(Y) is the set of all common neighbors of the set Y.

Consider all graphs G_1, \ldots, G_n which are induced by the sets $N(\{x\})$, $x \in V$. Then a graph G_1 contains a complete subgraph of size 3ℓ if and only if G contains a complete subgraph of size $3\ell + 1$.

Similarly if we consider all graphs which are induced by the sets $N(\{x,y\})$, $\{x,y\}\in E$ we can detect a complete subgraph of size $3\ell + 2$.

Thus, using the previous $O(n^{\ell \cdot \alpha})$ for a 3ℓ -complete subgraph, we can detect a $(3\ell + 1)$ -complete subgraph of a graph with n vertices in $O(n^{\ell + \ell \cdot \alpha})$ steps, 1 = 0,1,2,

2: Fast recognition of arbitrary subgraphs

2.1: Here we prove

<u>Proposition</u>. Let F be a fixed graph with k vertices. Let there exist an $O(n^{\alpha(k)})$ algorithm for finding a K_k in a graph with n vertices. Then the following two problems can be solved in $O(n^{\alpha(k)})$ steps for arbitrary graph G with n vertices:

- (1) Does G contain F as an induced subgraph?
- (2) Does G contain F as a (not necessarily induced) subgraph?

We give two proofs.

2.2: <u>Proof I</u>: For a given instance F,G of the problem ((1) or (2)) we construct suxiliary graphs H_1 and H_2 of size $k \times n$ with the property that H_1 contains a complete graph of size k iff the answer to the problem (1) is positive, i = 1,2.

Put $V(H_1) = V(H_2) = V(F) \times V(G)$. Denote by E_1 , E_2 and E_3 the following three sets:

 $\{(f_1,g_1),(f_2,g_2)\}\in \mathbb{E}_1 \text{ iff } f_1\in V(\mathbb{F}), g_1\in V(\mathbb{G}), f_1+f_2 \text{ and } g_1+g_2.$

 $\{(f_1,g_1),(f_2,g_2)\}\in \mathbb{E}_2 \text{ iff } f_1\in V(\mathbb{F}), g_1\in V(\mathbb{G}), \{f_1,f_2\}\in \mathbb{E}(\mathbb{F})$ and $\{g_1,g_2\}\in \mathbb{E}(\mathbb{G}).$

 $\{(f_1,g_1),(f_2,g_2)\}\in \mathbb{B}_3 \text{ iff } f_1\in V(\mathbb{F}), g_1\in V(\mathbb{G}), \{f_1,f_2\}\notin \mathbb{B}(\mathbb{F})$ or $\{g_1,g_2\}\in \mathbb{B}(\mathbb{G}).$

Put $E(H_1) = E_1 \cap E_2$, and $E(H_2) = E_1 \cap E_3$.

It is easy to see that these graphs have the desired properties.

2.3: Proof II: We consider only the case $k = 3\ell$.

We construct an auxiliary graph H as follows:

Let $\mathbf{X}_1 \cup \mathbf{X}_2 \cup \mathbf{X}_3$ be a partition of the set V(F) into parts of size \mathcal{L} . Denote by \mathbf{F}_1 the subgraph of F induced by the set \mathbf{X}_1 and denote by $\mathbf{F}_{1,j}$ the subgraph of F induced by the set $\mathbf{X}_1 \cup \mathbf{X}_1$, i, j = 1,2,3, i+j.

Denote by V_1 the set of all embeddings of F_1 into G (explicitly: $f \in V_1$ iff $f: X_1 \longrightarrow V(G)$ is one-to-one and $\{f(x), f(y)\} \in E(G) \iff \{x,y\} \in E(F_1)$).

Put $V(H) = V_1 \cup V_2 \cup V_3$ and $\{f, f'\} \in E(H)$ iff $f \in V_1$, $f' \in V_j$ (i+j) and the mapping $f \cup f'$ is an embedding of $F_{i,j}$ into G.

Clearly H contains a triangle if and only if G contains an induced subgraph isomorphic to F.

3: Concluding remarks

3.1: Instead of Strassen algorithm [2] we could use any of its refinements.

The current best performance n²,495364 is due to Coppersmith and Winograd, see [1].

3.2: Apart from the problem of finding a combinatorial algorithm (see the introduction) the following question may be of interest:

Does there exist a graph F with k vertices for which the

decision problem

"does G contain F as an induced subgraph" is easier than the corresponding problem for the complete graph $K_{\bf k}?$

Of course the non-induced subgraph problem is easier (e.g. for forests).

References:

- [1] D. COPPERSMITH, S. WINOGRAD: On the asymptotic complexity of matrix multiplication, in: Proceedings 22nd Symposium on Foundations of Comp. Sci, 1981, p. 82-90.
- [2] V. STRASSEN: Gaussian elimination is not optimal, Num. Math. 13(1969), 354-356.

Matematicko-fyzikální fakulta, Univerzita Karlova, Malostranské nám. 25, 11800 Praha 1, Czechoslovakia

Katedra ASŘ, Stavební fakulta, České vysoké učení technické, Thákurova 7, 16629 Praha 6, Czechoslovakia

(Oblatum 4.1. 1985)