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INVARIANT COHOMOLOGY OF THE POISSON LIE ALGEBRA
OF A SYMPLECTIC MANIFOLD
M. De WILDE, P. B. A. LECOMTE, D. MELOTTE

Abstract. Let (M,F) be a symplectic manifold and let &
be a subalgebra of its Lie algebra of symplectic vector fields.
It is shown that if (M,F) has a G-invariant connection, the
subcomplex of the Chevalley complex of differential cochains
of the Poisson al§ebrs of (M,F) generated by the G-invariant
cochains and the 1-differentiable cochains has the same cohomo-
logy as the total complex. Moreover, the second and third coho-~
mology spaces of the complex of invariant cochains are computed.

Key words: Symplectic manifolds. Chevalley cohomology.
Poisson algebra. Invariamce.

Classification: 17B65, 17B56, 53C15

1. Introduction. Let M be a connected, Hausdorff, second
countable smooth manifold of dimension 2n>2, Let F be & symp-
lectic form on M; A will denote its contravariant version, i.e.
the contravariant 2-tensor obteined by 1ifting the indices of
F by the duality defined by F. The Poisson Lie algebra of M is
(N,P), N being the mpace of all smooth real functions on M and
P the Poisson bracket.

We denote by O the coboundary operator of the Chevalley
cohomology of the adjoint representation of (N,P). A cochain C
(i.e. an alternating multilinear map from N9 into N) is called
differentigl if it is a differential operator of some fixed or-

o — T —

12-4(1)C = O.
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The spaoce Jtuﬁ(l) of all differential cocheins is stable
by d . Its cohomology HI( Ay 00(N), 3) is not kmown in general,
due to the lack of a reasonable model for the cohomology of for-
mal sympleotic vector fields. The spaces HI (q = 1,2,3) play an
impertant role in various problems of symplectic geometry, name-
1y in the study of formal deformations of (N,P), snd they have
been computed in [1, 5, 81,

Suppose now that & is a Lie algebra of symplectic vector
fields on M. A cochain C is @ -invarient if LyC = 0 for all
Xet.

Denote by A"diﬁcx) the space of all G -invariant diffe-
rential cochains. It is still stable by & and the knowledge of
BN, ,(N),3) (q£3) 1s essential in the study of G-invari-
ant formal deformations of (N,P).

It is known that the study of B(Adift(n)’a) reduces to
that of H(Au“'no(n),a) [3] and the same holds true for the
invariant cohomology. An :lmportgt subspace of A ditf,nc(m is
the space of 1-differentiable cochains (i.e. of order 1 in each
argument) isomorphic to the space A (M) of smooth forms on M by

(b*g./\.(u) —+A1-dif£,nc(n)’ where

{!&*0 (uo,aoo.“q_1) = w(xuo,... .x“q-1),

X, being the Hamiltonian vector field of u. The space
A1-d1.ff,nom) is stable by 3 and ¥ intertwins d (the exteri-
or differential) with 3.

We will assume that M admits & © -invariant linear connec-
tion. Prom results of [ 6, 7], it seems to be a reasonable conjec-
ture that the difference between the cohomology and the invari-
ant cohomology only comes from 1-differentiable cochains.
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We prove in this paper that Asdirf,no(n) AA1-diff e
1
and Agipp ng(H) bave the same cohomology and we compute
qusu:f,m(”) for q = 2,3 (the case q = 1 is trivial).

2. The main result

Theorem 2.1. Let (M,P)_be a symplectioc_manifold of dimen—

fields over M.

If M admits & G -invariant linear comnection, then the in-

—— " — - —— - —— -

slusion

10000 0o AN _g128,006®13)—> (Agipe 16(M), 3)
induces an_igomorphism_in cohomology.
We will set
1€ = A0 ,ne® A M_gree,ne(®-

The proof goes in two steps. Pirst, M is supposed to be a
contractible open subset of R 2n with its cenonical symplectic
structure. Next the result has to be extended to an arbitrary M.

The proof of this second step is entirely similar to [2], p.
211,B and will be omitted here.

For the first step, a proof based on a study of the symbols
in lexicographical order and on an induction with respect to this
order would be possible. Since this type of proof seems to hide
an argument based on spectral sequences, weé have preferred the
latter approach., We thus introduce appropriate apectral. sequences
on. (A‘diff,ncm)' d) and (I"(N),a) and show that their terms E,
are isomorphic and that the sequences converge. Surprisingly, the

latter point does not seem to follow from classical convergence

arguments.
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The assumption that M admits a G -invarient connection can
be slightly relaxed, as shown in § 3, but the improvement is not

of obvious interest.

3. The cage of the symplectic manifold R2D, In this sec-

tion, M denotes some fixed contractible open subset of R 2n’ e-
quipped with its canonicel symplectic form F.

' By substituting the i-th component of §j € RZn to the i-th
partial derivative of uy in a cochein C(ug,... .uq_.‘),- we define e
linear map a which transforms the nc cochains into alternating
polynomials on R 2n* , of order 2 1 in each argument and smooth-
ly depending on x€ M.

Let Q be the space of all such polynomials and 5 be the
space of all alternating polynomials on R 2n* , of order >1 in
each argument. Define b: P® A(M) — QP @ @ —> (P . (,-,*5 ),

where « 1is the antisymmetrization projector and

(2eQ)C §oreres §q1) = B Equeees Fgu1)QEpaenes Fgu)e

The mep b is & linear bijection and b

'Adiﬁ noll) to #@ A(M). An easy computation shows that, by
’
this identification, 3 transforms into

o & identifies

9(POw) =dP@ @ +P@d"w,
where d° is given by
(d'_P)( §°,.... fq) -
,Z.("'1)J_A( » )[P(l.l’ + .o.lj\ca') -P(.--| ,a-oa\-.o)-
oy §18 €1(i)?j . .gti,
- P(ooo,Edgccnjou.)]

(recall that /A is the contravariant 2-tensor obtained by lift-
ing the indices in F) and
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if w 1is a g-form.

The coboundary da’ can be interpreted as follows.
A homogeneous polynomial P({,-‘o,...,gq_1) of degree ry in

§4 ldentifies to & g-linear form on ¥ x...x ¥, g+ "here
[ q-
?1 is the symmetric i-th power of RZ22™ . Thus J may be re-

garded as the space of all cochains on ¥= 1-’1;[1 ':fi, continuous
with respect to the product topology.

By lowering indices by means of ¥, the Lie algebra of for-
mal symplectic vector fields without constent term on R 2D i-
dentifies to & , its subalgebra sp(n, R) corresponding to ,.

It is a matter of computation to check that, by this iso-
morphism, a’ corresponds to the differential of the Chevalley
cohomology of the trivial representation of ¥ on R.

4. The speciral sequences. In the sequel, S denotes one of
the spaces P @ A(M) or 36 (¥) =b~1e a 1€ (M),

The space S is graded by S -9‘90 89, 89 being the space of °
all g-cochains belonging to S. It admits the decreasing filtre~
tion PP (p ¢ 2 ), where FP = @ PP+'d ang PP+9 15 the space of
elements of S of total order at most 2g=-p. The total order of
P @ @ 1s the sum of the total order of P and of the number of
arguments of @ . Thus FP*9 = 0 1f p> q. Moreover, d *Pc PP ana
a"PPc PP*!, Thus (S,5) 1s & graded filtered differential space
(in the sense of [ 41). The corresponding spectral sequence will
be denoted (E,(S),d,).

5. The terms E . It is clear that, for S = #@ A (M),
(E,(8),d) & (5,a°@ 1).

The case S = iG(N) reaquires some attention. If C is a co-
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chain, the homogeneous part of aC of highest order is the symbol
a’c of C. If C is invarient, so is o'c because, for every
X ¢ %M, sLxc =1 x“s"' where X* denotes the natural 1ifting

of X to ¥ M. Conversely, since M admits an invariant connecti-
on, every smooth homogeneous polynomial on T* M, invarient by 6,
is the symbol of an invariant cochain [7, § 111, It follows that
EP'9(3) = PP P pP+1 P+ o rggponds by b to the space of yR-
bols of the (p+q)-cochains of order 2q+p of I“(!). Thus

B (2% ) & [v! {pequ‘r =0, YX& G3]1-AMN)

where « 1s defined by
(POw)e(P @ w’) = (-1)XE (PAP)) @ w A @

k (resp. k') being the number of arguments of < (resp. P°).
Moreover, 4 identifies again to 4'® 1.

A more precise description of Eo(']\‘.c (F)) will be useful, If
pe?

LI*P = sv(DI)P,

where DX is the Jacobian matrix of X and ® the natural repre-
sentation of gl{n,R) on P . If X is symplectis, it follows
that
Lx”o b =bo 6(X)
where
©(X)(P & w) = (DX) Pow +P@® Ipw.
Hence
E,(T€ (M) = xer 8 « AW
where
ker © = {C ¢ P@A(M): 6(X)C = 0, VX 6 B3.

For the sake of simplicity, we will denote ker 8 « A (M) by
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19m.

Remark. The only point where the existence of a & -inva-
riant connection is used is the assertion that every homogene-
ous polynomiasl on T* M invariant by & is the symbol of an in-

variant cochain,

6. Isomorphism of the terms E,

Lemma 6.1. The inclusion 1:I & (N)— P @ A (M) induces an

isomorphiem 1, :E((I° (1) — E, (PO A(MD).

It is well-known that
E,(S) & H(E(5),d,).

We have already seen that P = _A_c(':f'), the space of conti-
nuous cochains on ¥ . Moreover sp(n,R) = i‘f’z is a subalgebra
o ¥ .

Denote by R the space of skew-symmetric polynomials of or-
der z 3 in each argument. Then R & /\.c( SI1S5).

Consider the Hochschild-Serre filtration of @ A (M)
(2A(F) ® A(M)) related to the subalgebra ':fz = sp(n,R).
The first term of the corresponding spectral sequence of the
differential space ( P& A(M,i'®@1) 1is

E, & A(F) ® A(M) = Alsp(n,R), ) @ A(M)

with the differential dc: = a?e 41 , where 8@ is the differen-
tial of the Chevalley cohomology of the representation @ rest-
ricted to sp(n,R) and R . )
Similarly, for the corresponding filtration of Ie(N), Eg=
= 19(N) end ay = 3,81 when identifying E} to & subspace of

A(sp(n,R),R) & A(M) by the isomorphism ebove.
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Since sp(n,R) is simple, it is well-known that
BE,a) =A% e 88 AW

and more precisely,

ker §; = A¥M® RP® A(M) @ in %

where A‘d denotes the space of all ad-invariant elements of
A(esp(n,R),R) and RP the space of @ -invariant elements of R.
Moreover, there exists a linear map ki A(sp(n,R),R) —

— A(sp(n,R),R) which intertwins the representation

:t? tA—>i(a) o qo + %,o i(a)

of sp(n, R) and which is a right inverse of qo on im a‘o .
Indeed, ker ap is stable by :LP thus it has an éﬂe--tsblo

algebraic supplement E . Thus

Alsp(n,R),R) = (A*? @ R®) @ im P®E .

Observe that 8§, 1 E— im 8P has a unique inverse. If « ,f3 ,
o are the projectors on A g RC, inm ap and E associated
to this decomposition k = ( 8‘0 ‘E )>te f has the required pro-
perties.

Observe that, by the isomorphism M = A(sp(n,R),R), @
becomes iP « Thus k commutes with ©(X) (X6 &) end k @ 1 sta-
bilizes I (W),

Since N* ® RP@® A (M)c I (N), we have

ker 8,1 19(M) = (A @ RP@A M) @ (I®(H)nim 3 )

and

o . 6 )
19 nin 3, = 3 0 K(I%WNN1in g ) c 1M,

Thus

.

H(B3,d7) & H(E,

va;)
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and the lemma follows.

7. Convergence of the spectral sequences 31(3)' It does not
seen that the convergence of the spectral sequences Ei(S)’ S =

= P& A(M) or I®(N) follows from standard arguments.
We need the following

oo, Suppose that d'= J + 0, where J (i = 0,1) is_homogene-
ous of degree i and that im J nim dicim d o JFy. It (Ej,dj) is

ihe speciral sequence defined by_the filtration PP = qupxq. .
then ER = EP.
Recall that
2} - 2f/at] + 2R y)
where

22« PP TP ana 0P . PP A g7PH,

It is clear that zga Zz + zf*‘. These spaces are equal. In-
deed, if x6 25, x = x, + X4 mod PPY2 ) witn X6 xP ana X4t €
e XP*1, Then d"oxp = 0 and d'1xp + JoxP+1 = 0, thus there ex-
ists zeXP such that dix, = - dyx .4 = J, dyz. Note that
T t d‘1zexp+1nker d, = zf” and x - dyz = x) + Jz -

- dzePPhkerd = Z& . Since PP*2c z?*’, the equality follows.

Moreover, Df = DP . Indeed, if xeDf, , choose the largest
q&p-1 such that x = d”y with ye FINPI*', Then q = p-1. Otner
wise, ye 23 = 23 + z?“ and x = dye d P, contradicting the
choice of q.

Suppose now that z*! = zE'@® V. since zf*'n DB - z21A
Aok 28" + 0B = (0} + 28*) @ V. Moreover zP n zP*! . zP*T,
thus 22+ 2§*! = 22 @ V. Then
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P 1 1,pP ) o 7P P,y P+1 ~ pP
ED = (22 +20*")/(z2§ 402 ) = (2R @V)/L(i+al e vl x BT .
Hence the lemma.

Let us now prove the convergence of the spectral sequences

Take first S = PP® A (M). It is graded by

= qa x4 . r,k
S =®X%, X u%_%(@e A())",
where (P ® A(M))r’k denotes the space of all k-cochains, homo-

geneous of order r. The filtration of § 3 is PP = 99, X9, The
n

differential a” + a" verifies the assumption of Lemma 7.1, hence
S 9(s) = B Us).
The space EZ(S) is easily computed:
E,(S) = H(P,d") & A(M),
4, ([P)4y® @) = [P}y, ® d"w
and
E,(5) = H(#,d")
because M is contractible, hence H(A(M),d) = R.
In particular, each Eg'q is finite dimensional.
It is known [4) that, for i>q+1, there is a canonical sur-
Jective map ‘
e§r%ef 9 P
We must show that it is surjective. In fact, if dj*o for some
j>2, for i> sup(q+l,J), we get

dim EP+9 = aim EP* 9> dim Eg.q> dim EJ*9> aim ED*9.

It follows that the spectral sequence collapses at the second term
and that 85'9 is bijective.
We consider now the case of I® (N). We have the commutative

diagram
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19 (M) —— P UP A M)
3pea l apea
B2 91® (M) —> UL AM)

where the horizontal arrows are induced by the inclusion map
I9(H) >® & A(M). Por 1>q + 1, 5{"‘ is onto, while the up-
per horizontal arrow and eg.q are isomorphisms., Since

lg'q(l9 (N)) is finite-dimensionasl, it follows that all the ar-

rows are isomorphisms, hence the result.

8. The second and third invariant cohomology spaces. We con-

clude by describing the space Hi(_A.Gdiﬁ’no(N), 3), for 1 = 2,3,
Given a connection T" on M, there exist a 2-cocycle 813., with sym-
bol A’ and & 3-cochain T, with symbol

(?op g1'f2)'—>A(fo' €1) .A(§1p fz)A(gap fo).

which allow an easy description of HX(A aire,ne(M,2 ) (1x2,3)
{11, Moreover, if T is invariant, 513, and T, ere invarient.

c -rsg + o+ 3D,
where r ¢ R , we AS(M) andDs AGdiff,nc(N)' Moreover
[cl - (r, [wl)
is bijective, [ J denoting the cohomology classes and

Hz(AGdiff,nc(N)'a) 2R o B AS(W),d);

c'=s?, A Ly +8T+ @ w + JE
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wheres e R , @'¢ A%, B cA‘u“,n,,(x). X is _symplectic
and G -imvariant, s venighing if 3%, is mot exact_in A*(N).

Moreover,

[C)—> (X mod 18,8, [ ’])

- V- — — - ——— i — e —

yootor fields, and

Py 00,06, < B (A 0,0 @ P( A0, 0) @ X,

th X = R or {0} according as 3T, 4is_exact in A% (M) or

t.

'8

Dropping the conditions of invariance in Prop. 7.1 exactly
gives back the descriptionm of (A diff,no(n)' 0 )(4=2,3) menti-
oned above,

The proof requires some preparation. We keep the notations
of the end of the proof of Lemma 6.1. Let P be the bundle as-
sociated to the bundle LS(I) of symplectic linear frames of M
and the natural representation @ of its structure group
Sp(n,R) on P (observe that the differential of S'S is p ). Sin-
ce the projectors « ,(3,y of P commute with f and thus with
'SS » they induce projectors, also denoted ,3, 73 on the fib-
res of P . For the same reason, the maps 3P and k induce line-
ar endomorphisms on P -, which we shall again denote by qa ~ an¢
k. It is clear that 9, (P) = 3(P) and that k o as,,g ¥

If C is a cochain of lexicographical order (ro,...,rq_1)
with Tqu1? Tg meeem Ty g = 1, its lexicographical symbol &,
identifies to & (q-£ )=form on M with values in P and, by this
identification, L x‘ i'c corresponds to the natural Lie derivati-
ve Ly with respect to X on the space A(T™, P) of P -valued

forms on M. In partigular, Lx‘ commutes with «, 3, y, a? and k.
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Indeed, in the trivialisation associated to a canonical chart,
the latter have'the (constant) local forms o<, 3,7,
Lemma 6.1, while the loocal form of L , is

T
LP = = x*nxir - @ (DR,

or k of

%

Let now C = 3E. It is known [1] that 'a? 3" = 6,5 oF 0.

Suppose that i is invariant., One has
By = a8+ pFg+ Y6y

and (8 = 30 ko f€g. It is thus possible to correct B by
a coboundary in order to cancel [’53“ without chenging C. on the
other hand, since 89, is injective on im o and commutes with
Ly, ¥ €y is invariant and 1t is the symbol of an invarisnt epe-
rator.

Let us now prove a). Let

c-:-s?,+ «fw + 3D

be an invariant 2-cocycle. Unless D is of order 1, % ?n is in-
variant. Since there is no 1-cochain in A% @ R® , the abeve
argument shows, by an induction on the order, that D = D+ @}"q,
where D” is invarieat. Thus ¢ = 1) + w*(w+dq) + 20" ead
@+ dm 1is invariant.

If now C is the coboundary of an invariant 1-cochain r = O
and

‘u}‘o + 3D = 3D"

where @ ,D and D" are invarisnt. By the same kind of argument,
D" = D is of order 1, Hence the result.
For b), let
C' = sg ALy + urow + 3B

be invariant (anyway, L is invariant).
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If E is of order (p,q)>(1,1), aP &g 1is of order (p,q,2)

(in deoreasing order), while S‘z A Ly is of order (3,3,1). These
orders are never equal. If (p,q,2) dominates, up to a correction
of E by en inveriant operator, or by a coboundary, we may assume
that 8y = Bg. The only 2-cochains in A% @ R® are 1@ AF
for k odd = 3. Thus if (p,q,2)>(3,3,1) and (p,q)#(k,k) (k odd=>
Zz3), we may correct E by an invariant operator and decrease its
order. If (p,q) = (k,k)>(3,3), %6 = tAE (2&N). The term of
9E of order (k,k-1,3) is then

K(k=1) ACE ., §BACE 0 §2)2A (51, £2).

It follows that £ is iavarieant and E is the symbol of an invari-
ant cochain, We have thus an induction process which allows to
decrease the order of C° by correcting it by 97T for some inve-
rient T as long as E is of order (p,q)=(3,3) with (p,q,2) >
>(3,3,1).

Suppose that (p,q) = (3,3). Then =8 = tA3 end, for some
invariant T°,
c’=- 27 = S?,/\Lx, + ¢’ + 3B
where E” is of order < (3,3) end X =X - X4

Suppose next that C° - 3T  is of order (3,3,1). Its symbol
is /\.3@ Lys3 since it is inverient, X~ is invariant. Thus

.

C* - 81" - 82 ALy, = wre'+ BE
is of order < (3,3,1).

So the induction leads to the existence of some invariant T

end X such that

r

3
C - GCI.‘-S(.,AI.»x

ig 1-differentiable. It is then of the type @,’Kn’ for some in-
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veriant 7 . Hence the first part of b).
If C is the coboundary of an invariant 2-cochain and

¢’ =8>A Ly + w*w’ + JE
with invariant X, oo/ and E, we have
83 A Ly + w'o'= 37
where T is invariant. The same proof shows that X = It and W=

= 4% where, this time, f and 7 are invaeriant. Hence the conclu-

sion.
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