#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1985
PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0026 | log39

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

COMMENTATIONES MAFHEMATICAE UNVERSITATIS CAROLINAE
26,2 (1985)
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ABSTRACT. Let X be a Banach space and T a m—accretive mapping defined
on a subset D of X which takes values in 2x. Suppose the dual space
X* is uniformly convex and suppose, in addition, T 1is ¢-expansive on
D(i.e., lu-vl 2 ¢(Ix-yl) for all x, ye D, ue T(x) and v € T(y)).
Then it is shown that T maps D onto X. A number of related surjectivity
results are obtained for a more general class of Banach space by assuming,
among other conditions, that T is continuous. Also included is an ex-

tension of Deimling's domain invariance theorem to multi-valued mappings.
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Let X be a (real) Banach space and let: B(X) denote the family of
all nonempty, bounded and closed subsets of X supplied with the Hausdorff

*
metric H. Let J :X->2x be the duality mapping defined by
J(x)-{jextxx,j>-ljl2-|!|23.

A mapping T:DcX+B(X) 1is said to be strongly accretive if there exists a

constant ce(0,1) such that if x,yeD, ueT(x), veT(y):

) <u-v,j>2 clx—ylz
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for some jeJ(x-y). This is a well-known class of mappings which has been
studied in various contexts by several authors (e.g., [31, [51, [6l, (9],
[12]). Particularly, we note that any mapping of the form I-T, where I
is the identity and T a single valued contraction mapping (i.e., a mapping
with Lipschitz constant l-c) trivially satisfies (1). If the condition (1)
holds for c=0, then T is said to be accretive and, if in addition the
range of I+rT is precisely X for all r>0, then T 1is said to be
ln-lccretive .

Following Kato [8]s; we may formulate (1) in a more geometric fashion.
A mapping T from D to B(X) is strongly accretive if and only if for

some constant k<l and for each x,yeD, ueT(x), veT(y):
(2) (A=k) Ix-ylsl (A-1) (x-y)+u-vl

for all A>k; while T is accretive if and only if (2) holds for k=1.

The purpose of this paper is to obtain a number of results involving
accretive operators which are intimately connected with the theory of ordinary
differential equations in Banach spaces. In fact we are able to present new
surjectivity theorems for multivalued mappings which are defined in a
portion of the Banach space X with no explicit assumption on

the continuity of the operator T. Among our results we show

that within the framework of spaces X whose dual spaces X* are uniformly
convex, 1f D 1s a subset of X and T:D*Zx is m-accretive and ¢-expan-
sive (in the sense deacribed below), then T 1is surjective. This fact
represents a substantial generalization of corollary 3 and Theorem 4 of
Kartsatos [7], who assumes that T 1is a single-valued mapping, and in the
first instance that T is defined in the whole space, while in the second T
satisfies the assumption where T-p does not attain its infimum on the
boundary of an open subset of D for each peX. Also, in contrast to our

approach, Kartsatos derives his results from an existence theory for dif-
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Along with the surjectivity problems, we derive some domain invariance
theorems which represent extensions of known results to the multi-valued
case. Finally, we derive a new theorem concerning the existence of zeros
for continuous and ¢-accretive mappings (in the sense of £7]) under a
standard boundary --~4jtion.

Throughout this paper we use D and 3D to donote, respectively, the
closure and boundary of a subset D of the space X. We also use |Al to
denote inf{llxll:xeA}, AcX and B(xo;r) to denote the open ball of radius
r about Xg-

Let @:]R+ - JR: be a function which is continuous on ll+ with
$(0)=0 and ¢(r)>0 for r>0. A mapping 1:0cx+2%  1s said to be $-ex-

pansive on D if for every x,yeD, ueT(x) and veT(y):
3 lu-vil2¢ (Ix-yll).

Theorem 1. Let X be a Banach space whose dual space X* 48 uniformly
convex and et D be a subset of X. Suppose T:D - Zx 48 a m-accretive
and ¢-expansive mapping on D gon which Lim inf ¢(x) > 0. Then T maps

r+w®

D onto X.

Before proving Theorem 1, we need the following lemma which is an
extension of Lemma 2.5 of Kato [8] to multi-valued mappings and include
its proof for the sake of completeness.
Lemma. Let X* be uniformly convex and Let T:D c X » X be m-aceretive on
D. Suppose there exisis a sequence {xn} in D such that X, > X e X and
a bounded sequence {u,} in X forn which w, € T (xn). Then x ¢ D and
a.subsequence of {u } converges weakly to u € T(x).

Proof. From the fact that X* 1is uniformly convex, we may derive that the
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mapping J 1s single-valued and uniformly continuous on bounded subsets .
of X (see Lemma 1.2 of [8]).

For every y € D, the accretiveness of T implies that

(4) V-u, Jy-x)>20

for all v € T(y). Since X 1is reflexive, there exists a subsequence
{u } of (un} so that u “ue X as k+ = (" =" denotes weak
k

convergence). Since y-x *y-x as ko, Jy -x_ )+ Iy - x)
k

and by (4) we obtain

<v-u, J(y - x)>20.

By choosing o = 1 in Lemma 1.1 of [8], we yield
(5) ly -xl sly-x + v-ul

Since the mapping (I + 'I)_1 is single-valued and defined from X onto
D, we select y ¢ D for which x+ u € (I + T)(y) and for a suitable
veT(y) wehave x+u = y+ v, which implies with (5) that x =y
and u e T(x).

Proof of Theorem 1. Let 0 < n < lim inf ¢(r) and let ug € X. Now,
b -+ ™

we choose a bounded neighborhood N such that uy € Nc X and
fu - uol s nf2 for all ue N. Let x € T-I(N). Then there exists

u € N such that u € T(x). By choosing Xy € T-l(uo), (3) implies
¢(lx - xol)s tu - uol < nf2.

Therefore the assumptions on ¢ imply that the set {lx - xol:x € T_I(N)}
is bounded, 1.ei. 'I_l (N) 1is bounded. On the other hand, the family
{T + AI:A > 0} converges uniformly in the sense of definition 5.3 of

Browder ‘[4]. Therefore, Theorem 5.1 of [4], implies that R(T), the range
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of T 1is dense in X. To complete the proof, observe that if u € R(T)
80 that u u, then u, € T(xn) for some X € D. The fact that T is
¢-expansive implies X + x € X. Therefore, by the previous lemma, x € D
and u e T(x), proving R(T) 4is closed.

Next, we prove a surjectivity theorem for a general Banach space under
the restriction that the operator T has to be defined in the whole space.

We first need the following result which appears to be new in the context

of multi-valued mappings.

Theorem 2. Let X be a Banach space and Let T:X + B(X) be a continuous
[neLative to H) and accretive mapping. Then T 48 m-accretive.

Proof. Let z e X and c ¢ (0,1). Define the mapping T,:X > B(X) by
'rz(x) = cx + T(z)-z. Then T, is, clearly, strongly accretive on X

(with k=1 - ¢ in (2)). We shall now show that the set
E(z) = {x € X: tx € T (x) for some t < 0}

is bounded. Let ¢tx € Tz(x) for some t < 0 and select u € Tz(x) such
that tx = u. Then by choosing A =1 - t in (2) we have
(c - t)lxll < B-tx + u - vl
= llvi

for all v ¢ rz(o). Since Tz(O) is bounded and t < 0, it follows that
Ixl < I‘rz(O)l/c.

Therefore E(z) 1s bounded. Now, we choose r > 0 so that the closure
of E(z) 1is contained in the open ball B(0;r). This means that the map-

ping 'I‘z satisfies the following condition:

tx ¢ Tz(x) for x € 9B(0;r) and t < 0.

Therefore, Theorem 1 of [14], implies the existence of x € D such that
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0 ¢ Tz(') i.e., z € (¢I + T)(x).

Theorem 3. Let X be a Banach space and Let T:X + B(X) be a continuous
and accretive mapping, which i8 also ¢-expansive on X gor which
Lim ing ¢(n) >0. Then T maps X onto X.

A+
Proof. Following the argument given in the proof of Theorem 1, it can
_be shown that for each u, € X there exists a neighborhood N of uy
such that T-l(N) is bounded, and since T 1s m-accretive, by Theorem 2,
we can once again apply Theorem 5.1 of Browder [4] to conclude that R(T)
is dense in X.

We now prove that R(T) is a closed set. Let u € R(T) such that

u, *u as n+e. Choose x € X for which u € T(xn). Since T 1is

¢-expansive we have
Iun - umﬂ 2 (llxn - xmﬂ),

which implies that {xn) is a Cauchy sequence and thus x X as n >,

Since T 1s continuous, 1lim H(T(xn), T(x)) = 0 and therefore Lemma 2 of
n =+ o

[i) (see also [14]) implies that u e T(x). Hence R(T) is closed, proving

that R(T) = X.

Conollany 1. Let X be a Banach space and Let T:X + B(X) be a continuous
and strongly accretive mapping. Then T maps X onto X.

Proof. It is easily seen that (1) implies that T 1is ¢-expansive on X,

and hence Theorem 3 completes the proof.

In the following two results, we restricted the Banach space X, while

dad

we relax the assumptions of b and closed of T(x) for each x.
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we first begin with a domain invariance theorem for m-accretive mappings.

Theorem 4. Let X be a Banach space for which each nonempty bounded
closed convex subset has the fixed point property for nonexpansive self-
mappings. Suppose T:D c X + 2x 48 m-accretive and ¢-expansive on D.
Then T(G) s open whenever G c D 48 open in X.

Proof. Let B(xo;r) c D for some Xg € D and r > 0. Select Vg € T(xo)

and define "i":D—x0 - 2x by E(x) = T(x + xo) - v

o+ Then ITO)! = 0 and

if x e 3B(0;r),

0= IT0)! < ¢(r)

= ¢(llx + Xq - xoﬂ)

< flu - vl

for all u e T(x + xo) and Vv € T(xo). In particular, if we choose v = Vo

we have

¢(r) < lu - von for all u e T(x + xo).

Therefore,

[T <¢ ) s| Tl .

Since T 1s also m-accretive, we may apply Theorem 2 of [13]to conclude
that B(0;¢(r)) c R(?), 1.e, B(v0;¢(r)) c T(B(xo;r)). The openness of
T(G) 1is an immediate consequence of the latter conclusion.

Theorem 4 represenss the multi-valued version of Theorem 3 of the

author [131,
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Theorem 5. Lex X be as in Theonem 4 and Let D be an unbounded subset
of X fon which T:D » Zx 48 m-accretive and ¢-expansive on D with
$(n) > ». Then T maps D onto X.

Proof. Let B(xo;r) be a closed ball for some fixed X € D and r > 0.

As before, we choose Yo e-T(xo) and we define T:D - X, * 2X by

E(x) = T(x + xo) -V Then

o
ITO)! < ¢(r) s IT(x)!

for all x € 3B(0;r). Therefore, Theorem 2 of [13] implies that

B(vo;¢(r)) c T(D) for each r > 0. Since ¢(r) *> as r + o and Yo is

a fixed element of X, T(D) = X.

Theorem 6 below improves Theorem 10.5 of Browder [4], who assumes (for

single value T) that T 1is locally uniformly continuous.

Theorem 6. Let X be a Banach space and Let T:X + B(X) be a continuous

1

accretive mapping on X. Suppose T ' 4is Locally bounded, i.e., each point

1

Xy of X has a neighborhood N such that T '(N) 4s bounded in X. Then

the range of T 4is dense in X.
We first show a proposition that will be used in the proof of Theorem 6.

Proposition. Let X be a Banach space, D an open subset of X and
T:D > B(X) a continuous and strongly accretive mapping on D. Suppose there
exist xosDandn>0 such that
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(6) |T(x°)| <a<|T(x)| for x e aD.
Then B(0;n) < R(T).

Proof. Without loss of generality we may assume that x, = 0 in (6).

0
We first consider a z e B(0;(r - | T(0)] )/2 and define Tzzﬁ + B(X)
by Tz(x) = T(x) - z. We shall show that tx ¢ Tz(x) for x € 3D and
t < 0. To see this, suppose tx € Tz(x) where x € 3D and t < 0.

By using A =1~ t 1in (2) we have

(1 -t~ k)Ixl < J-tx + Tz(x) - Tz(O)I

< ITz(O)I.

Since 1 - k >0, it follows that ltxl < ITz(O)I. On the other hand,

since x € 3D and |zl < (r - IT(0)!) /2, (6) implies

|1'l(0)| s IT) ! + Uzl
< lex + zll - Nzl

< NexH,

which is a contradiction. Hence, by Theorem 1 of [14], we derive that

z € T(D). To complete the proof, we fix lzll < r and let
E={t € [0,1]: tz € R(T)}

Since by the above argument E ¥ @, we may follow the proof of Theorem 3
of Kirk—Schgneberg [10] to show that 1 € E, 1.e., z € R(T) (see also

[13], Theorem 2).
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o€ R(T). Then the assumption on '1’_l implies

Proof of Theorem 6. Let w
the existence of an open ball B(wO;G) so that T_l(B(wo;é)) is bounded.

Let vy € R(T) such that “"0 - vJI< §/5. Then the set
F={xecX:yeT(x) for some y € B(vo; 38/4)} ¥
is bounded. Thus for r sufficiently large F 1is contained in the open

" ball B = B(0;r) with Fon 3B =@ . Since vy € R(T), there exists

Xy € F such that vy € T(xo) with

(7) 0= IT(xo) - vol< 36/4 s IT(x) - vol for x e 9B.

We now select n, € N so that 3r < n06 and define a mapping

Tn:i + B(X) by T, () = T(x) - vy + (1/n)x. Then for n 2 ng and x e 9B,
ITn(xo)l < (I/n)“xen < 38/4 - !:/n0 =n

and thus (7) yields

ITn(xO)I <ns |Tn(x)| for x € 3B

which implies, by the previous proposition, that B(0;n) c R(Tn). This

means, if lzl < n and n 2 ny, there exists x € T(xn) for which

z=u -V, + (l/n)xn- Therefore u, >z + vy 8 B>, implying
B(vozn) < R(T) and since n = 3§/4 ~ r/no, B(wo;G/S) c R(T). Hence

R(T) is open in X and thus R(T) 1is dense in X.
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Now, we derive a corollary which is an extension of the density

portion of Theorem 3 of Kirk—Schsneberg [9] to multi-valued mapping.

Conro. 2. Llet X be a Banach space and T:X + B(X) a continuous
aceretive mapping such that IT(x)! + = as Uxll + =. Then the range

of T 4s dense in X.
Proof. Let w e X and choose & sufficiently large such that the set
E={xe X:lyl <6+ llwl for some y e T(x)}

is nonempty and the fact that [T(x)| + « as lxll + «, implies E is *
bounded. Since T-I(B(V;G)) c E, Theorem 6 completes the proof.

A mapping T:D ¢ X + B(X) 1is said to be closed 1f T(C) 1s closed
whenever C is closed in D. We also say that T 1s one-to-one if for
every x,y € D such that x ¥ y, then T(x) n T(y) = @. The closedness
(or one-to-oneness) of T holds locally if each x € D has a neighborhood
N such that the restriction of T to N is globally closed (or globally
one-to ;ne), Similarly, T 1is said to be locally accretive if for
each x € D there exists a neighborhood N 8o that the restriction of
T to N is globally accretive.

Our next result represents an extension of the domain invariance theorem
of Deimling [6] to the multi-valued case, by following the formulation of
Schoneberg [16].

Fheorem 7. Let X be a Banach space and 0 an open subset of X. Suppose
T:D + B(X) 45 a continmlous, Locally closed, Locally one-to-one and Locally
accretive mapping. Then T(D) is open.
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Proof. Let %, € D and Yo € T(xo). Since T 1is locally closed, locally
one-to-one and locally accretive, there exists a closed ball B = i(xo;r)

where T 1s globally accretive, closed and one-to-one. Then the number
§ = inf{IT(x) - yolzllx - xoll =r} >0.

Let n >0 so that n(l +r) <8 and for 0 < c < n define the mapping

ht:B + B(X) by ht(x) = c(x - xo) + t:(y0 -y) - Yo + T(x) for t e [0,1]
and y € B(yo;n), and also define the set
Mc = {t € [0,1]:0 ¢ ht(x) for some x € B}.

It is clear that for each ¢ >0, Mc is non-empty (0 € Mc). We shall now
show that sup Hc = 1. To see this, let t, L and let (tn) be a
sequence of Mc for which tn * tc as n + «. Then, for each n, there

exists x € B so that 0 € h, (x ). This means, we may select u € T(x_)
n t n n n

so that c(xn - xo) + t:“(y0 -y) - Yo + u, = 0. Since the mapping ht is,
clearly, strongly accretive on B, we can conclude that

cl!xn - xmﬁ < 'htc(xn) - h:c(xm)l

<slle(x. -x)+u ~-ul
n m n m

= Itn - tmlllyo -yl

Therefore [xn} converges, to say to x € B, and hence u, -+ u € X.

Since T 1s continuous felative to the Hausdorff metric, Lemma 3 of [14]
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implies that 0 ¢ ht (). Now, using the assumptions on ¢ and y we have
c
hu - yol < tclyo -yl + clx - xol
sSn+ecr

< 4,

implying that Ix - xoﬂ < r. It follows that t, € Hc.

Suppose now that tc < 1. Since the point ® is the unique zero of

h: in B, there exists a closed ball Bl < B centered at X such that
c

p = :lnf{lht (x)):x € anl} > 0.
c

Hence for some t > tc'

Iht(x)l >r/2 for all x e 331,

and
Iht(i)l < r/2.

Then, by Theorem 3.2 of [9] there exists x ¢ Bl such that 0 ¢ ht(i)
which contradicts the fact that tc is the supremum of Hc Hence

0€c(x - xo) -y + T(x) for each ¢ ¢ (0,n). If c 0, then there
exist x € B and u € T(xn) such that cu(xn - xo) + u =y and thus
“ﬁ +y as n + = It follows from the closedness of T on B that

y € T(x) for some x € B, which implies that B(yo;n) c T(D). Hence

T(D) 1is open in X.

- 409 -



An operator T:D c X + B(X) 1is said to be ¢-accretive if for each

x,y € D there exists j € J(x - y) satisfying
(¢)) <u=-v,3> 2 ¢(lIx - y)lIx - yl

for ue T(x) and v € T(y), where ¢ is a mapping from lfF into '
which is continuous on lf’ with ¢(0) = 0 and ¢(r) >0 for r > 0.
We also say that T 18 locally ¢-accretive on D if each x ¢ D has a
neighborhood N such that the restriction of T to N is globally

¢~accretive.

We should mention that the notion of ¢-accretive mappings formulated
by Browder [2] is not related to the formulation given here. Nevertheless,
Ray and Walker [15] discuss, to some extent, a more related version of this
concept. In fact, they show a domain invariance theorem (see Theorem 4.1)

which can be derived directly from Theorem 7 of this paper.

Corollary 3. Let X and D as in Theorem 7 and Let T:D + B(X) be con-
tinuous and fLocally ¢-accertive on 0 with L'?n_'i:ﬂ ¢(n) > 0. Then T(D)
48 open.
Proof. Since T is clearly locally one-to-one and locally accretive, it
remains to show that T 18 locally closed. To dee this, let N be a
neighborhood of x € D such that T 1is ¢-accretive on N and let C be
a closed subset of X contained in N. Since ¢-accretiveness implies
¢-expansiveness, we follow the argument given in the proof of Theorem 3 in
order to conclude that T(C) 1s closed. This means T is closed on N
and thus Theorem 7 completes the proof.

Finally, we prove a new theorem for ¢-accretive mapping satisfying the

well-known boundary condition (8) below.
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Theorem 8. Let X be a Banach space and D an open subset of X. Sup-
pose T:D + B(X) 44 a continuous and ¢-accretive mapping (with ¢(t) + =

as £+ =) which satisgies for some z ¢ D
(8) t(x -z ) ¢ T(x) for xe aD and t < 0.
Then 0 € R(T).

Proof. By translating T and D, we may take z = 0 in (8). We begin by

showing that the set
E = {x € D:tx € T(x) for some t < 0}

is bounded. Let x € E, j € J(x) and let fix u € T(0). Then there exists

a t< 0 so that

IxheClxll) < <tx - u, 3>

< thxl? + ulllixd.

Since t < 0,

¢(lxl) < full

and the assumptions on ¢ conclude the boundedness of E. Because of this
latter fact, there is no loss in generality in assuming D 1is bounded.

Following the author's argument given in Theorem 1 of [14], ve claim
there exist x ¢ D and t ¢ (0,1) so that O ¢ ht(x), where the mapping
ht from D into B(X) 1s defined by ht(x) = (1 - t)x + tT(x) for each
t € [0,11.

- 411 -



Then the set

M= {t e [0,1]:0 ¢ ht(x) for some x ¢ D}

1s nonempty with sup M > 0. We shall now show that to = sup M belongs
to M. Let {tn} be a sequence of M with t, >ty a8 n > = Then,

for each n, there exists x € D so that 0 ¢ ht (xn). This means, we
n

may select u € T(xn) for which (1 - :n)xn + tu - 0. By ¢-accretive-
ness of T, there exists j ¢ J(xn - xm) such that
¢(lxn - xnl)lxn - xml < <un L) >
-1 -1
$<1 -t )x - (1= t )%, 2>
s< -t -x)+ ) - t hx >
n n m m n ““m’

-1 2 -1 -1
< Q- t )|xn - xnl + |t. -t llxm”xn xml.

Since 1 - c;l' $0 and {x} dis bounded,
“lxn - x‘I) +0 as n,m+

and thus (xn) is a Cauchy sequence. Hence x, X and u, *u for

some xeD and u € X. The continuity of T implies that O € hto(x)

and by (8), x € D. Therefore to € M. In order to show that to =1,

we may invoke details given in the proof of Theorem 1 of [14].
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