

Werk

Label: Article **Jahr:** 1985

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0026|log31

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE 26,2 (1985)

NOTE ON A PAPER OF McMORRIS AND SHIER Heinz-Jürgen VOSS

Abstract: F. R. McMORRIS and D. R. SHIER [3] proved: A graph G is split iff G can be represented as an intersection graph of a set of distinct subtrees of K_{4n} . They give a method for constructing this intersection graph. Here an improved construction with minimum n is described.

<u>Keywords</u>: Chordal graphs, split graphs, intersection graphs. Classification: 05C75

Only finite connected simple graphs are to be considered. For the terminology see [1] and [3] .

A graph G is said to be represented on a tree T if and only if G is isomorphic to the intersection graph of a set of distinct subtrees of T $_{\circ}$

A graph G = (V, E) is split if and only if there is a partition of the vertex set as $V = I \cup K$, where I is an independent set and K is complete. Furthermore, the partition $V = I \cup K$ can be chosen so that K is a maximum clique [2]. Henceforth we shall assume that K has been chosen in this manner.

Investigating chordal graphs F_{\bullet} R_{\bullet} MoMORRIS and D_{\bullet} R_{\bullet} SHIER proved [3]:

Theorem 1. A graph G = (V, E) is split if and only if G can be represented on $K_{1,n}$ for some n.

In their proof F. R. MoMORRIS and D. R. SHIER [3] constructed a representation on $K_{1,n}$ for a given split graph. They claim that their method of construction provides a representation of G on $K_{1,n}$ using the smallest possible n. This is not true and I shall give the corrected method.

Before describing it we define: if A , B are sets then $P(A) = \{M/M \le A\}$, where $\emptyset \in P(A)$ and $B \cup P(A)$ dep $\{I/I = B \cup M, M \in P(A)\}$. The subgraph of d induced by H is denoted by G[H], Let W(x) denote the set of all neighbours of the vertex $x \in V$. If $I \subseteq V$ then $W_T(x)$ was $H(x) \cap I$. For real q let [q] denote the smallest integer $\ge q$. Construction. Suppose G = (V,E) is split, where $V = I \cup K$ and $I = \{x_1, \dots, x_r\}$. First, label the end vertices (of degree 1) in T TT Kir by the integers 1, ..., r and the vertex of degree r by 0 . Define the subtree $T(x_1)$, corresponding to vertex x_1 , by $T(x_1) = \{1\}$, for all 1 £1 £r . Next, let L , initially empty, denote a collection of subsets and A , also initially empty, a set of additional vertices of T . For each yek, we consult L to see if all members of $H_T(y) \cup P(A)$ are in the list L . If not, choose one of the members M not in L , define subtree T(y) TTP T[M U{0}] and add H to the list L . If all members of $H_{T}(y) \cup P(A)$ are in the list L we add a new end vertex of to the current T (joining it to vertex 0) and define $T(y) = T[X_T(y) \cup \{0, 4\}]$. We add α to the list A and $N_T(y) \cup {\{\alpha'\}}$ to the list L. This procedure is repeated for all vertices yek. Upon completion, the process yields a Kin and a set of distinct subtrees that represent G . [

Applying my construction to K_4 and K_6 (obtained from K_6

by omitting an edge) I have in both cases a $K_{1,n}$ with an n which is smaller than the one of F. R. McMCRRIS and D. R. SHIER.

Theorem 2. For every split graph G = (V,E), $V = I \cup K$, the Construction provides a representation of G on $K_{1,n}$ with minimal n. If m denotes the maximum number of vertices of K having the same neighbourhood $N_{1}(y)$ in I then the minimal $n = |I| + \lceil \log_2 m \rceil$.

For the simple proof we need the following obvious lemma. Lemma 3. Let S_1 , ..., S_r and T_1 , ..., T_s be the subtrees of K_1 , containing precisely 1 vertex or > 2 vertices, respectively. Then

- i) in the intersection graph G the subtrees S_1, \ldots, S_n form a K_T and the subgraph of G induced by T_1, \ldots, T_n is a K_n ;
- ii) if S_1 (1 \leq i \leq r) consists of the "central" vertex (of degree n) of $K_{1,n}$ then S_1 is joined to all T_j (1 \leq j \leq s) by edges; i. e. the subgraph of G induced by S_1 , T_1 , ..., T_5 is a K_{8+1} .

Proof of Theorem 2. Let G = (V,E) be split with partition $V = I \cup K$ such that K is of maximum possible order. Let $I = \{x_1, x_2, \dots, x_r\}$ and $K = \{y_1, y_2, \dots, y_s\}$. Let $X_1, \dots, X_r, Y_1, \dots, Y_s$ be a representation of G on $K_{1,n}$ such that $x_1 \leftrightarrow X_1$ and $y_1 \leftrightarrow Y_1$. By Lemma 3 and the maximality of K each subtree X_1 consists of an end vertex of $K_{1,n}$. Let the vertices of $K_{1,n}$ be denoted by 0, 1, ..., n so that 0 is the "central" vertex of $K_{1,n}$ and $X_1 = \{1\}$ for $1 \le 1 \le r$.

The subtree Y_j contains the vertex 1 of $K_{1,n}$ $(1 \le i \le r)$ iff $(x_1,y_j) \in E$. Thus the subtree $Y_j[\{0,1,\ldots,r\}]$ of Y_j

induced by {0, 1, ..., r} is uniquely determined.

Let m be an integer defined as follows: there are m vertices \mathbf{J}^1 , ..., $\mathbf{J}^m \in K$ having the same neighbourhood in I and there are no m+1 such vertices in K. Let \mathbf{Y}^1 , ..., \mathbf{Y}^m denote the corresponding subtrees. Then $\mathbf{I}^1[\{0,\ldots,r\}]=\ldots$...= $\mathbf{Y}^m[\{0,\ldots,r\}]$.

Since Y^1 , ..., Y^m are pairwise distinct subtrees they contain some of the vertices r+1, ..., n. With these vertices a set $N_{\underline{I}}(y_1) \cup P(\{r+1, \ldots, n\})$ of 2^{n-r} subtrees of $K_{1,n}$ with fixed $N_{\underline{I}}(y_1)$ can be formed. Consequently, the minimal n has to be chosen $n = r + \lceil \log_2 m \rceil$. \square

In a further paper I shall investigate intersection graphs of a set S of distinct subtrees of a tree ${\tt T}$, where no element of S is contained in an other element of S .

References

- [1] J. A. BONDY and U. S. R. MURTY: Graph Theory with Applications, American Elsevier, New York (1977)
- [2] M. C. GOLUMBIC: Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York (1980)
- [3] F. R. McMCRRIS and D. R. SHIER: Representing chordal graphs on K_{1,n}. Comm. Math. Univ. Carolinae 24, 3 (1983); 489 494

Sektion Mathematik
Pädagogische Hochschule "Karl Friedrich Wilhelm Wander" Dresden
DDR - 8060 Dresden
Wigardstr. 17
German Democratic Republic

(Oblatum 29.10. 1984)