

Werk

Label: Article **Jahr:** 1985

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0026|log33

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE 26,2 (1985)

CONFIGURATION CONDITIONS OF SMALL POINT RANK IN 3-NETS V. HAVEL

Abstract: There are analyzed all possibilities for closure conditions with at most 7 vertices in 3-nets and the corresponding algebraic identities are found. The method used works also in the general case (with arbitrary number of vertices) but yet for 8 vertices increases rapidly.

 $\underline{\text{Key words}}\colon \text{3-halfnet, 3-net, homomorphism, configuration, closure condition.}$

Classification: 20N05,51A20

·

§ 1 Some properties of 3-nets

- A 3-net (briefly: a $\underline{\text{net}}$) is defined as a triplet (P,L,I, (L_1,L_2,L_3)) where P,L are non-void sets, I is a subset of PxL and $\{L_1,L_2,L_3\}$ is a decomposition of L (inducing an equivalence relation // on L) such that
- (i) for every acL there is a baP with bIa,
- (ii) for every $i \in \{1,2,3\}$ and every asP there is just one $b_{\epsilon}L_{\epsilon}$ with aIb, and
- (iii) for every a,b&L not satisfying a//b there is just one c&P with cla,b.

If P, L_1, L_2, L_3 are one-element sets then the net is called <u>trivial</u>. Elements of P will be called <u>points</u>, elements of L <u>lines</u>, I <u>incidence</u> and L_1, L_2, L_3 <u>parallelity classes</u>; the cardinality of P will be called <u>point rank</u>, the cardinality of L <u>line rank</u> and the <u>cardinality</u> of L <u>line rank</u> and <u></u>

dinality of {p|pIL} for any LaL the length of L.

Let $N=(P,L,I,(L_4,L_2,L_3))$, $N=(P',L',I',(L'_4,L'_2,L'_3))$ be nets. A couple (x,λ) of bijections $x:P\to P',\lambda:L\to L'$ is said to be an isomorphism of N ente N', if $xIy\to x(x)I'\lambda(y)$ and $\forall i\in\{1,2,3\}$ ($\ell\in L\to \lambda(\ell)\in I'_{k'}$). The net isomorphism is an equivalence relation on the class of all nets. The induced equivalence classes are maximal subclasses of mutually isomorphic nets.

From every net $N=(P,L,I,(L_4,L_2,L_3))$ we can obtain nets $N_{i,j,k}=(P,L,I,(L_i,L_j,L_k))$ (where (i,j,k) are permutations of the set $\{1,2,3\}$) called parastrophs of N.

A three-basic groupoid is defined as a quadruplet (A,B,C,\cdot) where A,B,C are non-empty sets and $\cdot:A\times B\to C$, $(a,b)\mapsto a\cdot b$ is a "three-basic" binary operation. This groupoid is said to be a three-basic quasigroup, if for every $(a,c)\in A\times C$ there exists just one $b\in B$ such that $a\cdot b=c$ and if for every $(b,c)\in B\times C$ there exists just one $a\in A$ such that $a\cdot b=c$. Let $G=(A,B,C,\cdot),G=(A',B',C',\cdot')$ be three-basic quasigroups. A triplet (A,B,C,\cdot) of bijections $A:A\to A'$, $A:B\to B'$, $\gamma:C\to C'$ is called an isotopy of G onto G' if for all $x\in A$, $y\in B$ the equation A(x):A' and A' is valid. The isotopy is an equivalence relation on the class of all three-basic quasigroups. It divides this class onto maximal subclasses of mutually isotopic quasigroups.

THEOREM (cf. [1], pp. 396-398):

a. Every net N=(P,L,I,(L₁,L₂,L₃)) canenically determines a three-basic quasigroup $Q_N=(L_1,L_2,L_3,L_3)$ such that for all $L_1 \in L_1$, $L_2 \in L_2$, $L_3 \in L_3$: $L_4 : L_2 = L_4 \Leftrightarrow \{p \mid p \mid L_1,L_2,L_3\} \neq \emptyset$.

b. Every three-basic quasigroup $Q=(Q_4,Q_2,Q_3,\cdot)$ with disjoint sets Q_4,Q_2,Q_3 canonically determines a net $N_2=(Q_4\times Q_2,Q_4\cup Q_2\cup Q_3,I_Q,$

 $(Q_4,Q_2,Q_3))$ where for all $x_4 \in Q_4$, $x_2 \in Q_2$, $x \in Q_4 \cup Q_2 \cup Q_3$: $(x_4,x_2)I_{q}x \iff (x=x_1 \lor x=x_1 \lor x=x_2)$.

- c. If N is a net then N_{Q_N} is isomorphic to N. If Q is a three-basic quasigroup then Q_{N_N} is isotopic to Q.
- d. Two nets N, N' are isomorphic if and only if Q_N , $Q_{N'}$ are isotopic.

If $Q=(Q_1,Q_2,Q_3,\cdot)$ is a three-basic quasigroup then for all permutations (i,j,k) of the set $\{1,2,3\}$ denote by withe operation $x_{ijk}:Q_i\times Q_j\to Q_k$ such that $x_i:_{ijk}:q_i\times q_i=x_k \Leftrightarrow x_i\cdot x_2=x_3$ for all $x_4\in Q_1,x_2\in Q_2,$ $x_3\in Q_3$. Evidently all $(Q_i,Q_j,Q_k,:_{ijk})$ are quasigroups (the so called parastrophs of Q). The operations x_{24} or x_{32} will be denoted later also by $(x_1\cdot x_2=x_3 \Leftrightarrow x_1=x_3 / x_2)$ or by $(x_1\cdot x_2=x_3 \Leftrightarrow x_2=x_1 / x_3)$.

§ 2 Configurations and closure conditions in 3-nets

A 3-halfnet (briefly: a halfnet) is defined as a quadruplet $(P,L,I,(L_1,L_2,L_3)) \text{ where } P,L \text{ are sets, } I \subseteq PxL, L_1,L_2,L_3 \subseteq L, \\ L_1 \cap L_2 = \emptyset, \ L_1 \cap L_3 = \emptyset, \ L_2 \cap L_3 = \emptyset, \ L_1 \cup L_2 \cup L_3 = L \text{ such that }$

- (i) for every ie [1,2,3] and every peP there is at most one LaL; with pIL, and
- (ii) for any two distinct a,beL there is at most one ceP with cIa,b.

The terms points, lines, parallels, parastrophs, ranks etc. for halfnets have a similar meaning as for nets.

We say a halfnet N=(P,L,I,(L₄,L₂,L₃)) is a <u>sub-halfnet</u> of a halfnet N=(P',L',I',(L'₄,L'₂,L'₃)) if P≤P',I≤I',L₄⊆L'₄,L₂⊆L'₂,L₃⊆L'₃ (so that also LgL'). A halfnet (P,L,I,(L₄,L₂,L₃)) is said to be a <u>configuration</u> if

- (i) P is finite and contains at least four points,
- (ii) for every pap there are LaL, LaL, LaL, such that pIL, L2, L3,
- (iii) for every ∠6L there are distinct a,beP such that a,bIL, and

(iv) for any a,beP there is a sequence $(p_0, l_0, p_1, l_1, \ldots, p_m)$ with $p_0, p_1, \ldots, p_m eP; l_0, l_1, \ldots, l_m eL; p_0 = a; p_m = b; p_0, p_1 I l_0; p_1, p_2 I l_1; \ldots; p_{m-1}, p_m I l_{m-1}$ (briefly: any two points are connected).

It can be easily seen that every configuration is a subhalfnet in a convenient net.

A homomorphism of a halfnet $N=(P,L,I,(L_4,L_2,L_3))$ into a halfnet $N'=(P,L',I',(L'_4,L'_2,L'_3))$ is defined as a couple (x,λ) of maps $\pi:P\to P'$, $\lambda:L\to L'$ such that for all peP, let from pIl it follows $\pi(p)$ I' $\lambda(l)$ and for all ie $\{1,2,3\}$ from leL4 it follows $\lambda(l)\in L'_{l-1}$ Let $\widetilde{N}=(\widetilde{P},L,\widetilde{I},(\widetilde{L}_4,\widetilde{L}_2,\widetilde{I}_3))$ be a configuration with a prominent "terminal" line let by deleting of which it is obtained a sub-halfnet \widetilde{N}_0 of \widetilde{N} . We say that the closure condition associated to \widetilde{N} with \widetilde{L}_0 is valid in a net $N=(P,L,I,(L_4,L_2,L_3))$ if every homomorphism of \widetilde{N}_0 into N can be prolonged onto a homomorphism of \widetilde{N} into N. If (x_0,λ_0) , (x,λ) is the starting homomorphism and the prolonged one, respectively, then $x_0=x$ and $\lambda=\lambda$

§ 3 Configurations of point rank <8

Using the analysis of more general configurations of point rank <8 in nets of arbitrary finite degree (cf. [3], chap. III) one can deduce all possible configurations of point rank <8 (up to isomorphisms and parastrophs) . The result is as follows:

There is only one configuration of point rank 4. It is described on Fig. 1.

Fig. 1

There is no configuration of point rank 5.

There is exactly one configuration of point rank 6 possessing lines of length 3. It is described on Fig. 3.

Fig. 2

There are exactly two configurations of point rank 6 with no line of length ?. They are described on Fig. 3 and 4.

We shall denote configurations of Fig. 1 and 2 as <u>Fano</u> configurations F_2 , F_3 of index 2 and 3, respectively. Configuration on Fig. 3 is <u>Thomsen configuration</u> T and configuration on Fig. 4 is a <u>shattered Desargues configuration</u> P.

There are only three configurations of point rank 7. They are described on Fig. 5-7. We shall denote them as <u>hexagonal</u> configuration H, <u>first hybrid configuration</u> C_1 and <u>second hybrid configuration</u> C_2 .

Fig. 5

Fig. 6

Fig. 7

§ 4 Closure conditions of point rank <8

Now we shall investigate closure conditions associated to configurations F_2 , F_3 , T, D, H, C_4 , C_2 with terminal lines denoted in Fig. 1-7 interruptedly. These closure conditions will be denoted by F_2 , F_3 , T, D, H, C_4 , C_2 too.

Let $N=(P,L,I,(L_1,L_2,L_3))$ be a net. Then closure condition f_2 is satisfied in N if and only if $a\cdot d=b\cdot c \Rightarrow a\cdot c=b\cdot d$ $(\cdot=\cdot_N)$ for all $a,b\in L_1$ and $c,d\in L_2$. This conditional identity can be rewritten as an identity $a = (b\cdot c) = b = (a\cdot c)$ (for all $a,b\in L_1$ and $c\in L_2$). It is well-known ([2], pp. 66-69) that precisely in this case Q_n is isotopic with an abelian group of index 2.

In other words, closure condition F_2 is satisfied in N if and onlif every loop $(Q,\cdot,1)$ isotopic to Q_N is an abelian group satisfying the identity $x \cdot x = 1$.

Closure condition f_3 is satisfied in N if and only if a.d=b.c \Rightarrow a.c=b.(a\(b.d)) for all a,b \in L₁; c,d \in L₂ or, equivalently, if and only if a.(b\(a.d))=b.(a\(b.d)) for all a,b \in L₄ d \in L₁. For every loop (Q,·,1) isotopic to Q_N the identity a.(b\(a.d))=b.(a\((b.d)) is valid, too. Putting b=1, d=1 we obtain a.a=a\(1, a.(a.a)=1\). Conversely, if every loop (Q,·,1) isotopic to Q_N satisfies the identity x.(x.x)=1 then the points (1,1),(x,1), (1,x), (x,x), (1,x.x), (x,x.x) of N_Q are points of a configuration f_3 isomorphic to f_4 (without terminal lines) and

the points (1,1), (1,x·(x·x)) must coincide because of x·(x·x)=1 so that the points (1,1), (1,x·(x·x)) must lie on the same line of the third parallelity class of N_Q . If we take all loops isotopic to Q_N then isomorphic images of $\tilde{F_3}$ go over to all positions of configurations isomorphic to F_3 (without terminal lines). Thus the closure condition F_3 is valid in N. It results that N satisfies closure condition F_3 if and only if every loop isotopic to Q_N satisfies the identity $x\cdot(x\cdot x)=1$. Unfortunately we have not reached which is the inner structure of the isotopy class of loops with the identity $x\cdot(x\cdot x)=1$. Remark without proof that in a loop $(Q,\cdot,1)$ the identity $a\cdot(b\cdot(a\cdot(b\cdot(a\cdot c))))$ become with two identities $a\cdot(a\cdot(a\cdot c))=c$, $a\cdot(b\cdot(b\cdot(a\cdot c)))=b\cdot(a\cdot(a\cdot(b\cdot c)))$.

It is well-known (cf. [2], pp. 42-43) that N satisfies closure condition T if and only if every loop isotopic to Q_N is an abelian group. This result can be obtained in our description as follows: N satisfies closure condition T if and only if Q_N satisfies the identity $a \cdot (d \setminus (b \cdot c)) = b \cdot (d \setminus (a \cdot c))$ for all $a, b, d \in L_1$ and $c \in L_1$. Every loop $(Q, \cdot, 1)$ isotopic to Q_N satisfies the identity $a \cdot (d \setminus (b \cdot c)) = b \cdot (d \setminus (a \cdot c))$ too. Putting d = 1 we get $a \cdot (b \cdot c) = 1$

Fig. 10

Fig. 11

For c=1 we obtain $a \cdot b = b \cdot a$, the commutativity. Using the commutativity, $a \cdot (b \cdot c) = b \cdot (a \cdot c)$ can be rewritten as $(b \cdot c) \cdot a = b \cdot (c \cdot a)$, the associativity. Using the same argumentation as for F_3 we can deduce that N satisfies closure condition T whenever every loop isotopic to Q_w is an abelian group.

N satisfies closure condition D if and only if Q_N satisfies the identity $a \setminus (d \setminus (a \cdot c)) = b \setminus (d \setminus (b \cdot c))$ for all $a, b, d \in L_N$ and $c \in L_2$. In every loop $(L, \cdot, 1)$ isotopic to Q_N the preceding identity holds, too. Putting b=1, c=1 we get $a \setminus (d \setminus a) = d \setminus 1$, $a \cdot (d \setminus 1) = d \setminus a$. By the same reasoning as by closure condition f_3 we get the following result: N satisfies closure condition f_3 if and only if every loop $(Q_1, \cdot, 1)$ isotopic to Q_N satisfies the identity $a \cdot (d \setminus 1) = d \setminus a$. In loops $(Q_1, \cdot, 1)$ with left inverse property this identity goes over the commutativity.

N satisfies closure condition H if and only if every loop $(Q,\cdot,1)$ isotopic to Q_N satisfies the identity $\mathbf{x}\cdot(\mathbf{x}\cdot\mathbf{x})=(\mathbf{x}\cdot\mathbf{x})\cdot\mathbf{x}$ ([2], pp. 46-47) or if and only if in every loop isotopic to Q_N all by one element generated subloops are subgroups ([2],pp.47--50). In our description N satisfies closure condition H if and only if $((\mathbf{c}\cdot(\mathbf{a}\cdot(\mathbf{c}\cdot\mathbf{b}))))$ b) $(\mathbf{a}\cdot(\mathbf{c}\cdot\mathbf{b}))=\mathbf{c}\cdot(\mathbf{a}\cdot(\mathbf{c}\cdot(\mathbf{a}\cdot(\mathbf{c}\cdot\mathbf{b}))))$ for all $\mathbf{a},\mathbf{c}\in L_1$ and $\mathbf{b}\in L_2$. If $(L,\cdot,1)$ is a loop isotopic to Q_N then it satisfies the preceding identity, too. If we put $\mathbf{a}=1,\mathbf{b}=1$ we get $(\mathbf{c}\cdot\mathbf{c})\cdot\mathbf{c}=\mathbf{c}\cdot(\mathbf{c}\cdot\mathbf{c})$. Similarly as for closure condition F_3 we can obtain the result: N satisfies closure condition H if and only if all loops $(Q,\cdot,1)$ isotopic to Q_N satisfy the identity $(\mathbf{x}\cdot\mathbf{x})\cdot\mathbf{x}=\mathbf{x}\cdot(\mathbf{x}\cdot\mathbf{x})$.

Both hybrid configurations have only restricted importance: If N satisfies closure condition f_2 then it satisfies consequently closure condition C_1 , too. If N does not satisfy closure condition f_2 then closure condition C_4 depends on the existence of a non-void set of all "parellelograms with parellel diagonals" in N and describes some property of this set. We shall not investigate the details here.

As it is easily seen a net N satisfying both closure conditions F_2 , C_2 must be necessarily trivial. If N does not satisfy closure condition F_2 then closure condition C_2 describes some property of "triangles inscribed into triangles formed from two sides and one diagonal of parallelograms with parallel diagonals". The detailes are omitted, too.

References

- [1] F. RADÓ: Einbettung eines Halbgewebes in ein reguläres Gewebe und eines Halbgrupoids in eine Gruppe, Math. Zeitschr. 89(1965), 395-410.
- [2] V.D. BELOUSOV: Algebraičeskie seti i kvazigruppy, Kišinev 1971.
- [3] V.D. BELOUSOV: Konfiguracii v algebraičeskich setjach, Kišinev 1979
- [4] I.V. LJACH: Klassifikacija konfiguracij ranga vosem, Mat. issl. (Kišinev) 51, 1979, 93-104.

Katedra matematiky elektrotechnick \acute{c} fakulty Vysokého učení technického, Hilleho \acute{c} , \acute{c} O2 Brno, Czechoslovakia

(Oblatum 11.6. 1984)

